Browse result page of ThPDB2
This is the result page of the browse module of ThPDB2. This page gives the information about the query submitted by the user as per the browse category. Further details of the entries can be seen by clicking on the ID or THPP_ID. Further the user can sort the entries on the basis of various fields by clicking on the respective headers. The user can also download the results in various formats.
Tabular representation:
ID | THPP_ID | Therapeutic Name | Sequence | Molecular Weight | Chemical Formula | Isoelectric Point | Hydrophobicity | Melting Point | Half Life | Description | Disease/Indication | Pharmacodynamics | Mechanism of Action | Toxicity | Metabolism | Absorption | Volume of Distribution | Clearance | Categories | Patent Number | Date of Issue | Date of Expiry | Drug Interaction | Target | Brand Name | Company | Brand Description | Prescribed for | Chemical Name | Formulation | Physical Appearance | Route of Administation | Recommended Dosage | Contraindication | Side Effects | Useful Links 1 | Useful Links 2 | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10327 | Th1046 | Abciximab | >Th1046_Abciximab EVQLQQSGTVLARPGASVKMSCEASGYTFTNYWMHWVKQRPGQGLEWIGAIYPGNSDTSYIQKFKGKAKLTAVTSTTSVYMELSSLTNEDSAVYYCTLYDGYYVFAYWGQGTLVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH | 145651.1 | C6462H9964N1690O2049S48 | 6.16 | -0.424 | 71 | initial half-life of less than 10 minutes and a second phase half-life of about 30 minutes | Abciximab is a Fab fragment of the chimeric human-murine monoclonal antibody 7E3. Abciximab binds to the glycoprotein (GP) IIb/IIIa receptor of human platelets and inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules. It also binds to vitronectin (αvβ3) receptor found on platelets and vessel wall endothelial and smooth muscle cells. | Abciximab is indicated as an adjunct to percutaneous coronary intervention for the prevention of cardiac ischemic complications in patients undergoing percutaneous coronary intervention and in patients with unstable angina not responding to conventional medical therapy when percutaneous coronary intervention is planned within 24 hours. Abciximab is intended for use with aspirin and heparin and has been studied only in that setting. | Abciximab inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules to GPIIb/IIIa receptor sites on activated platelets. A single intravenous bolus dose from 0.15 mg/kg to 0.30 mg/kg produced rapid dose-dependent inhibition of platelet function. After two hours post-injection with a dose of 0.25 - 0.30 mg/kg, 80% of the GPIIb/IIIa receptors were blocked and platelet aggregation was prevented. GPIIb/IIIa is the major surface receptor involved in the final pathway of platelet aggregation. Bleeding time increases to over 30 minutes at the aforementioned doses. To compare, baseline values were five minutes. | Abciximab binds to the intact platelet GPIIb/IIIa receptor, which is a member of the integrin family of adhesion receptors and the major platelet surface receptor involved in platelet aggregation. This binding is thought to involve steric hindrance and/orconformational alterations which block access of large molecules to the receptor rather than direct interaction with the RGD (arginine-glycine-aspartic acid) binding site of GPIIb/IIIa. By binding to the vitronectin receptor (also known as the αvβ3 integrin), abciximab blocks effects mediated by this integrin which include cell adhesion. Furthermore, abciximab blocks Mac-1 receptor on monocytes and neutrophils thus inhibiting monocyte adhesion. | NA | Most likely removed by opsonization via the reticuloendothelial system when bound to platelets, or by human antimurine antibody production. Excreted renally. | NA | NA | NA | Amino Acids, Peptides, and Proteins, Antibodies, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Anticoagulants, Antiplatelet agents, Blood and Blood Forming Organs, Blood Proteins, Globulins, Hematologic Agents, Immunoglobulin Fab Fragments, Immunoglobulin Fragments, Immunoglobulins, Immunoproteins, Miscellaneous Therapeutic Agents, Peptide Fragments, Peptides, Platelet Aggregation Inhibitors Excl. Heparin, Proteins, Serum Globulins | CA1341357 | 7-May-2002 | 7-May-2019 | Additive anticoagulant/antiplatelet effects may increase bleed risk. Concomitant therapy should be avoided with Ginkgo biloba. | Integrin beta-3,Integrin alpha-IIb,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C1r subcomponent,Complement C1q subcomponent subunit A,Complement C1q subcomponent subunit B,Complement C1q subcomponent subunit C,Low affinity immuno | ReoPro | Eli Lilly and Company, Janssen Pharmaceuticals, Janssen Biotech, Inc. | Eli Lilly and Company, Janssen Pharmaceuticals, Janssen Biotech, Inc. | ReoPro is used to lessen the chance of heart attack in people who need percutaneous coronary intervention (PCI), a procedure to open blocked arteries of the heart. | NA | Each single use vial contains 2 mg/mL of Abciximab in a buffered solution (pH 7.2) of 0.01 M sodium phosphate, 0.15 M sodium chloride and 0.001% polysorbate 80 in Water for Injection. No preservatives are added. | Clear, colorless, Sterile, non-pyrogenic solution | Intravenous administartion | The recommended dosage of Abciximab in adults is a 0.25 mg/kg intravenous bolus administered 10-60 minutes before the start of PCI, followed by a continuous Intravenous infusion of 0.125 _g/kg/min (to a maximum of 10 _g/min) for 12 hours. | Active internal bleeding, Recent (within six weeks) gastrointestinal (GI) or genitourinary (GU) bleeding of clinical significance, History of cerebrovascular accident (CVA) within two years, or CVA with a significant residual neurological deficit, Bleeding diathesis; Administration of oral anticoagulants within seven days unless prothrombin time is I 1.2 times control; Thrombocytopenia (< 100,000 cells/pL); Recent (within six weeks) major surgery or trauma; Intracranial neoplasm, arteriovenous malformation, or aneurysm; Severe uncontrolled hypertension; Presumed or documented history of vasculitis; Use of intravenous dextran before percutaneous coronary intervention, or intent to use it during an intervention. | Bleeding; blurred vision; confusion; dizziness, faintness, or lightheadedness when getting up from a lying or sitting position suddenly; sweating; unusual tiredness or weakness | Link | NA | NA |
10328 | Th1046 | Abciximab | >Th1046_Abciximab EVQLQQSGTVLARPGASVKMSCEASGYTFTNYWMHWVKQRPGQGLEWIGAIYPGNSDTSYIQKFKGKAKLTAVTSTTSVYMELSSLTNEDSAVYYCTLYDGYYVFAYWGQGTLVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH | 145651.1 | C6462H9964N1690O2049S48 | 6.16 | -0.424 | 71 | initial half-life of less than 10 minutes and a second phase half-life of about 30 minutes | Abciximab is a Fab fragment of the chimeric human-murine monoclonal antibody 7E3. Abciximab binds to the glycoprotein (GP) IIb/IIIa receptor of human platelets and inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules. It also binds to vitronectin (αvβ3) receptor found on platelets and vessel wall endothelial and smooth muscle cells. | Abciximab is indicated as an adjunct to percutaneous coronary intervention for the prevention of cardiac ischemic complications in patients undergoing percutaneous coronary intervention and in patients with unstable angina not responding to conventional medical therapy when percutaneous coronary intervention is planned within 24 hours. Abciximab is intended for use with aspirin and heparin and has been studied only in that setting. | Abciximab inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules to GPIIb/IIIa receptor sites on activated platelets. A single intravenous bolus dose from 0.15 mg/kg to 0.30 mg/kg produced rapid dose-dependent inhibition of platelet function. After two hours post-injection with a dose of 0.25 - 0.30 mg/kg, 80% of the GPIIb/IIIa receptors were blocked and platelet aggregation was prevented. GPIIb/IIIa is the major surface receptor involved in the final pathway of platelet aggregation. Bleeding time increases to over 30 minutes at the aforementioned doses. To compare, baseline values were five minutes. | Abciximab binds to the intact platelet GPIIb/IIIa receptor, which is a member of the integrin family of adhesion receptors and the major platelet surface receptor involved in platelet aggregation. This binding is thought to involve steric hindrance and/orconformational alterations which block access of large molecules to the receptor rather than direct interaction with the RGD (arginine-glycine-aspartic acid) binding site of GPIIb/IIIa. By binding to the vitronectin receptor (also known as the αvβ3 integrin), abciximab blocks effects mediated by this integrin which include cell adhesion. Furthermore, abciximab blocks Mac-1 receptor on monocytes and neutrophils thus inhibiting monocyte adhesion. | NA | Most likely removed by opsonization via the reticuloendothelial system when bound to platelets, or by human antimurine antibody production. Excreted renally. | NA | NA | NA | Amino Acids, Peptides, and Proteins, Antibodies, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Anticoagulants, Antiplatelet agents, Blood and Blood Forming Organs, Blood Proteins, Globulins, Hematologic Agents, Immunoglobulin Fab Fragments, Immunoglobulin Fragments, Immunoglobulins, Immunoproteins, Miscellaneous Therapeutic Agents, Peptide Fragments, Peptides, Platelet Aggregation Inhibitors Excl. Heparin, Proteins, Serum Globulins | NA | NA | NA | Tirofiban has additive effects. Concomitant use is contraindicated. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Black, tarry stools; bleeding gums; blood in urine or stools; pinpoint red spots on skin; unusual bleeding or bruising | Link | NA | NA |
10329 | Th1046 | Abciximab | >Th1046_Abciximab EVQLQQSGTVLARPGASVKMSCEASGYTFTNYWMHWVKQRPGQGLEWIGAIYPGNSDTSYIQKFKGKAKLTAVTSTTSVYMELSSLTNEDSAVYYCTLYDGYYVFAYWGQGTLVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH | 145651.1 | C6462H9964N1690O2049S48 | 6.16 | -0.424 | 71 | initial half-life of less than 10 minutes and a second phase half-life of about 30 minutes | Abciximab is a Fab fragment of the chimeric human-murine monoclonal antibody 7E3. Abciximab binds to the glycoprotein (GP) IIb/IIIa receptor of human platelets and inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules. It also binds to vitronectin (αvβ3) receptor found on platelets and vessel wall endothelial and smooth muscle cells. | Abciximab is indicated as an adjunct to percutaneous coronary intervention for the prevention of cardiac ischemic complications in patients undergoing percutaneous coronary intervention and in patients with unstable angina not responding to conventional medical therapy when percutaneous coronary intervention is planned within 24 hours. Abciximab is intended for use with aspirin and heparin and has been studied only in that setting. | Abciximab inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules to GPIIb/IIIa receptor sites on activated platelets. A single intravenous bolus dose from 0.15 mg/kg to 0.30 mg/kg produced rapid dose-dependent inhibition of platelet function. After two hours post-injection with a dose of 0.25 - 0.30 mg/kg, 80% of the GPIIb/IIIa receptors were blocked and platelet aggregation was prevented. GPIIb/IIIa is the major surface receptor involved in the final pathway of platelet aggregation. Bleeding time increases to over 30 minutes at the aforementioned doses. To compare, baseline values were five minutes. | Abciximab binds to the intact platelet GPIIb/IIIa receptor, which is a member of the integrin family of adhesion receptors and the major platelet surface receptor involved in platelet aggregation. This binding is thought to involve steric hindrance and/orconformational alterations which block access of large molecules to the receptor rather than direct interaction with the RGD (arginine-glycine-aspartic acid) binding site of GPIIb/IIIa. By binding to the vitronectin receptor (also known as the αvβ3 integrin), abciximab blocks effects mediated by this integrin which include cell adhesion. Furthermore, abciximab blocks Mac-1 receptor on monocytes and neutrophils thus inhibiting monocyte adhesion. | NA | Most likely removed by opsonization via the reticuloendothelial system when bound to platelets, or by human antimurine antibody production. Excreted renally. | NA | NA | NA | Amino Acids, Peptides, and Proteins, Antibodies, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Anticoagulants, Antiplatelet agents, Blood and Blood Forming Organs, Blood Proteins, Globulins, Hematologic Agents, Immunoglobulin Fab Fragments, Immunoglobulin Fragments, Immunoglobulins, Immunoproteins, Miscellaneous Therapeutic Agents, Peptide Fragments, Peptides, Platelet Aggregation Inhibitors Excl. Heparin, Proteins, Serum Globulins | NA | NA | NA | Abciximab may increase the risk of a hypersensitivy reaction to Trastuzumab. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | Chest pain or discomfort; chills; cough; eye pain; fever; general feeling of illness; headache; pale skin; rapid weight gain; shortness of breath; slow or irregular heartbeat; sneezing; sore throat; swelling of hands, ankles, feet, or lower legs. | Link | NA | NA |
10330 | Th1046 | Abciximab | >Th1046_Abciximab EVQLQQSGTVLARPGASVKMSCEASGYTFTNYWMHWVKQRPGQGLEWIGAIYPGNSDTSYIQKFKGKAKLTAVTSTTSVYMELSSLTNEDSAVYYCTLYDGYYVFAYWGQGTLVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH | 145651.1 | C6462H9964N1690O2049S48 | 6.16 | -0.424 | 71 | initial half-life of less than 10 minutes and a second phase half-life of about 30 minutes | Abciximab is a Fab fragment of the chimeric human-murine monoclonal antibody 7E3. Abciximab binds to the glycoprotein (GP) IIb/IIIa receptor of human platelets and inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules. It also binds to vitronectin (αvβ3) receptor found on platelets and vessel wall endothelial and smooth muscle cells. | Abciximab is indicated as an adjunct to percutaneous coronary intervention for the prevention of cardiac ischemic complications in patients undergoing percutaneous coronary intervention and in patients with unstable angina not responding to conventional medical therapy when percutaneous coronary intervention is planned within 24 hours. Abciximab is intended for use with aspirin and heparin and has been studied only in that setting. | Abciximab inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules to GPIIb/IIIa receptor sites on activated platelets. A single intravenous bolus dose from 0.15 mg/kg to 0.30 mg/kg produced rapid dose-dependent inhibition of platelet function. After two hours post-injection with a dose of 0.25 - 0.30 mg/kg, 80% of the GPIIb/IIIa receptors were blocked and platelet aggregation was prevented. GPIIb/IIIa is the major surface receptor involved in the final pathway of platelet aggregation. Bleeding time increases to over 30 minutes at the aforementioned doses. To compare, baseline values were five minutes. | Abciximab binds to the intact platelet GPIIb/IIIa receptor, which is a member of the integrin family of adhesion receptors and the major platelet surface receptor involved in platelet aggregation. This binding is thought to involve steric hindrance and/orconformational alterations which block access of large molecules to the receptor rather than direct interaction with the RGD (arginine-glycine-aspartic acid) binding site of GPIIb/IIIa. By binding to the vitronectin receptor (also known as the αvβ3 integrin), abciximab blocks effects mediated by this integrin which include cell adhesion. Furthermore, abciximab blocks Mac-1 receptor on monocytes and neutrophils thus inhibiting monocyte adhesion. | NA | Most likely removed by opsonization via the reticuloendothelial system when bound to platelets, or by human antimurine antibody production. Excreted renally. | NA | NA | NA | Amino Acids, Peptides, and Proteins, Antibodies, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Anticoagulants, Antiplatelet agents, Blood and Blood Forming Organs, Blood Proteins, Globulins, Hematologic Agents, Immunoglobulin Fab Fragments, Immunoglobulin Fragments, Immunoglobulins, Immunoproteins, Miscellaneous Therapeutic Agents, Peptide Fragments, Peptides, Platelet Aggregation Inhibitors Excl. Heparin, Proteins, Serum Globulins | NA | NA | NA | The prostacyclin analogue, Treprostinil, increases the risk of bleeding when combined with the antiplatelet agent, Abciximab. Monitor for increased bleeding during concomitant thearpy. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
10881 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Amino Acids, Peptides, and Proteins | 1339047 | 27-05-1997 | 27-05-2014 | Cyclophosphamide,Nandrolone phenpropionate,Nandrolone decanoate,Nandrolone,Ramipril,Fosinopril,Trandolapril,Benazepril,Enalapril,Moexipril,Lisinopril,Perindopril,Quinapril,Omapatrilat,Rescinnamine,Captopril,Cilazapril,Spirapril,Temocapril,Enalaprilat,Imidapril,Zofenopril,Delapril,Benazeprilat,Fosinoprilat,Ramiprilat,Trandolaprilat,Moexiprilat,Perindoprilat,Quinaprilat,Quinoline Yellow WS,Cilazaprilat,Vindesine,Vinorelbine,Vincristine,Vinblastine,Vintafolide,Vinflunine,Vincamine,Lenalidomide,Thalidomide,Pomalidomide,Cetuximab,Denileukin diftitox,Leuprolide,Peginterferon alfa-2a,Goserelin,Asparaginase Escherichia coli,Aldesleukin,Gemtuzumab ozogamicin,Pegaspargase,Trastuzumab,Rituximab,Tositumomab,Alemtuzumab,Octreotide,Interferon alfa-2b,Bevacizumab,Masoprocol,Bortezomib,Pipobroman,Cladribine,Cabergoline,Anagrelide,Carmustine,Chlorotrianisene,Amsacrine,Pamidronic acid,Bleomycin,Chlorambucil,Raltitrexed,Mitomycin,Bexarotene,Valproic acid,Gefitinib,Floxuridine,Megestrol acetate,Tioguanine,Aminoglutethimide,Valrubicin,Sorafenib,Streptozocin,Trifluridine,Gemcitabine,Teniposide,Epirubicin,Altretamine,Flutamide,Cisplatin,Alitretinoin,Oxaliplatin,Erlotinib,Toremifene,Fluorouracil,Pentostatin,Methotrexate,Medroxyprogesterone acetate,Imatinib,Clofarabine,Prednisone,Pemetrexed,Mitotane,Nilutamide,Tamoxifen,Daunorubicin,Porfimer sodium,Tretinoin,Irinotecan,Etoposide,Uracil mustard,Dacarbazine,Temozolomide,Aminolevulinic acid,Prednisolone,Mechlorethamine,Testolactone,Azacitidine,Fulvestrant,Carboplatin,Methylprednisolone,Dactinomycin,Cytarabine,Exemestane,Doxorubicin,Hydroxyurea,Letrozole,Busulfan,Topotecan,Mercaptopurine,Melphalan,Fludarabine,Capecitabine,Trilostane,Bicalutamide,Trimetrexate,Procarbazine,Arsenic trioxide,Idarubicin,Ifosfamide,Estramustine,Mitoxantrone,Lomustine,Anastrozole,Paclitaxel,Dexamethasone,Docetaxel,Dasatinib,Lapatinib,Decitabine,Sunitinib,Panitumumab,Nelarabine,Everolimus,Genistein,8-azaguanine,Epothilone D,7-Hydroxystaurosporine,Hadacidin,2-Methoxyestradiol,Geldanamycin,Vorinostat,Fumagillin,Patupilone,Tubercidin,Sparfosic acid,Alvocidib,2-(4-Chlorophenyl)-5-Quinoxalinecarboxamide,Brequinar,Piritrexim,Rhodamine 6G,Batimastat,3,4-Dihydroxybenzoic Acid,Fotemustine,Sparsomycin,Tretazicar,Seocalcitol,Monastrol,Nebularine,Afimoxifene,Thiotepa,Fleroxacin,Metoprine,Camptothecin,Suramin,Urethane,Cyproterone acetate,Ixabepilone,Cediranib,Tirapazamine,Omacetaxine mepesuccinate,Halofuginone,Nilotinib,Vapreotide,Thymalfasin,Galiximab,Sitimagene ceradenovec,Ranpirnase,Pirfenidone,Epratuzumab,Tipifarnib,Troxacitabine,Oregovomab,Banoxantrone,Plitidepsin,Satraplatin,Belinostat,Amonafide,Fenretinide,Tetrathiomolybdate,Labetuzumab,Trabectedin,Elsamitrucin,Bavituximab,Pracinostat,Cobimetinib,Gallium nitrate,Ecabet,Vandetanib,Rindopepimut,Canertinib,Motexafin gadolinium,7-ethyl-10-hydroxycamptothecin,Pelitinib,Alanosine,Ramucirumab,Farletuzumab,Veltuzumab,Palifosfamide,Trabedersen,Trastuzumab emtansine,Oglufanide,Irofulven,Abiraterone,Inotuzumab ozogamicin,KOS-1584,CT-011,Transcrocetinate,Glembatumumab vedotin,Aldoxorubicin,AV-412,Filanesib,Olaratumab,Rubitecan,Garenoxacin,Plevitrexed,Paclitaxel trevatide,Romidepsin,IMO-2055,Ipilimumab,Nimotuzumab,Pixantrone,Seliciclib,Atrasentan,Ridaforolimus,Vadimezan,Exisulind,Amrubicin,Lonidamine,Maxacalcitol,Temsirolimus,Elotuzumab,Tucidinostat,Sapacitabine,Pertuzumab,Indisulam,Annamycin,Endostatin,Tezacitabine,Semaxanib,Diethylnorspermine,Squalamine,Porfiromycin,MLN576,Pazopanib,Midostaurin,Panobinostat,Catumaxomab,Bosutinib,Axitinib,Volociximab,Ofatumumab,Degarelix,Methyltestosterone,Buserelin,Ginsenoside C,Bendamustine,Cabazitaxel,Hydroxyprogesterone caproate,Lanreotide,Plicamycin,Pralatrexate,Triptorelin,Veliparib,Hexestrol,Nocodazole,Puromycin,Efaproxiral,TNP-470,Vismodegib,Crizotinib,Brentuximab vedotin,Eribulin,Cabozantinib,Ruxolitinib,Vemurafenib,Asparaginase Erwinia chrysanthemi,Carfilzomib,Regorafenib,Enzalutamide,Ponatinib,Formestane,Trametinib,Dabrafenib,Radium Ra 223 dichloride,Afatinib,Obinutuzumab,Flumequine,Carmofur,Miltefosine,Nivolumab,Siltuximab,Pembrolizumab,Blinatumomab,Ibrutinib,Idelalisib,Ceritinib,Palbociclib,Olaparib,Dinutuximab,Lenvatinib,Nintedanib,Dienogest,Sonidegib,Niguldipine,Tegafur,Artesunate,Silibinin,Osimertinib,Daratumumab,Necitumumab,Ixazomib,Alectinib,Roquinimex,Masitinib,Venetoclax,Atezolizumab,Pirarubicin,Aclarubicin,Zorubicin,Temoporfin,Conatumumab,Dactolisib,Rabusertib,Ortataxel,Treosulfan,2-chloroethyl-3-sarcosinamide-1-nitrosourea,Ilorasertib,Durvalumab,Misonidazole,Epacadostat,Encorafenib,Endostar,Ribociclib,Icotinib,Bryostatin 1,Talazoparib,Tremelimumab,Niraparib,GSK-2636771,Tivozanib,Saracatinib,Talaporfin,Neratinib,Mocetinostat,Crenolanib,Entinostat,Acridine Carboxamide,Infigratinib,CUDC-907,Efatutazone,Apalutamide,Rociletinib,Guadecitabine,6-O-benzylguanine,Avelumab,Carboxyamidotriazole,Dacomitinib,Binimetinib,Rilotumumab,Tesevatinib,Glasdegib,Entrectinib,Vosaroxin,Abemaciclib,Alpelisib,Triptolide,Broxuridine,Naquotinib,Trebananib,Anecortave,Vesnarinone,Mafosfamide,LCL-161,Lorvotuzumab mertansine,Taselisib,Namitecan,Lorlatinib,Gilteritinib,Duligotuzumab,Rigosertib,Erdafitinib,Cordycepin,CUDC-101,Binetrakin,Exatecan,Zalutumumab,Lurtotecan,KRN-7000,Platinum,CG-200745,Epofolate,Brigatinib,OBP-801,Rucaparib,Navitoclax,Bizelesin,Ricolinostat,Indirubin,Merestinib,R-306465,10-hydroxycamptothecin,Sagopilone,Sulforaphane,Belotecan,Taurolidine,Copanlisib,Mogamulizumab,9-aminocamptothecin,Molgramostim,Oltipraz,Pyrazoloacridine,Abexinostat,Fosbretabulin,Dacetuzumab,Apaziquone,Combretastatin,Mizoribine,Onapristone,PU-H71,Givinostat,Beloranib,Soblidotin,Salirasib,Moxetumomab pasudotox,Gusperimus,Phenethyl Isothiocyanate,Methylselenocysteine,Intetumumab,Dolastatin 10,Etanidazole,Lometrexol,Ecromeximab,Prednimustine,Buthionine sulfoximine,Dianhydrogalactitol,Indole-3-carbinol,Fiacitabine,Trofosfamide,Nolatrexed,Mitolactol,Pinometostat,Doxifluridine,Didox,Mitoguazone,Pexidartinib,Penclomedine,Deoxyspergualin,Acteoside,Rebastinib,Hypericin,Tocladesine,Liarozole,Nimustine,X-396,Sizofiran,Nedaplatin,Olmutinib,Daidzein,Tiazofurine,Triaziquone,Demecolcine,Mannosulfan,Etoglucid,Edrecolomab,Lentinan,Mitobronitol,Oxolinic acid,Semustine,Carboquone,Vorozole,Paclitaxel poliglumex,Oblimersen,Ranimustine,Enasidenib,Iniparib,Talimogene laherparepvec,Coumermycin A1,Toyocamycin,Tretamine,Tetrandrine,Dofequidar,Dexniguldipine,Ivosidenib,Methylprednisolone hemisuccinate,Prednisone acetate,Combretastatin A4,Cemiplimab,Larotrectinib,Tagraxofusp,Rivoceranib,AZD-5991,ONC-201,Ensartinib,Human interleukin-2,Lintuzumab,Bermekimab,Etirinotecan pegol,Zanubrutinib,NUC-1031,Voruciclib,KRN-5500,Perillyl alcohol,Tefinostat,Biochanin A,Dihematoporphyrin ether,SOR-C13,Pidilizumab,Nanatinostat,Tallimustine,Volasertib,Isatuximab,Pemigatinib,Capmatinib,Selpercatinib,Brexucabtagene autoleucel,Pralsetinib,Selinexor,Fedratinib,Polatuzumab vedotin,Axicabtagene ciloleucel,Tucatinib,Darolutamide,Tepotinib,Lisocabtagene maraleucel,Umbralisib,Idecabtagene vicleucel,Dostarlimab,5'-S-methyl-5'-thioadenosine,Trichostatin A,Talactoferrin alfa,Quizartinib,Ripretinib,Edodekin alfa,Droloxifene,Abagovomab,Magrolimab,Nazartinib,Pegylated Recombinant Human Arginase I,Inbakicept,Tisagenlecleucel,Trastuzumab deruxtecan,Belzutifan,Curcumin,Tisotumab vedotin | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 1000 IU/0.5ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10882 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Antianemic Preparations | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 2000 IU/1.0ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10883 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Biological Factors | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 3000 IU/0.3ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10884 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Blood and Blood Forming Organs | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 4000 IU/0.4ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10885 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Carbohydrates | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 5000 IU/0.5ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10886 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Colony-Stimulating Factors | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 6000 IU/0.6ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10887 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Cytokines | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 8000 IU/0.8ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10888 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Erythropoiesis-Stimulating Agents | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 10000 IU/1.0ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10889 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Erythropoietin, genetics | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 7000 IU/0.7ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10890 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Glycoconjugates | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 9000 IU/0.9ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10891 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Glycoproteins | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 20000 IU/0.5ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10892 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Hematinics | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 30000 IU/0.75ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10893 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Hematologic Agents | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 40000 IU/1.0ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10894 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Hematopoietic Cell Growth Factors | NA | NA | NA | NA | Erythropoietin receptor | Abseamed | Medice Arzneimittel Pütter Gmb H Co. Kg | Medice Arzneimittel Pütter Gmb H Co. Kg | Intravenous; Subcutaneous | 40000 IU/1ml | NA | The most common side effects with Abseamed (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Abseamed contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Abseamed is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Abseamed is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with chronic kidney failure (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Abseamed is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10895 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Increased Erythroid Cell Production | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 1000 IU/0.5ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10896 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Intercellular Signaling Peptides and Proteins | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 2000 IU/1.0ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10897 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Peptides | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 3000 IU/0.3ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10898 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | Proteins | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 4000 IU/0.4ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10899 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 5000 IU/0.5ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10900 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 6000 IU/0.6ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10901 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 8000 IU/0.8ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10902 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 10000 IU/1.0ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10903 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 7000 IU/0.7ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10904 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 9000 IU/0.9ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10905 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 20000 IU/0.5ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10906 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 30000 IU/0.75ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10907 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 40000 IU/1ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10908 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Binocrit | Sandoz | Sandoz | Intravenous; Subcutaneous | 10000 IU/1ml | NA | The most common side effects with Binocrit (which may affect more than 1 in 10 people) are nausea (feeling sick),diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Binocrit contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Binocrit is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Binocrit is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Binocrit is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10909 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Biopoin | Teva | Teva | Intravenous; Subcutaneous | 1000 IU/0.5ml | NA | The most common side effects with Biopoin (seen in between 1 and 10 patients in 100) are shunt thrombosis (clots that can form in blood vessels of patients on dialysis, a blood clearance technique), headache, hypertension (high blood pressure), hypertensive crisis (sudden, dangerously high blood pressure), skin reactions, arthralgia (joint pain) and influenza (flu)-like illness. | The active substance in Biopoin, epoetin theta, is a copy of a human hormone called erythropoietin that stimulates the production of red blood cells from the bone marrow. Erythropoietin is produced by the kidneys. In patients receiving chemotherapy or with kidney problems, anaemia can be caused by a lack of erythropoietin, or by the body not responding enough to the erythropoietin it has naturally. The epoetin theta in Biopoin works in the body in the same way as the natural hormone to stimulate red blood cell production. It is produced by a method known as ‘recombinant DNA technology’: it is made by a cell that has received a gene (DNA), which makes it able to produce epoetin theta. | Biopoin is used to treat anaemia (low levels of red blood cells or haemoglobin) that is causing symptoms. It is used in adults with chronic renal failure (long-term, progressive decrease in the ability of the kidneys to work properly) and in adults with non-myeloid cancer (cancer not originating in the bone marrow) who are receiving chemotherapy (medicines to treat cancer). | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10910 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Biopoin | Teva | Teva | Intravenous; Subcutaneous | 2000 IU/0.5ml | NA | The most common side effects with Biopoin (seen in between 1 and 10 patients in 100) are shunt thrombosis (clots that can form in blood vessels of patients on dialysis, a blood clearance technique), headache, hypertension (high blood pressure), hypertensive crisis (sudden, dangerously high blood pressure), skin reactions, arthralgia (joint pain) and influenza (flu)-like illness. | The active substance in Biopoin, epoetin theta, is a copy of a human hormone called erythropoietin that stimulates the production of red blood cells from the bone marrow. Erythropoietin is produced by the kidneys. In patients receiving chemotherapy or with kidney problems, anaemia can be caused by a lack of erythropoietin, or by the body not responding enough to the erythropoietin it has naturally. The epoetin theta in Biopoin works in the body in the same way as the natural hormone to stimulate red blood cell production. It is produced by a method known as ‘recombinant DNA technology’: it is made by a cell that has received a gene (DNA), which makes it able to produce epoetin theta. | Biopoin is used to treat anaemia (low levels of red blood cells or haemoglobin) that is causing symptoms. It is used in adults with chronic renal failure (long-term, progressive decrease in the ability of the kidneys to work properly) and in adults with non-myeloid cancer (cancer not originating in the bone marrow) who are receiving chemotherapy (medicines to treat cancer). | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10911 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Biopoin | Teva | Teva | Intravenous; Subcutaneous | 3000 IU/0.5ml | NA | The most common side effects with Biopoin (seen in between 1 and 10 patients in 100) are shunt thrombosis (clots that can form in blood vessels of patients on dialysis, a blood clearance technique), headache, hypertension (high blood pressure), hypertensive crisis (sudden, dangerously high blood pressure), skin reactions, arthralgia (joint pain) and influenza (flu)-like illness. | The active substance in Biopoin, epoetin theta, is a copy of a human hormone called erythropoietin that stimulates the production of red blood cells from the bone marrow. Erythropoietin is produced by the kidneys. In patients receiving chemotherapy or with kidney problems, anaemia can be caused by a lack of erythropoietin, or by the body not responding enough to the erythropoietin it has naturally. The epoetin theta in Biopoin works in the body in the same way as the natural hormone to stimulate red blood cell production. It is produced by a method known as ‘recombinant DNA technology’: it is made by a cell that has received a gene (DNA), which makes it able to produce epoetin theta. | Biopoin is used to treat anaemia (low levels of red blood cells or haemoglobin) that is causing symptoms. It is used in adults with chronic renal failure (long-term, progressive decrease in the ability of the kidneys to work properly) and in adults with non-myeloid cancer (cancer not originating in the bone marrow) who are receiving chemotherapy (medicines to treat cancer). | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10912 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Biopoin | Teva | Teva | Intravenous; Subcutaneous | 4000 IU/0.5ml | NA | The most common side effects with Biopoin (seen in between 1 and 10 patients in 100) are shunt thrombosis (clots that can form in blood vessels of patients on dialysis, a blood clearance technique), headache, hypertension (high blood pressure), hypertensive crisis (sudden, dangerously high blood pressure), skin reactions, arthralgia (joint pain) and influenza (flu)-like illness. | The active substance in Biopoin, epoetin theta, is a copy of a human hormone called erythropoietin that stimulates the production of red blood cells from the bone marrow. Erythropoietin is produced by the kidneys. In patients receiving chemotherapy or with kidney problems, anaemia can be caused by a lack of erythropoietin, or by the body not responding enough to the erythropoietin it has naturally. The epoetin theta in Biopoin works in the body in the same way as the natural hormone to stimulate red blood cell production. It is produced by a method known as ‘recombinant DNA technology’: it is made by a cell that has received a gene (DNA), which makes it able to produce epoetin theta. | Biopoin is used to treat anaemia (low levels of red blood cells or haemoglobin) that is causing symptoms. It is used in adults with chronic renal failure (long-term, progressive decrease in the ability of the kidneys to work properly) and in adults with non-myeloid cancer (cancer not originating in the bone marrow) who are receiving chemotherapy (medicines to treat cancer). | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10913 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Biopoin | Teva | Teva | Intravenous; Subcutaneous | 5000 IU/0.5ml | NA | The most common side effects with Biopoin (seen in between 1 and 10 patients in 100) are shunt thrombosis (clots that can form in blood vessels of patients on dialysis, a blood clearance technique), headache, hypertension (high blood pressure), hypertensive crisis (sudden, dangerously high blood pressure), skin reactions, arthralgia (joint pain) and influenza (flu)-like illness. | The active substance in Biopoin, epoetin theta, is a copy of a human hormone called erythropoietin that stimulates the production of red blood cells from the bone marrow. Erythropoietin is produced by the kidneys. In patients receiving chemotherapy or with kidney problems, anaemia can be caused by a lack of erythropoietin, or by the body not responding enough to the erythropoietin it has naturally. The epoetin theta in Biopoin works in the body in the same way as the natural hormone to stimulate red blood cell production. It is produced by a method known as ‘recombinant DNA technology’: it is made by a cell that has received a gene (DNA), which makes it able to produce epoetin theta. | Biopoin is used to treat anaemia (low levels of red blood cells or haemoglobin) that is causing symptoms. It is used in adults with chronic renal failure (long-term, progressive decrease in the ability of the kidneys to work properly) and in adults with non-myeloid cancer (cancer not originating in the bone marrow) who are receiving chemotherapy (medicines to treat cancer). | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10914 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Biopoin | Teva | Teva | Intravenous; Subcutaneous | 10000 IU/1.0ml | NA | The most common side effects with Biopoin (seen in between 1 and 10 patients in 100) are shunt thrombosis (clots that can form in blood vessels of patients on dialysis, a blood clearance technique), headache, hypertension (high blood pressure), hypertensive crisis (sudden, dangerously high blood pressure), skin reactions, arthralgia (joint pain) and influenza (flu)-like illness. | The active substance in Biopoin, epoetin theta, is a copy of a human hormone called erythropoietin that stimulates the production of red blood cells from the bone marrow. Erythropoietin is produced by the kidneys. In patients receiving chemotherapy or with kidney problems, anaemia can be caused by a lack of erythropoietin, or by the body not responding enough to the erythropoietin it has naturally. The epoetin theta in Biopoin works in the body in the same way as the natural hormone to stimulate red blood cell production. It is produced by a method known as ‘recombinant DNA technology’: it is made by a cell that has received a gene (DNA), which makes it able to produce epoetin theta. | Biopoin is used to treat anaemia (low levels of red blood cells or haemoglobin) that is causing symptoms. It is used in adults with chronic renal failure (long-term, progressive decrease in the ability of the kidneys to work properly) and in adults with non-myeloid cancer (cancer not originating in the bone marrow) who are receiving chemotherapy (medicines to treat cancer). | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10915 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Biopoin | Teva | Teva | Intravenous; Subcutaneous | 20000 IU/1.0ml | NA | The most common side effects with Biopoin (seen in between 1 and 10 patients in 100) are shunt thrombosis (clots that can form in blood vessels of patients on dialysis, a blood clearance technique), headache, hypertension (high blood pressure), hypertensive crisis (sudden, dangerously high blood pressure), skin reactions, arthralgia (joint pain) and influenza (flu)-like illness. | The active substance in Biopoin, epoetin theta, is a copy of a human hormone called erythropoietin that stimulates the production of red blood cells from the bone marrow. Erythropoietin is produced by the kidneys. In patients receiving chemotherapy or with kidney problems, anaemia can be caused by a lack of erythropoietin, or by the body not responding enough to the erythropoietin it has naturally. The epoetin theta in Biopoin works in the body in the same way as the natural hormone to stimulate red blood cell production. It is produced by a method known as ‘recombinant DNA technology’: it is made by a cell that has received a gene (DNA), which makes it able to produce epoetin theta. | Biopoin is used to treat anaemia (low levels of red blood cells or haemoglobin) that is causing symptoms. It is used in adults with chronic renal failure (long-term, progressive decrease in the ability of the kidneys to work properly) and in adults with non-myeloid cancer (cancer not originating in the bone marrow) who are receiving chemotherapy (medicines to treat cancer). | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10916 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Biopoin | Teva | Teva | Intravenous; Subcutaneous | 30000 IU/1.0ml | NA | The most common side effects with Biopoin (seen in between 1 and 10 patients in 100) are shunt thrombosis (clots that can form in blood vessels of patients on dialysis, a blood clearance technique), headache, hypertension (high blood pressure), hypertensive crisis (sudden, dangerously high blood pressure), skin reactions, arthralgia (joint pain) and influenza (flu)-like illness. | The active substance in Biopoin, epoetin theta, is a copy of a human hormone called erythropoietin that stimulates the production of red blood cells from the bone marrow. Erythropoietin is produced by the kidneys. In patients receiving chemotherapy or with kidney problems, anaemia can be caused by a lack of erythropoietin, or by the body not responding enough to the erythropoietin it has naturally. The epoetin theta in Biopoin works in the body in the same way as the natural hormone to stimulate red blood cell production. It is produced by a method known as ‘recombinant DNA technology’: it is made by a cell that has received a gene (DNA), which makes it able to produce epoetin theta. | Biopoin is used to treat anaemia (low levels of red blood cells or haemoglobin) that is causing symptoms. It is used in adults with chronic renal failure (long-term, progressive decrease in the ability of the kidneys to work properly) and in adults with non-myeloid cancer (cancer not originating in the bone marrow) who are receiving chemotherapy (medicines to treat cancer). | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10917 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 1000 IU/0.5ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10918 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 2000 IU/1.0ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10919 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 3000 IU/0.3ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10920 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 4000 IU/0.4ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10921 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 5000 IU/0.5ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10922 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 6000 IU/0.6ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10923 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 8000 IU/0.8ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10924 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 10000 IU/1.0ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10925 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 7000 IU/0.7ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
10926 | Th1240 | Erythropoietin | >Th1240_Erythropoietin APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR | 18396.1 | C815H1317N233O241S5 | 8.75 | NA | 53 °C | **Healthy volunteers:** The half life is approximately 4 hours in healthy volunteers receiving an intravenous injection [F85]. A half-life of approximately 6 hours has been reported in children [F85]., **Adult and paediatric patients with CRF:** The elimination half life following intravenous administration ranges from 4 to 13 hours, which is about 20% longer in CRF patients than that in healthy subjects. The half life is reported to be similar between adult patients receiving or not receiving dialysis [FDA Label]. , **Cancer patients receiving cyclic chemotherapy:** Following subcutaneous administration, the average half life is 40 hours with range of 16 to 67 hours [FDA Label]. | Erythropoietin (EPO) is a growth factor produced in the kidneys that stimulates the production of red blood cells. It works by promoting the division and differentiation of committed erythroid progenitors in the bone marrow [FDA Label]. Epoetin alfa (Epoge) was developed by Amgen Inc. in 1983 as the first rhEPO commercialized in the United States, followed by other alfa and beta formulations. Epoetin alfa is a 165-amino acid erythropoiesis-stimulating glycoprotein produced in cell culture using recombinant DNA technology and is used for the treatment of patients with anemia associated with various clinical conditions, such as chronic renal failure, antiviral drug therapy, chemotherapy, or a high risk for perioperative blood loss from surgical procedures [FDA Label]. It has a molecular weight of approximately 30,400 daltons and is produced by mammalian cells into which the human erythropoietin gene has been introduced. The product contains the identical amino acid sequence of isolated natural erythropoietin and has the same biological activity as the endogenous erythropoietin. Epoetin alfa biosimilar, such as Retacrit (epoetin alfa-epbx or epoetin zeta), has been formulated to allow more access to treatment options for patients in the market [L2784]. The biosimilar is approved by the FDA and EMA as a safe, effective and affordable biological product and displays equivalent clinical efficacy, potency, and purity to the reference product [A7504]. Epoetin alfa formulations can be administered intravenously or subcutaneously. | Indicated in adult and paediatric patients for the treatment of anemia due to Chronic Kidney Disease (CKD) in patients on dialysis and not on dialysis, treatment of anemia due to zidovudine in patients with HIV-infection, treatment of anemia due to the effects of concomitant myelosuppressive chemotherapy, and upon initiation, there is a minimum of two additional months of planned chemotherapy, reduction of allogeneic RBC transfusions in patients undergoing elective, noncardiac, nonvascular surgery. | Erythropoietin and epoetin alfa are involved in the regulation of erythrocyte differentiation and the maintenance of a physiological level of circulating erythrocyte mass. It is reported to increase the reticulocyte count within 10 days of initiation, followed by increases in the RBC count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [F85]. Depending on the dose administered, the rate of hemoglobin increase may vary. In patients receiving hemodialysis, a greater biologic response is not observed at doses exceeding 300 Units/kg 3 times weekly [F85]. Epoetin alfa serves to restore erythropoietin deficiency in pathological and other clinical conditions where normal production of erythropoietin is impaired or compromised. In anemic patients with chronic renal failure (CRF), administration with epoetin alfa stimulated erythropoiesis by increasing the reticulocyte count within 10 days, followed by increases in the red cell count, hemoglobin, and hematocrit, usually within 2 to 6 weeks [FDA Label]. Epoetin alfa was shown to be effective in increasing hematocrit in zidovudine-treated HIV-infected patients and anemic cancer patients undergoing chemotherapy [FDA Label]. | Erythropoietin or exogenous epoetin alfa binds to the erythropoietin receptor (EPO-R) and activates intracellular signal transduction pathways [A33079]. The affinity (Kd) of EPO for its receptor on human cells is ~100 to 200 pM [A33080]. Upon binding to EPO-R on the surface of erythroid progenitor cells, a conformational change is induced which brings EPO-R-associated Janus family tyrosine protein kinase 2 (JAK2) molecules into close proximity. JAK2 molecules are subsequently activated via phosphorylation, then phosphorylate tyrosine residues in the cytoplasmic domain of the EPO-R that serve as docking sites for Src homology 2-domain-containing intracellular signaling proteins [A33079]. The signalling proteins include STAT5 that once phosphorylated by JAK2, dissociates from the EPO-R, dimerizes, and translocates to the nucleus where they serve as transcription factors to activate target genes involved in cell division or differentiation, including the apoptosis inhibitor Bcl-x [A33079]. The inhibition of apoptosis by the EPO-activated JAK2/STAT5/Bcl-x pathway is critical in erythroid differentiation. Via JAK2-mediated tyrosine phosphorylation, erythropoietin and epoetin alfa also activates other intracellular proteins involved in erythroid cell proliferation and survival, such as Shc , phosphatidylinositol 3-kinase (PI3K), and phospholipase C-1 [A33079]. | Overdose from epoetin alfa include signs and symptoms associated with an excessive and/or rapid increase in hemoglobin concentration, including cardiovascular events. Patients with suspected or known overdose should be monitored closely for cardiovascular events and hematologic abnormalities. Polycythemia should be managed acutely with phlebotomy, as clinically indicated. Following resolution of the overdose, reintroduction of epoetin alfa therapy should be accompanied by close monitoring for evidence of rapid increases in hemoglobin concentration (>1 gm/dL per 14 days). In patients with an excessive hematopoietic response, reduce the dose in accordance with the recommendations described in the drug label [FDA Label]. | Binding of erythropoietin and epoetin alfa to EPO-R leads to cellular internalization, which involves the degradation of the ligand. Erythropoietin and epoetin alfa may also be degraded by the reticuloendothelial scavenging pathway or lymphatic system [A33080]. | The time to reach peak concentration is slower via the subcutaneous route than the intravenous route which ranges from 20 to 25 hours, and the peak is always well below the peak achieved using the intravenous route (5–10% of those seen with IV administration) [A33080, L85]. The bioavailability of subcutaneous injectable erythropoietin is much lower than that of the intravenously administered product and is approximately 20-40% [A33080, L85]. **Adult and paediatric patients with CRF:** Following subcutaneous administration, the peak plasma levels are achieved within 5 to 24 hours [FDA Label]. **Cancer patients receiving cyclic chemotherapy:** The average time to reach peak plasma concentration was approximately 13.3 ± 12.4 hours after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing. The Cmax is expected be 3- to 7- fold higher and the Tmax is expected to be 2- to 3-fold longer in patients receiving a 40,000 Units SC weekly dosing regimen [FDA Label]. | In healthy volunteers, the volume of distribution of intravenous epoetin alfa was generally similar to the plasma volume (range of 40–63.80 mL/kg), indicating limited extravascular distribution [A33080, A33076]. | **Healthy volunteers: ** In male volunteers receiving intravenous epoetin alfa, the total body clearance was approximately 8.12 ± 1.00 mL/h/kg [A33076]. **Cancer patients receiving cyclic chemotherapy:** The average clearance was approximately 20.2 ± 15.9 mL/h/kg after 150 Units/kg three times per week (TIW) subcutaneous (SC) dosing [FDA Label]. The patients receiving a 40,000 Units SC weekly dosing regimen display a lower clearance (9.2 ± 4.7 mL/h/kg) [FDA Label]. | NA | NA | NA | NA | NA | Erythropoietin receptor | Epoetin Alfa Hexal | Hexal Ag | Hexal Ag | Intravenous; Subcutaneous | 9000 IU/0.9ml | NA | The most common side effects with Epoetin Alfa Hexal (which may affect more than 1 in 10 people) are nausea (feeling sick), diarrhoea, vomiting, fever and headache. Flu-like illness may occur especially at the start of treatment. | Epoetin Alfa Hexal contains the active substance epoetin alfa and is a ‘biosimilar medicine’. This means that Epoetin Alfa Hexal is highly similar to another biological medicine (the ‘reference medicine’) that is already authorised in the EU. The reference medicine for Epoetin Alfa Hexal is Eprex/Erypo. | to treat anaemia (low red blood cell counts) that is causing symptoms in patients with ‘chronic kidney failure’ (long-term, progressive decrease in the ability of the kidneys to work properly) or other kidney problems; to treat anaemia in adults receiving chemotherapy for certain types of cancer and to reduce the need for blood transfusions; to increase the amount of blood that can be taken in adult patients with moderate anaemia and normal blood iron levels who are going to have an operation and donate their own blood before surgery (autologous blood transfusion); to reduce the need for blood transfusions in adults with moderate anaemia who are about to undergo major orthopaedic (bone) surgery, such as hip surgery. It is used in patients with normal blood iron levels who could experience complications from a blood transfusion, if they do not donate their own blood before surgery and are expected to lose 900 to 1,800 ml of blood; to treat anaemia in adults with myelodysplastic syndromes (conditions in which the production of healthy blood cells is defective). Epoetin Alfa Hexal is used when patients are at low or intermediate risk of developing acute myeloid leukaemia and have low levels of the natural hormone erythropoietin. | potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,3-triaza-4-azanidacyclopenta-2,5-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol | NA | Link | Link | NA |
Showing 1 to 50 of 173 entries