Detailed description page of SalivaDB

This page displays user query in tabular form.

SAL_24558 details
Primary information
SALIDSAL_24558
Biomarker namemiR-628-3p
Biomarker TypeNA
Sampling Method5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed.
Collection MethodThe sample of saliva from patients with OSCC and healthy controls was diluted 1:1 with PBS (phosphate buffered saline) and centrifuged at 3000 g for 15 min at room temperature
Analysis MethodqRT-PCR
Collection SiteSaliva
Disease CategoryHealthy
Disease/ConditionHealthy
Disease SubtypeNA
Fold Change/ ConcentrationNA
Up/DownregulatedNA
ExosomalExosomal
OrganismHomo sapiens
PMID29669525
Year of Publication2018
Biomarker IDmiR-628-3p
Biomarker CategorymiRNA
SequenceNA
Title of studySalivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma
Abstract of studyBACKGROUND: Several studies in the past have investigated the expression of micro RNAs (miRNAs) in saliva as potential biomarkers. Since miRNAs associated with extracellular vesicles (EVs) are known to be protected from enzymatic degradation, we evaluated whether salivary EVs from patients with oral squamous cell carcinoma (OSCC) were enriched with specific subsets of miRNAs.METHODS: OSCC patients and controls were matched with regards to age, gender and risk factors. Total RNA was extracted from salivary EVs and the differential expression of miRNAs was evaluated by qRT-PCR array and qRT-PCR. The discrimination power of up-regulated miRNAs as biomarkers in OSCC patients versus controls was evaluated by the Receiver Operating Characteristic (ROC) curves.RESULTS: A preliminary qRT-PCR array was performed on samples from 5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed. On the basis of these results, a cohort of additional 16 patients and 6 controls were analyzed to further confirm the miRNAs that were up-regulated or selectively expressed in the previous pilot study. The following miRNAs: miR-302b-3p and miR-517b-3p were expressed only in EVs from OSCC patients and miR-512-3p and miR-412-3p were up-regulated in salivary EVs from OSCC patients compared to controls with the ROC curve showing a good discrimination power for OSCC diagnosis. The Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis suggested the possible involvement of the miRNAs identified in pathways activated in OSCC.CONCLUSIONS: In this work, we suggest that salivary EVs isolated by a simple charge-based precipitation technique can be exploited as a non-invasive source of miRNAs for OSCC diagnosis. Moreover, we have identified a subset of miRNAs selectively enriched in EVs of OSCC patients that could be potential biomarkers.