Detailed description page of ThPDB2
This page displays user query in tabular form. |
Th1243 details |
Primary information | |
---|---|
ID | 11149 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Amino Acids, Peptides, and Proteins |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | Diethylstilbestrol,Chlorotrianisene,Conjugated estrogens,Estrone,Estradiol,Dienestrol,Ethinylestradiol,Mestranol,Estriol,Estrone sulfate,Quinestrol,Hexestrol,Tibolone,Synthetic Conjugated Estrogens, A,Synthetic Conjugated Estrogens, B,Polyestradiol phosphate,Esterified estrogens,Zeranol,Equol,Promestriene,Methallenestril,Epimestrol,Moxestrol,Estradiol acetate,Estradiol benzoate,Estradiol cypionate,Estradiol valerate,Biochanin A,Formononetin,Estetrol,Cetuximab,Omalizumab,Adalimumab,Abciximab,Gemtuzumab ozogamicin,Indium In-111 satumomab pendetide,Infliximab,Trastuzumab,Rituximab,Basiliximab,Muromonab,Digoxin Immune Fab (Ovine),Ibritumomab tiuxetan,Tositumomab,Alemtuzumab,Capromab pendetide,Efalizumab,Antithymocyte immunoglobulin (rabbit),Natalizumab,Palivizumab,Daclizumab,Bevacizumab,Technetium Tc-99m arcitumomab,Eculizumab,Panitumumab,Ranibizumab,Galiximab,Pexelizumab,Afelimomab,Epratuzumab,Bectumomab,Oregovomab,IGN311,Adecatumumab,Labetuzumab,Matuzumab,Fontolizumab,Bavituximab,CR002,Rozrolimupab,Girentuximab,Obiltoxaximab,XTL-001,NAV 1800,Briakinumab,Otelixizumab,AMG 108,Iratumumab,Enokizumab,Ramucirumab,Farletuzumab,Veltuzumab,Ustekinumab,Trastuzumab emtansine,PRO-542,TNX-901,Inotuzumab ozogamicin,RI 624,MYO-029,CT-011,Leronlimab,Glembatumumab vedotin,Olaratumab,IPH 2101,TB-402,Caplacizumab,IMC-1C11,Eldelumab,Lumiliximab,Canakinumab,Ipilimumab,Nimotuzumab,Clenoliximab,Tocilizumab,BIIB015,Sonepcizumab,Motavizumab,Elotuzumab,AVE9633,Carotuximab,XmAb 2513,Coltuximab ravtansine,Lucatumumab,Pertuzumab,Siplizumab,Apolizumab,Sibrotuzumab,Bivatuzumab,Lerdelimumab,Lexatumumab,Reslizumab,Teplizumab,Catumaxomab,Mepolizumab,Denosumab,Volociximab,Ofatumumab,Golimumab,Brentuximab vedotin,Belimumab,Raxibacumab,Obinutuzumab,Secukinumab,Vedolizumab,Nivolumab,Siltuximab,Pembrolizumab,Dulaglutide,Blinatumomab,Anthrax immune globulin human,Dinutuximab,Asfotase alfa,Idarucizumab,Alirocumab,Evolocumab,Antilymphocyte immunoglobulin (horse),Daratumumab,Necitumumab,Ixekizumab,Ravulizumab,Atezolizumab,Tetanus immune globulin, human,Eftrenonacog alfa,Human varicella-zoster immune globulin,Conatumumab,Tabalumab,Ficlatuzumab,Figitumumab,Durvalumab,Bapineuzumab,Depatuxizumab mafodotin,Onartuzumab,Solanezumab,Sarilumab,Tremelimumab,Brodalumab,Sirukumab,Lampalizumab,Guselkumab,Dalotuzumab,Emibetuzumab,Ublituximab,Ligelizumab,Seribantumab,Landogrozumab,Romosozumab,Vadastuximab talirine,Lebrikizumab,Varlilumab,Avelumab,Crenezumab,Rilotumumab,Anifrolumab,Ocrelizumab,Benralizumab,Gantenerumab,Visilizumab,Urelumab,Lorvotuzumab mertansine,Patritumab,Fulranumab,Tarextumab,Sotatercept,Gevokizumab,Duligotuzumab,Simtuzumab,Fasinumab,Dupilumab,Tralokinumab,Etrolizumab,Zalutumumab,Ganitumab,Etaracizumab,Polatuzumab vedotin,Inclacumab,Cixutumumab,Ascrinvacumab,Aducanumab,GS-5745,Vanucizumab,Labetuzumab govitecan,Tanezumab,Ensituximab,Fezakinumab,Dusigitumab,Fresolimumab,Indusatumab vedotin,Bococizumab,Mirvetuximab Soravtansine,Mogamulizumab,Plozalizumab,Inebilizumab,Mavrilimumab,Blosozumab,Bimagrumab,Dacetuzumab,Tovetumab,Lumretuzumab,Ibalizumab,Intetumumab,Carlumab,Demcizumab,Sifalimumab,Abituzumab,Ecromeximab,Naptumomab estafenatox,Crotedumab,Concizumab,Depatuxizumab,Rontalizumab,Amatuximab,Clazakizumab,Ozanezumab,Sacituzumab govitecan,Bimekizumab,Milatuzumab,Robatumumab,Rovalpituzumab tesirine,Namilumab,Racotumomab,Tregalizumab,Olokizumab,Bezlotoxumab,Edrecolomab,Nebacumab,Human cytomegalovirus immune globulin,Emicizumab,Sulesomab,Besilesomab,Tildrakizumab,Burosumab,Erenumab,Eptinezumab,Fremanezumab,Galcanezumab,Fanolesomab,Lecanemab,Lanadelumab,Cemiplimab,Emapalumab,Risankizumab,Camrelizumab,Setrusumab,Gancotamab,Anetumab ravtansine,Isatuximab,Icrucumab,Codrituzumab,Brolucizumab,Xentuzumab,Lintuzumab,Vobarilizumab,Parsatuzumab,Emactuzumab,Bevacizumab zirconium Zr-89,Refanezumab,Rozanolixizumab,Bermekimab,Pamrevlumab,Opicinumab,Trastuzumab deruxtecan,Margetuximab,Dalantercept,Pateclizumab,Gremubamab,Apomab,Tafasitamab,Ipafricept,Abrilumab,Frovocimab,Tezepelumab,Tigatuzumab,Telisotuzumab vedotin,Utomilumab,Zolbetuximab,Ponezumab,Asunercept,Suvratoxumab,Mitazalimab,Nemolizumab,Bleselumab,Gedivumab,Valanafusp alfa,Sofituzumab vedotin,Istiratumab,Pidilizumab,GMA-161,Ladiratuzumab vedotin,Tomaralimab,Vesencumab,Pinatuzumab vedotin,Lulizumab pegol,Lorukafusp alfa,Naratuximab emtansine,Zenocutuzumab,Atoltivimab,Maftivimab,Odesivimab,Belantamab mafodotin,Ansuvimab,Bamlanivimab,Hepatitis B immune globulin,Human Rho(D) immune globulin,Dostarlimab,Certolizumab pegol,Inolimomab,Pentaglobin,Abagovomab,Efungumab,Foralumab,Indatuximab ravtansine,Magrolimab,Olinvacimab,Actoxumab,Volagidemab,Bentracimab,Amivantamab,Ebola Zaire vaccine (live, attenuated),Imlifidase,Imdevimab,Casirivimab,Cilgavimab,Tixagevimab |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Asceniv |
Company | Adma Biologics, Inc. |
Brand Description | Adma Biologics, Inc. |
Prescribed For | Intravenous |
Chemical Name | 5 g/50mL |
Formulation | ASCENIV is contraindicated in: patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. IgA-deficiency patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache, sinusitis, diarrhea, viral gastroenteritis, runny or stuffy nose, upper respiratory tract infection, bronchitis, nausea, fatigue, nosebleed, muscle spasms or pain, mouth and throat pain, pain in extremities, and itching |
Route of Administration | ASCENIV is a purified, sterile, ready-to-use preparation of concentrated human immunoglobulin G (IgG) antibodies. The product is a clear to opalescent liquid, which is colorless to pale yellow. The distribution of IgG subclasses is similar to that of normal plasma. The active ingredient is human immunoglobulin purified from source human plasma and processed using a modified classical Cohn Method 6 / Oncley Method 9 fractionation procedure. ASCENIV contains 100 ± 10 mg/mL protein, of which not less than 96% is human immunoglobulin obtained from source human plasma. It is formulated in water for injection containing 0.100-0.140 M sodium chloride, 0.20-0.29 M glycine, 0.15–0.25% polysorbate 80, with pH 4.0–4.6. ASCENIV contains ≤ 200 μg/mL of IgA. |
Recommended Dosage | Asceniv is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome (PI), Immune Thrombocytopenic Purpura (ITP), Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia, Multifocal Motor Neuropathy, and Dermatomyositis. Asceniv may be used alone or with other medications. |
Contraindication | NA |
Side Effects | ASCENIV is a purified, sterile, ready-to-use preparation of concentrated human immunoglobulin G (IgG) antibodies. The product is a clear to opalescent liquid, which is colorless to pale yellow. The distribution of IgG subclasses is similar to that of normal plasma. The active ingredient is human immunoglobulin purified from source human plasma and processed using a modified classical Cohn Method 6 / Oncley Method 9 fractionation procedure. ASCENIV contains 100 ± 10 mg/mL protein, of which not less than 96% is human immunoglobulin obtained from source human plasma. It is formulated in water for injection containing 0.100-0.140 M sodium chloride, 0.20-0.29 M glycine, 0.15–0.25% polysorbate 80, with pH 4.0–4.6. ASCENIV contains ≤ 200 μg/mL of IgA. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11150 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Antibodies |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Bivigam |
Company | Kedrion Biopharma, Inc. |
Brand Description | Kedrion Biopharma, Inc. |
Prescribed For | Intravenous |
Chemical Name | 1 g/10mL |
Formulation | BIVIGAM is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. BIVIGAM is contraindicated in IgA deficiency patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache fatigue infusion site reaction nausea sinus infection increased blood pressure diarrhea dizziness tiredness back pain migraine muscle pain, and sore throat |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Bivigam [Immune Globulin Intravenous (Human), 10% Liquid] is an immune globulin used to treat primary humoral immunodeficiency (PI). |
Contraindication | NA |
Side Effects | 2. Cayco, A.V., M.A. Perazella, and J.P. Hayslett. Renal insufficiency after intravenous immune globulin therapy: a report of two cases and an analysis of the literature. J Am Soc Nephrol 1997; 8:1788-1794. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11151 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Antigen Neutralization |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Bivigam |
Company | Adma Biologics, Inc. |
Brand Description | Adma Biologics, Inc. |
Prescribed For | Intravenous |
Chemical Name | 5 g/50mL |
Formulation | BIVIGAM is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. BIVIGAM is contraindicated in IgA deficiency patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache fatigue infusion site reaction nausea sinus infection increased blood pressure diarrhea dizziness tiredness back pain migraine muscle pain, and sore throat |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Bivigam [Immune Globulin Intravenous (Human), 10% Liquid] is an immune globulin used to treat primary humoral immunodeficiency (PI). |
Contraindication | NA |
Side Effects | 2. Cayco, A.V., M.A. Perazella, and J.P. Hayslett. Renal insufficiency after intravenous immune globulin therapy: a report of two cases and an analysis of the literature. J Am Soc Nephrol 1997; 8:1788-1794. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11152 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Blood Proteins |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Bivigam |
Company | Adma Biologics, Inc. |
Brand Description | Adma Biologics, Inc. |
Prescribed For | Intravenous |
Chemical Name | 10 g/100mL |
Formulation | BIVIGAM is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. BIVIGAM is contraindicated in IgA deficiency patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache fatigue infusion site reaction nausea sinus infection increased blood pressure diarrhea dizziness tiredness back pain migraine muscle pain, and sore throat |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Bivigam [Immune Globulin Intravenous (Human), 10% Liquid] is an immune globulin used to treat primary humoral immunodeficiency (PI). |
Contraindication | NA |
Side Effects | 2. Cayco, A.V., M.A. Perazella, and J.P. Hayslett. Renal insufficiency after intravenous immune globulin therapy: a report of two cases and an analysis of the literature. J Am Soc Nephrol 1997; 8:1788-1794. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11153 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Globulins |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Bivigam |
Company | ADMA Biologics, Inc |
Brand Description | ADMA Biologics, Inc |
Prescribed For | Intravenous |
Chemical Name | 5 g/50mL |
Formulation | BIVIGAM is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. BIVIGAM is contraindicated in IgA deficiency patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache fatigue infusion site reaction nausea sinus infection increased blood pressure diarrhea dizziness tiredness back pain migraine muscle pain, and sore throat |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Bivigam [Immune Globulin Intravenous (Human), 10% Liquid] is an immune globulin used to treat primary humoral immunodeficiency (PI). |
Contraindication | NA |
Side Effects | 2. Cayco, A.V., M.A. Perazella, and J.P. Hayslett. Renal insufficiency after intravenous immune globulin therapy: a report of two cases and an analysis of the literature. J Am Soc Nephrol 1997; 8:1788-1794. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11154 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Human Immunoglobulin G |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Bivigam |
Company | ADMA Biologics, Inc |
Brand Description | ADMA Biologics, Inc |
Prescribed For | Intravenous |
Chemical Name | 10 g/100mL |
Formulation | BIVIGAM is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. BIVIGAM is contraindicated in IgA deficiency patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache fatigue infusion site reaction nausea sinus infection increased blood pressure diarrhea dizziness tiredness back pain migraine muscle pain, and sore throat |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Bivigam [Immune Globulin Intravenous (Human), 10% Liquid] is an immune globulin used to treat primary humoral immunodeficiency (PI). |
Contraindication | NA |
Side Effects | 2. Cayco, A.V., M.A. Perazella, and J.P. Hayslett. Renal insufficiency after intravenous immune globulin therapy: a report of two cases and an analysis of the literature. J Am Soc Nephrol 1997; 8:1788-1794. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11155 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Immunoglobulin G |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Carimune Nanofiltered |
Company | Csl Behring Ag |
Brand Description | Csl Behring Ag |
Prescribed For | Intravenous |
Chemical Name | 3 g/1 |
Formulation | Carimune NF is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. Individuals with IgA deficiency, especially those who have known antibody against IgA, or hypersensitivity to immunoglobulins should only receive Carimune® NF with utmost caution due to the risk of severe immediate hypersensitivity reactions including anaphylaxis. |
Physical Appearance | Increases in creatinine and blood urea nitrogen (BUN) have been observed as soon as one to two days following infusion. Progression to oliguria or anuria, requiring dialysis has been observed. Types of severe renal adverse events that have been seen following IGIV therapy include: acute renal failure, acute tubular necrosis, proximal tubular nephropathy and osmotic nephrosis. Inflammatory adverse reactions have been described in agammaglobulinemic and hypogammaglobulinemic patients who have never received immunoglobulin substitution therapy before or in patients whose time from last treatment is greater than 8 weeks and whose initial infusion rate exceeds 2 mg/kg/min. |
Route of Administration | Carimune® NF, Nanofiltered, Immune Globulin Intravenous (Human), is a sterile, highly purified polyvalent antibody product containing in concentrated form all the IgG antibodies which regularly occur in the donor population.15 This immunoglobulin preparation is produced by cold alcohol fractionation from the plasma of US donors. Part of the fractionation may be performed by another US-licensed manufacturer. Carimune® NF is made suitable for intravenous use by treatment at acid pH in the presence of trace amounts of pepsin. |
Recommended Dosage | Carimune® NF is indicated for the maintenance treatment of patients with primary immunodeficiencies (PID), e.g., common variable immunodeficiency, X-linked agammaglobulinemia, severe combined immunodeficiency. Carimune® NF is preferable to intramuscular Immune Globulin (Human) preparations in treating patients who require an immediate and large increase in the intravascular immunoglobulin level, in patients with limited muscle mass, and in patients with bleeding tendencies for whom intramuscular injections are contraindicated. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11156 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Immunoglobulin Isotypes |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Carimune Nanofiltered |
Company | Csl Behring Ag |
Brand Description | Csl Behring Ag |
Prescribed For | Intravenous |
Chemical Name | 6 g/1 |
Formulation | Carimune NF is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. Individuals with IgA deficiency, especially those who have known antibody against IgA, or hypersensitivity to immunoglobulins should only receive Carimune® NF with utmost caution due to the risk of severe immediate hypersensitivity reactions including anaphylaxis. |
Physical Appearance | Increases in creatinine and blood urea nitrogen (BUN) have been observed as soon as one to two days following infusion. Progression to oliguria or anuria, requiring dialysis has been observed. Types of severe renal adverse events that have been seen following IGIV therapy include: acute renal failure, acute tubular necrosis, proximal tubular nephropathy and osmotic nephrosis. Inflammatory adverse reactions have been described in agammaglobulinemic and hypogammaglobulinemic patients who have never received immunoglobulin substitution therapy before or in patients whose time from last treatment is greater than 8 weeks and whose initial infusion rate exceeds 2 mg/kg/min. |
Route of Administration | Carimune® NF, Nanofiltered, Immune Globulin Intravenous (Human), is a sterile, highly purified polyvalent antibody product containing in concentrated form all the IgG antibodies which regularly occur in the donor population.15 This immunoglobulin preparation is produced by cold alcohol fractionation from the plasma of US donors. Part of the fractionation may be performed by another US-licensed manufacturer. Carimune® NF is made suitable for intravenous use by treatment at acid pH in the presence of trace amounts of pepsin. |
Recommended Dosage | Carimune® NF is indicated for the maintenance treatment of patients with primary immunodeficiencies (PID), e.g., common variable immunodeficiency, X-linked agammaglobulinemia, severe combined immunodeficiency. Carimune® NF is preferable to intramuscular Immune Globulin (Human) preparations in treating patients who require an immediate and large increase in the intravascular immunoglobulin level, in patients with limited muscle mass, and in patients with bleeding tendencies for whom intramuscular injections are contraindicated. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11157 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Immunoglobulins |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Carimune Nanofiltered |
Company | Csl Behring Ag |
Brand Description | Csl Behring Ag |
Prescribed For | Intravenous |
Chemical Name | 12 g/1 |
Formulation | Carimune NF is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. Individuals with IgA deficiency, especially those who have known antibody against IgA, or hypersensitivity to immunoglobulins should only receive Carimune® NF with utmost caution due to the risk of severe immediate hypersensitivity reactions including anaphylaxis. |
Physical Appearance | Increases in creatinine and blood urea nitrogen (BUN) have been observed as soon as one to two days following infusion. Progression to oliguria or anuria, requiring dialysis has been observed. Types of severe renal adverse events that have been seen following IGIV therapy include: acute renal failure, acute tubular necrosis, proximal tubular nephropathy and osmotic nephrosis. Inflammatory adverse reactions have been described in agammaglobulinemic and hypogammaglobulinemic patients who have never received immunoglobulin substitution therapy before or in patients whose time from last treatment is greater than 8 weeks and whose initial infusion rate exceeds 2 mg/kg/min. |
Route of Administration | Carimune® NF, Nanofiltered, Immune Globulin Intravenous (Human), is a sterile, highly purified polyvalent antibody product containing in concentrated form all the IgG antibodies which regularly occur in the donor population.15 This immunoglobulin preparation is produced by cold alcohol fractionation from the plasma of US donors. Part of the fractionation may be performed by another US-licensed manufacturer. Carimune® NF is made suitable for intravenous use by treatment at acid pH in the presence of trace amounts of pepsin. |
Recommended Dosage | Carimune® NF is indicated for the maintenance treatment of patients with primary immunodeficiencies (PID), e.g., common variable immunodeficiency, X-linked agammaglobulinemia, severe combined immunodeficiency. Carimune® NF is preferable to intramuscular Immune Globulin (Human) preparations in treating patients who require an immediate and large increase in the intravascular immunoglobulin level, in patients with limited muscle mass, and in patients with bleeding tendencies for whom intramuscular injections are contraindicated. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11158 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Immunoglobulins, Intravenous |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cutaquig |
Company | Octapharma USA Inc |
Brand Description | Octapharma USA Inc |
Prescribed For | Subcutaneous |
Chemical Name | 165 mg/1mL |
Formulation | CUTAQUIG is contraindicated: In patients who have had an anaphylactic or severe systemic reaction to the subcutaneous administration of human immune globulin or to any of the components of CUTAQUIG such as Polysorbate 80. In IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human globulin treatment. |
Physical Appearance | local infusion site reactions (redness, swelling, itching), headache, fever, dermatitis, asthma, diarrhea, and cough. |
Route of Administration | Cutaquig (for injection under the skin) is used to treat primary immunodeficiency diseases. Cutaquig is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cutaquig may also... |
Recommended Dosage | Cutaquig is a prescription medicine used to treat the symptoms of Primary Humoral Immunodeficiency. Cutaquig may be used alone or with other medications. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11159 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Immunologic Factors |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cutaquig |
Company | Pfizer Laboratories Div Pfizer Inc |
Brand Description | Pfizer Laboratories Div Pfizer Inc |
Prescribed For | Subcutaneous |
Chemical Name | 165 mg/1mL |
Formulation | CUTAQUIG is contraindicated: In patients who have had an anaphylactic or severe systemic reaction to the subcutaneous administration of human immune globulin or to any of the components of CUTAQUIG such as Polysorbate 80. In IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human globulin treatment. |
Physical Appearance | local infusion site reactions (redness, swelling, itching), headache, fever, dermatitis, asthma, diarrhea, and cough. |
Route of Administration | Cutaquig (for injection under the skin) is used to treat primary immunodeficiency diseases. Cutaquig is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cutaquig may also... |
Recommended Dosage | Cutaquig is a prescription medicine used to treat the symptoms of Primary Humoral Immunodeficiency. Cutaquig may be used alone or with other medications. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11160 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Immunoproteins |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cutaquig |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Subcutaneous |
Chemical Name | 1 g / 6 mL |
Formulation | CUTAQUIG is contraindicated: In patients who have had an anaphylactic or severe systemic reaction to the subcutaneous administration of human immune globulin or to any of the components of CUTAQUIG such as Polysorbate 80. In IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human globulin treatment. |
Physical Appearance | local infusion site reactions (redness, swelling, itching), headache, fever, dermatitis, asthma, diarrhea, and cough. |
Route of Administration | Cutaquig (for injection under the skin) is used to treat primary immunodeficiency diseases. Cutaquig is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cutaquig may also... |
Recommended Dosage | Cutaquig is a prescription medicine used to treat the symptoms of Primary Humoral Immunodeficiency. Cutaquig may be used alone or with other medications. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11161 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Passively Acquired Immunity |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cutaquig |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Subcutaneous |
Chemical Name | 1.65 g / 10 mL |
Formulation | CUTAQUIG is contraindicated: In patients who have had an anaphylactic or severe systemic reaction to the subcutaneous administration of human immune globulin or to any of the components of CUTAQUIG such as Polysorbate 80. In IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human globulin treatment. |
Physical Appearance | local infusion site reactions (redness, swelling, itching), headache, fever, dermatitis, asthma, diarrhea, and cough. |
Route of Administration | Cutaquig (for injection under the skin) is used to treat primary immunodeficiency diseases. Cutaquig is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cutaquig may also... |
Recommended Dosage | Cutaquig is a prescription medicine used to treat the symptoms of Primary Humoral Immunodeficiency. Cutaquig may be used alone or with other medications. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11162 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Proteins |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cutaquig |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Subcutaneous |
Chemical Name | 2 g / 12 mL |
Formulation | CUTAQUIG is contraindicated: In patients who have had an anaphylactic or severe systemic reaction to the subcutaneous administration of human immune globulin or to any of the components of CUTAQUIG such as Polysorbate 80. In IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human globulin treatment. |
Physical Appearance | local infusion site reactions (redness, swelling, itching), headache, fever, dermatitis, asthma, diarrhea, and cough. |
Route of Administration | Cutaquig (for injection under the skin) is used to treat primary immunodeficiency diseases. Cutaquig is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cutaquig may also... |
Recommended Dosage | Cutaquig is a prescription medicine used to treat the symptoms of Primary Humoral Immunodeficiency. Cutaquig may be used alone or with other medications. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11163 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Serum |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cutaquig |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Subcutaneous |
Chemical Name | 3.3 g / 20 mL |
Formulation | CUTAQUIG is contraindicated: In patients who have had an anaphylactic or severe systemic reaction to the subcutaneous administration of human immune globulin or to any of the components of CUTAQUIG such as Polysorbate 80. In IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human globulin treatment. |
Physical Appearance | local infusion site reactions (redness, swelling, itching), headache, fever, dermatitis, asthma, diarrhea, and cough. |
Route of Administration | Cutaquig (for injection under the skin) is used to treat primary immunodeficiency diseases. Cutaquig is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cutaquig may also... |
Recommended Dosage | Cutaquig is a prescription medicine used to treat the symptoms of Primary Humoral Immunodeficiency. Cutaquig may be used alone or with other medications. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11164 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | Serum Globulins |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cutaquig |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Subcutaneous |
Chemical Name | 4 g / 24 mL |
Formulation | CUTAQUIG is contraindicated: In patients who have had an anaphylactic or severe systemic reaction to the subcutaneous administration of human immune globulin or to any of the components of CUTAQUIG such as Polysorbate 80. In IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human globulin treatment. |
Physical Appearance | local infusion site reactions (redness, swelling, itching), headache, fever, dermatitis, asthma, diarrhea, and cough. |
Route of Administration | Cutaquig (for injection under the skin) is used to treat primary immunodeficiency diseases. Cutaquig is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cutaquig may also... |
Recommended Dosage | Cutaquig is a prescription medicine used to treat the symptoms of Primary Humoral Immunodeficiency. Cutaquig may be used alone or with other medications. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11165 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cutaquig |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Subcutaneous |
Chemical Name | 8 g / 48 mL |
Formulation | CUTAQUIG is contraindicated: In patients who have had an anaphylactic or severe systemic reaction to the subcutaneous administration of human immune globulin or to any of the components of CUTAQUIG such as Polysorbate 80. In IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human globulin treatment. |
Physical Appearance | local infusion site reactions (redness, swelling, itching), headache, fever, dermatitis, asthma, diarrhea, and cough. |
Route of Administration | Cutaquig (for injection under the skin) is used to treat primary immunodeficiency diseases. Cutaquig is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cutaquig may also... |
Recommended Dosage | Cutaquig is a prescription medicine used to treat the symptoms of Primary Humoral Immunodeficiency. Cutaquig may be used alone or with other medications. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11166 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cuvitru |
Company | Baxalta Us Inc |
Brand Description | Baxalta Us Inc |
Prescribed For | Subcutaneous |
Chemical Name | 200 mg/1mL |
Formulation | CUVITRU is contraindicated in patients who have had an anaphylactic or severe systemic hypersensitivity reaction to the subcutaneous administration of human immune globulin. CUVITRU is contraindicated in IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human immune globulin treatment. |
Physical Appearance | local injection site reactions (pain, redness, itching, swelling), headache, nausea, fatigue, diarrhea, vomiting, joint pain, and mouth and throat pain. |
Route of Administration | Cuvitru (for injection under the skin) is used to treat primary immunodeficiency diseases. Cuvitru is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cuvitru may also be... |
Recommended Dosage | Cuvitru is a prescription medicine used to treat the symptoms of Primary Immune Deficiency. Cuvitru may be used alone or with other medications. |
Contraindication | NA |
Side Effects | CUVITRU is a ready-for-use, sterile, liquid preparation of highly purified and concentrated immunoglobulin G (IgG) antibodies. The distribution of the IgG subclasses is similar to that of normal plasma. The Fc and Fab functions are maintained in CUVITRU. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11167 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Cuvitru |
Company | Takeda |
Brand Description | Takeda |
Prescribed For | Subcutaneous |
Chemical Name | 200 mg / mL |
Formulation | CUVITRU is contraindicated in patients who have had an anaphylactic or severe systemic hypersensitivity reaction to the subcutaneous administration of human immune globulin. CUVITRU is contraindicated in IgA-deficient patients with antibodies against IgA and a history of hypersensitivity to human immune globulin treatment. |
Physical Appearance | local injection site reactions (pain, redness, itching, swelling), headache, nausea, fatigue, diarrhea, vomiting, joint pain, and mouth and throat pain. |
Route of Administration | Cuvitru (for injection under the skin) is used to treat primary immunodeficiency diseases. Cuvitru is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Cuvitru may also be... |
Recommended Dosage | Cuvitru is a prescription medicine used to treat the symptoms of Primary Immune Deficiency. Cuvitru may be used alone or with other medications. |
Contraindication | NA |
Side Effects | CUVITRU is a ready-for-use, sterile, liquid preparation of highly purified and concentrated immunoglobulin G (IgG) antibodies. The distribution of the IgG subclasses is similar to that of normal plasma. The Fc and Fab functions are maintained in CUVITRU. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11168 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Flebogamma |
Company | Grifols |
Brand Description | Grifols |
Prescribed For | Intravenous |
Chemical Name | 0.5 g/10mL |
Formulation | Flebogamma 5% DIF is contraindicated in patients who have had a history of anaphylactic or severe systemic hypersensitivity reactions to the administration of human immune globulin. Flebogamma 5% DIF is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache fever shaking fast heart rate low blood pressure (hypotension) high blood pressure (hypertension) back pain muscle pain or aches chest pain nausea infusion site reactions pain in extremities chills vomiting increase in body temperature dizziness, and diarrhea |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Flebogamma is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIPD), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia, Multifocal Motor Neuropathy, and Dermatomyositis. Flebogamma may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Flebogamma 5% DIF is a ready to use, sterile, clear or slightly opalescent and colorless to pale yellow, liquid preparation of purified immunoglobulin (IgG) obtained from human plasma pools. The purification process includes cold ethanol fractionation, polyethylene glycol precipitation, ion exchange chromatography, low pH treatment, pasteurization, solvent detergent treatment, and Planova nanofiltration using 20 nanometer (nm) filters. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11169 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Flebogamma 10% |
Company | Instituto Grifols, S.A. |
Brand Description | Instituto Grifols, S.A. |
Prescribed For | Intravenous |
Chemical Name | 100 mg / mL |
Formulation | Flebogamma 5% DIF is contraindicated in patients who have had a history of anaphylactic or severe systemic hypersensitivity reactions to the administration of human immune globulin. Flebogamma 5% DIF is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | The most common adverse reactions (reported in ≥ 5% of clinical trial subjects) were: PI: headache, fever/pyrexia, shaking, tachycardia, hypotension, back pain, myalgia, hypertension, chest pain, pain, nausea, infusion site reactions and pain in extremities. ITP: headache, pyrexia, nausea, chills, vomiting, body temperature increased, dizziness, back pain, hypotension, hypertension, heart rate increased and diarrhea. |
Route of Administration | Flebogamma 10% DIF is a ready to use, sterile, clear or slightly opalescent and colorless to pale yellow, liquid preparation of purified immunoglobulin (IgG) obtained from human plasma pools. |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11170 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Flebogamma 5% |
Company | Instituto Grifols, S.A. |
Brand Description | Instituto Grifols, S.A. |
Prescribed For | Intravenous |
Chemical Name | 50 mg / mL |
Formulation | Flebogamma 5% DIF is contraindicated in patients who have had a history of anaphylactic or severe systemic hypersensitivity reactions to the administration of human immune globulin. Flebogamma 5% DIF is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | The most common adverse reactions (reported in ≥ 5% of clinical trial subjects) were: PI: headache, fever/pyrexia, shaking, tachycardia, hypotension, back pain, myalgia, hypertension, chest pain, pain, nausea, infusion site reactions and pain in extremities. ITP: headache, pyrexia, nausea, chills, vomiting, body temperature increased, dizziness, back pain, hypotension, hypertension, heart rate increased and diarrhea. |
Route of Administration | Flebogamma 10% DIF is a ready to use, sterile, clear or slightly opalescent and colorless to pale yellow, liquid preparation of purified immunoglobulin (IgG) obtained from human plasma pools. |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11171 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Flebogamma DIF |
Company | GRIFOLS USA, LLC |
Brand Description | GRIFOLS USA, LLC |
Prescribed For | Intravenous |
Chemical Name | 0.05 g/1mL |
Formulation | Flebogamma 5% DIF is contraindicated in patients who have had a history of anaphylactic or severe systemic hypersensitivity reactions to the administration of human immune globulin. Flebogamma 5% DIF is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | The most common adverse reactions (reported in ≥ 5% of clinical trial subjects) were: PI: headache, fever/pyrexia, shaking, tachycardia, hypotension, back pain, myalgia, hypertension, chest pain, pain, nausea, infusion site reactions and pain in extremities. ITP: headache, pyrexia, nausea, chills, vomiting, body temperature increased, dizziness, back pain, hypotension, hypertension, heart rate increased and diarrhea. |
Route of Administration | Flebogamma 10% DIF is a ready to use, sterile, clear or slightly opalescent and colorless to pale yellow, liquid preparation of purified immunoglobulin (IgG) obtained from human plasma pools. |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11172 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Flebogamma Dif |
Company | GRIFOLS USA, LLC |
Brand Description | GRIFOLS USA, LLC |
Prescribed For | Intravenous |
Chemical Name | 5 g/50mL |
Formulation | Flebogamma 5% DIF is contraindicated in patients who have had a history of anaphylactic or severe systemic hypersensitivity reactions to the administration of human immune globulin. Flebogamma 5% DIF is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | The most common adverse reactions (reported in ≥ 5% of clinical trial subjects) were: PI: headache, fever/pyrexia, shaking, tachycardia, hypotension, back pain, myalgia, hypertension, chest pain, pain, nausea, infusion site reactions and pain in extremities. ITP: headache, pyrexia, nausea, chills, vomiting, body temperature increased, dizziness, back pain, hypotension, hypertension, heart rate increased and diarrhea. |
Route of Administration | Flebogamma 10% DIF is a ready to use, sterile, clear or slightly opalescent and colorless to pale yellow, liquid preparation of purified immunoglobulin (IgG) obtained from human plasma pools. |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11173 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Flebogamma Dif |
Company | Instituto Grifols, S.A. |
Brand Description | Instituto Grifols, S.A. |
Prescribed For | Intravenous |
Chemical Name | 50 mg/ml |
Formulation | Flebogamma 5% DIF is contraindicated in patients who have had a history of anaphylactic or severe systemic hypersensitivity reactions to the administration of human immune globulin. Flebogamma 5% DIF is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | The most common adverse reactions (reported in ≥ 5% of clinical trial subjects) were: PI: headache, fever/pyrexia, shaking, tachycardia, hypotension, back pain, myalgia, hypertension, chest pain, pain, nausea, infusion site reactions and pain in extremities. ITP: headache, pyrexia, nausea, chills, vomiting, body temperature increased, dizziness, back pain, hypotension, hypertension, heart rate increased and diarrhea. |
Route of Administration | Flebogamma 10% DIF is a ready to use, sterile, clear or slightly opalescent and colorless to pale yellow, liquid preparation of purified immunoglobulin (IgG) obtained from human plasma pools. |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11174 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Flebogamma Dif |
Company | Instituto Grifols, S.A. |
Brand Description | Instituto Grifols, S.A. |
Prescribed For | Intravenous |
Chemical Name | 100 mg/ml |
Formulation | Flebogamma 5% DIF is contraindicated in patients who have had a history of anaphylactic or severe systemic hypersensitivity reactions to the administration of human immune globulin. Flebogamma 5% DIF is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | The most common adverse reactions (reported in ≥ 5% of clinical trial subjects) were: PI: headache, fever/pyrexia, shaking, tachycardia, hypotension, back pain, myalgia, hypertension, chest pain, pain, nausea, infusion site reactions and pain in extremities. ITP: headache, pyrexia, nausea, chills, vomiting, body temperature increased, dizziness, back pain, hypotension, hypertension, heart rate increased and diarrhea. |
Route of Administration | Flebogamma 10% DIF is a ready to use, sterile, clear or slightly opalescent and colorless to pale yellow, liquid preparation of purified immunoglobulin (IgG) obtained from human plasma pools. |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11175 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | GamaSTAN |
Company | GRIFOLS USA, LLC |
Brand Description | GRIFOLS USA, LLC |
Prescribed For | Intramuscular |
Chemical Name | 0.165 g/1mL |
Formulation | GAMASTAN is contraindicated in: Anaphylactic or severe systemic hypersensitivity reactions to immune globulin (human).11 [see WARNINGS AND PRECAUTIONS] IgA deficient patients with antibodies against IgA and a history of hypersensitivity.11 REFERENCES 11. Fudenberg HH. Sensitization to immunoglobulins and hazards of gamma globulin therapy. In: Merler E, editor. Immunoglobulins: biologic aspects and clinical uses. Washington, DC: National Academy of Sciences; 1970, p. 211-20. |
Physical Appearance | local pain and tenderness at the injection site hives skin swelling allergic reactions, including anaphylaxis |
Route of Administration | Immune globulin is a sterile solution made from human plasma. It contains antibodies that protect you against infection from various diseases. Immune globulin intramuscular (IGIM, for injection into a muscle) is used to prevent infection with hepatitis A in people who travel to areas where this disease... |
Recommended Dosage | GamaStan is a prescription medicine used to treat the symptoms of Hepatitis A, Measles, Rubella, and Varicella. GamaStan may be used alone or with other medications. |
Contraindication | NA |
Side Effects | GAMASTAN is a clear or slightly opalescent, and colorless or pale yellow or light brown sterile solution of polyvalent human immune globulin for intramuscular administration. GAMASTAN contains no preservative. GAMASTAN is prepared from pools of human plasma collected from healthy donors by a combination of cold ethanol fractionation, caprylate precipitation and filtration, caprylate incubation, anion-exchange chromatography, nanofiltration and low pH incubation. GAMASTAN consists of 15% to18% protein at pH of 4.1 to 4.8 in 0.16 to 0.26 M glycine. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11176 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamastan |
Company | Cutter Med & Biol, Division Of Miles Canada Ltd. |
Brand Description | Cutter Med & Biol, Division Of Miles Canada Ltd. |
Prescribed For | Intramuscular |
Chemical Name | 0.165 |
Formulation | GAMASTAN is contraindicated in: Anaphylactic or severe systemic hypersensitivity reactions to immune globulin (human).11 [see WARNINGS AND PRECAUTIONS] IgA deficient patients with antibodies against IgA and a history of hypersensitivity.11 REFERENCES 11. Fudenberg HH. Sensitization to immunoglobulins and hazards of gamma globulin therapy. In: Merler E, editor. Immunoglobulins: biologic aspects and clinical uses. Washington, DC: National Academy of Sciences; 1970, p. 211-20. |
Physical Appearance | local pain and tenderness at the injection site hives skin swelling allergic reactions, including anaphylaxis |
Route of Administration | Immune globulin is a sterile solution made from human plasma. It contains antibodies that protect you against infection from various diseases. Immune globulin intramuscular (IGIM, for injection into a muscle) is used to prevent infection with hepatitis A in people who travel to areas where this disease... |
Recommended Dosage | GamaStan is a prescription medicine used to treat the symptoms of Hepatitis A, Measles, Rubella, and Varicella. GamaStan may be used alone or with other medications. |
Contraindication | NA |
Side Effects | GAMASTAN is a clear or slightly opalescent, and colorless or pale yellow or light brown sterile solution of polyvalent human immune globulin for intramuscular administration. GAMASTAN contains no preservative. GAMASTAN is prepared from pools of human plasma collected from healthy donors by a combination of cold ethanol fractionation, caprylate precipitation and filtration, caprylate incubation, anion-exchange chromatography, nanofiltration and low pH incubation. GAMASTAN consists of 15% to18% protein at pH of 4.1 to 4.8 in 0.16 to 0.26 M glycine. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11177 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamastan |
Company | Grifols Therapeutics Llc |
Brand Description | Grifols Therapeutics Llc |
Prescribed For | Intramuscular |
Chemical Name | 0.18 |
Formulation | GAMASTAN is contraindicated in: Anaphylactic or severe systemic hypersensitivity reactions to immune globulin (human).11 [see WARNINGS AND PRECAUTIONS] IgA deficient patients with antibodies against IgA and a history of hypersensitivity.11 REFERENCES 11. Fudenberg HH. Sensitization to immunoglobulins and hazards of gamma globulin therapy. In: Merler E, editor. Immunoglobulins: biologic aspects and clinical uses. Washington, DC: National Academy of Sciences; 1970, p. 211-20. |
Physical Appearance | local pain and tenderness at the injection site hives skin swelling allergic reactions, including anaphylaxis |
Route of Administration | Immune globulin is a sterile solution made from human plasma. It contains antibodies that protect you against infection from various diseases. Immune globulin intramuscular (IGIM, for injection into a muscle) is used to prevent infection with hepatitis A in people who travel to areas where this disease... |
Recommended Dosage | GamaStan is a prescription medicine used to treat the symptoms of Hepatitis A, Measles, Rubella, and Varicella. GamaStan may be used alone or with other medications. |
Contraindication | NA |
Side Effects | GAMASTAN is a clear or slightly opalescent, and colorless or pale yellow or light brown sterile solution of polyvalent human immune globulin for intramuscular administration. GAMASTAN contains no preservative. GAMASTAN is prepared from pools of human plasma collected from healthy donors by a combination of cold ethanol fractionation, caprylate precipitation and filtration, caprylate incubation, anion-exchange chromatography, nanofiltration and low pH incubation. GAMASTAN consists of 15% to18% protein at pH of 4.1 to 4.8 in 0.16 to 0.26 M glycine. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11178 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamastan S/d |
Company | Grifols Therapeutics Llc |
Brand Description | Grifols Therapeutics Llc |
Prescribed For | Intramuscular |
Chemical Name | 0.18 |
Formulation | GAMASTAN is contraindicated in: Anaphylactic or severe systemic hypersensitivity reactions to immune globulin (human). IgA deficient patients with antibodies against IgA and a history of hypersensitivity. |
Physical Appearance | Local pain and tenderness at the injection site, urticaria, and angioedema may occur. Anaphylactic reactions, although rare, have been reported following the injection of human immune globulin preparations. Anaphylaxis is more likely to occur if GamaSTAN® S/D is given intravenously; therefore, GamaSTAN® S/D must be administered only intramuscularly. |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11179 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamimune N 10% (iv) |
Company | Talecris Biotherapeutics Inc |
Brand Description | Talecris Biotherapeutics Inc |
Prescribed For | Intravenous |
Chemical Name | 100 mg / mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11180 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamimune N 5% (iv) |
Company | Talecris Biotherapeutics Inc |
Brand Description | Talecris Biotherapeutics Inc |
Prescribed For | Intravenous |
Chemical Name | 50 mg / mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11181 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamimune N Inj 5% (iv) |
Company | Cutter Med & Biol, Division Of Miles Canada Ltd. |
Brand Description | Cutter Med & Biol, Division Of Miles Canada Ltd. |
Prescribed For | Intravenous |
Chemical Name | 50 mg / mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11182 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | GAMMAGARD Liquid |
Company | Baxalta US Inc. |
Brand Description | Baxalta US Inc. |
Prescribed For | Intravenous; Subcutaneous |
Chemical Name | 100 mg/1mL |
Formulation | Hypersensitivity Reaction To Immune Globulins GAMMAGARD LIQUID is contraindicated in patients who have a history of anaphylactic or severe systemic hypersensitivity reactions to administration of human immune globulin. IgA Sensitive Patients With History Of Hypersensitivity Reactions GAMMAGARD LIQUID is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. Anaphylaxis has been reported with intravenous use of GAMMAGARD LIQUID and is theoretically possible following subcutaneous administration |
Physical Appearance | flushing (warmth, redness, or tingly feeling), headache, dizziness, chills, muscle cramps, back or joint pain, minor chest pain, fever, nausea, vomiting, tiredness, or injection site reactions (pain, redness, and swelling) |
Route of Administration | NA |
Recommended Dosage | Gammagard Liquid is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia, and Multifocal Motor Neuropathy. Gammagard Liquid may be used alone or with other medications. |
Contraindication | NA |
Side Effects | GAMMAGARD LIQUID Immune Globulin Intravenous (Human), 10% is a ready-for-use sterile, liquid preparation of highly purified and concentrated immunoglobulin G (IgG) antibodies. The distribution of the IgG subclasses is similar to that of normal plasma.1,2 The Fc and Fab functions are maintained in GAMMAGARD LIQUID. Pre-kallikrein activator activity is not detectable. GAMMAGARD LIQUID (immune globulin intravenous human 10%) contains 100 mg/mL protein. At least 98% of the protein is gammaglobulin, the average immunoglobulin A (IgA) concentration is 37µg/mL, and immunoglobulin M is present in trace amounts. GAMMAGARD LIQUID (immune globulin intravenous human 10%) contains a broad spectrum of IgG antibodies against bacterial and viral agents. Glycine (0.25M) serves as a stabilizing and buffering agent, and there are no added sugars, sodium or preservatives. The pH is 4.6 to 5.1. The osmolality is 240-300 mOsmol/kg, which is similar to physiological osmolality (285 to 295 mOsmol/kg).3 |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11183 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | GAMMAGARD Liquid |
Company | Takeda |
Brand Description | Takeda |
Prescribed For | Intravenous |
Chemical Name | 0.1 |
Formulation | Hypersensitivity Reaction To Immune Globulins GAMMAGARD LIQUID is contraindicated in patients who have a history of anaphylactic or severe systemic hypersensitivity reactions to administration of human immune globulin. IgA Sensitive Patients With History Of Hypersensitivity Reactions GAMMAGARD LIQUID is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. Anaphylaxis has been reported with intravenous use of GAMMAGARD LIQUID and is theoretically possible following subcutaneous administration |
Physical Appearance | flushing (warmth, redness, or tingly feeling), headache, dizziness, chills, muscle cramps, back or joint pain, minor chest pain, fever, nausea, vomiting, tiredness, or injection site reactions (pain, redness, and swelling) |
Route of Administration | NA |
Recommended Dosage | Gammagard Liquid is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia, and Multifocal Motor Neuropathy. Gammagard Liquid may be used alone or with other medications. |
Contraindication | NA |
Side Effects | GAMMAGARD LIQUID Immune Globulin Intravenous (Human), 10% is a ready-for-use sterile, liquid preparation of highly purified and concentrated immunoglobulin G (IgG) antibodies. The distribution of the IgG subclasses is similar to that of normal plasma.1,2 The Fc and Fab functions are maintained in GAMMAGARD LIQUID. Pre-kallikrein activator activity is not detectable. GAMMAGARD LIQUID (immune globulin intravenous human 10%) contains 100 mg/mL protein. At least 98% of the protein is gammaglobulin, the average immunoglobulin A (IgA) concentration is 37µg/mL, and immunoglobulin M is present in trace amounts. GAMMAGARD LIQUID (immune globulin intravenous human 10%) contains a broad spectrum of IgG antibodies against bacterial and viral agents. Glycine (0.25M) serves as a stabilizing and buffering agent, and there are no added sugars, sodium or preservatives. The pH is 4.6 to 5.1. The osmolality is 240-300 mOsmol/kg, which is similar to physiological osmolality (285 to 295 mOsmol/kg).3 |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11184 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammagard S/d |
Company | Baxalta US Inc. |
Brand Description | Baxalta US Inc. |
Prescribed For | Intravenous |
Chemical Name | 50 mg/1mL |
Formulation | GAMMAGARD S/D (immune globulin) is contraindicated in patients with selective IgA deficiency where the IgA deficiency is the only abnormality of concern (see INDICATIONS and WARNINGS). Patients may experience severe hypersensitivity reactions or anaphylaxis in the setting of detectable IgA levels following infusion of GAMMAGARD S/D (immune globulin) . The occurrence of severe hypersensitivity reactions or anaphylaxis under such conditions should prompt consideration of an alternative therapy. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, dizziness, nausea, lightheadedness, sweating, headache, pounding in your neck or ears, fever, chills, chest tightness, warmth or redness in your face, pale or yellowed skin, dark colored urine, confusion, weakness, increased thirst, feeling hot, being unable to urinate, heavy sweating, hot and dry skin, little or no urination, swelling, rapid weight gain, shortness or breath, chest pain, trouble breathing, blue colored lips, fingers, or toes, fever with a severe headache, neck stiffness, eye pain, increased sensitivity to light, chest pain with deep breathing, rapid heart rate, numbness or weakness on one side of the body, and swelling and warmth or discoloration in an arm or leg |
Route of Administration | used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia and Multifocal Motor Neuropathy. |
Recommended Dosage | GAMMAGARD S/D, Immune Globulin Intravenous (Human) [IGIV] is a solvent/detergent treated, sterile, freeze-dried preparation of highly purified immunoglobulin G (IgG) derived from large pools of human plasma. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11185 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammagard S/d |
Company | Takeda |
Brand Description | Takeda |
Prescribed For | Intravenous |
Chemical Name | 10 g / vial |
Formulation | GAMMAGARD S/D (immune globulin) is contraindicated in patients with selective IgA deficiency where the IgA deficiency is the only abnormality of concern (see INDICATIONS and WARNINGS). Patients may experience severe hypersensitivity reactions or anaphylaxis in the setting of detectable IgA levels following infusion of GAMMAGARD S/D (immune globulin) . The occurrence of severe hypersensitivity reactions or anaphylaxis under such conditions should prompt consideration of an alternative therapy. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, dizziness, nausea, lightheadedness, sweating, headache, pounding in your neck or ears, fever, chills, chest tightness, warmth or redness in your face, pale or yellowed skin, dark colored urine, confusion, weakness, increased thirst, feeling hot, being unable to urinate, heavy sweating, hot and dry skin, little or no urination, swelling, rapid weight gain, shortness or breath, chest pain, trouble breathing, blue colored lips, fingers, or toes, fever with a severe headache, neck stiffness, eye pain, increased sensitivity to light, chest pain with deep breathing, rapid heart rate, numbness or weakness on one side of the body, and swelling and warmth or discoloration in an arm or leg |
Route of Administration | used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia and Multifocal Motor Neuropathy. |
Recommended Dosage | GAMMAGARD S/D, Immune Globulin Intravenous (Human) [IGIV] is a solvent/detergent treated, sterile, freeze-dried preparation of highly purified immunoglobulin G (IgG) derived from large pools of human plasma. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11186 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammagard S/d |
Company | Baxalta Canada Corporation |
Brand Description | Baxalta Canada Corporation |
Prescribed For | Intravenous |
Chemical Name | 2.5 g / vial |
Formulation | GAMMAGARD S/D (immune globulin) is contraindicated in patients with selective IgA deficiency where the IgA deficiency is the only abnormality of concern (see INDICATIONS and WARNINGS). Patients may experience severe hypersensitivity reactions or anaphylaxis in the setting of detectable IgA levels following infusion of GAMMAGARD S/D (immune globulin) . The occurrence of severe hypersensitivity reactions or anaphylaxis under such conditions should prompt consideration of an alternative therapy. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, dizziness, nausea, lightheadedness, sweating, headache, pounding in your neck or ears, fever, chills, chest tightness, warmth or redness in your face, pale or yellowed skin, dark colored urine, confusion, weakness, increased thirst, feeling hot, being unable to urinate, heavy sweating, hot and dry skin, little or no urination, swelling, rapid weight gain, shortness or breath, chest pain, trouble breathing, blue colored lips, fingers, or toes, fever with a severe headache, neck stiffness, eye pain, increased sensitivity to light, chest pain with deep breathing, rapid heart rate, numbness or weakness on one side of the body, and swelling and warmth or discoloration in an arm or leg |
Route of Administration | used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia and Multifocal Motor Neuropathy. |
Recommended Dosage | GAMMAGARD S/D, Immune Globulin Intravenous (Human) [IGIV] is a solvent/detergent treated, sterile, freeze-dried preparation of highly purified immunoglobulin G (IgG) derived from large pools of human plasma. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11187 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammagard S/d |
Company | Takeda |
Brand Description | Takeda |
Prescribed For | Intravenous |
Chemical Name | 5 g / vial |
Formulation | GAMMAGARD S/D (immune globulin) is contraindicated in patients with selective IgA deficiency where the IgA deficiency is the only abnormality of concern (see INDICATIONS and WARNINGS). Patients may experience severe hypersensitivity reactions or anaphylaxis in the setting of detectable IgA levels following infusion of GAMMAGARD S/D (immune globulin) . The occurrence of severe hypersensitivity reactions or anaphylaxis under such conditions should prompt consideration of an alternative therapy. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, dizziness, nausea, lightheadedness, sweating, headache, pounding in your neck or ears, fever, chills, chest tightness, warmth or redness in your face, pale or yellowed skin, dark colored urine, confusion, weakness, increased thirst, feeling hot, being unable to urinate, heavy sweating, hot and dry skin, little or no urination, swelling, rapid weight gain, shortness or breath, chest pain, trouble breathing, blue colored lips, fingers, or toes, fever with a severe headache, neck stiffness, eye pain, increased sensitivity to light, chest pain with deep breathing, rapid heart rate, numbness or weakness on one side of the body, and swelling and warmth or discoloration in an arm or leg |
Route of Administration | used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia and Multifocal Motor Neuropathy. |
Recommended Dosage | GAMMAGARD S/D, Immune Globulin Intravenous (Human) [IGIV] is a solvent/detergent treated, sterile, freeze-dried preparation of highly purified immunoglobulin G (IgG) derived from large pools of human plasma. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11188 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammagard S/d (iv) |
Company | Baxter Laboratories |
Brand Description | Baxter Laboratories |
Prescribed For | Intravenous |
Chemical Name | 0.5 g / vial |
Formulation | GAMMAGARD S/D (immune globulin) is contraindicated in patients with selective IgA deficiency where the IgA deficiency is the only abnormality of concern (see INDICATIONS and WARNINGS). Patients may experience severe hypersensitivity reactions or anaphylaxis in the setting of detectable IgA levels following infusion of GAMMAGARD S/D (immune globulin) . The occurrence of severe hypersensitivity reactions or anaphylaxis under such conditions should prompt consideration of an alternative therapy. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, dizziness, nausea, lightheadedness, sweating, headache, pounding in your neck or ears, fever, chills, chest tightness, warmth or redness in your face, pale or yellowed skin, dark colored urine, confusion, weakness, increased thirst, feeling hot, being unable to urinate, heavy sweating, hot and dry skin, little or no urination, swelling, rapid weight gain, shortness or breath, chest pain, trouble breathing, blue colored lips, fingers, or toes, fever with a severe headache, neck stiffness, eye pain, increased sensitivity to light, chest pain with deep breathing, rapid heart rate, numbness or weakness on one side of the body, and swelling and warmth or discoloration in an arm or leg |
Route of Administration | used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia and Multifocal Motor Neuropathy. |
Recommended Dosage | GAMMAGARD S/D, Immune Globulin Intravenous (Human) [IGIV] is a solvent/detergent treated, sterile, freeze-dried preparation of highly purified immunoglobulin G (IgG) derived from large pools of human plasma. |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11189 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammaked |
Company | Kedrion Biopharma, Inc. |
Brand Description | Kedrion Biopharma, Inc. |
Prescribed For | Intravenous; Subcutaneous |
Chemical Name | 10 g/100mL |
Formulation | Hypersensitivity Reactions To Immune Globulins GAMMAKED is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. IgA Sensitive Patients With History Of Hypersensitivity Reaction GAMMAKED is contraindicated in IgA deficient patients with antibodies against IgA and history of hypersensitivity. |
Physical Appearance | increased cough, runny nose, sore throat, headache, asthma, nausea, fever, diarrhea, sinusitis, local infusion site reactions, fatigue, upper respiratory tract infection, joint pain, bronchitis, depression, allergic dermatitis, migraine, muscle pain, viral infection, bruising, vomiting, rash, abdominal pain, back pain, indigestion, high blood pressure (hypertension), chills, and weakness |
Route of Administration | Gammaked (for injection into a vein or under the skin) is used to treat primary immunodeficiency. Gammaked is also used to increase platelets (blood clotting cells) in people with idiopathic thrombocytopenic purpura. Gammaked is also used to treat certain debilitating nerve disorders that cause muscle... |
Recommended Dosage | GAMMAKED is an immune globulin injection (human) 10% liquid that is indicated for the treatment of: |
Contraindication | NA |
Side Effects | Several of the individual production steps in the GAMMAKED manufacturing process have been shown to decrease TSE infectivity of that experimental model agent. TSE reduction steps include two depth filtrations (in sequence, a total of ≥ 6.6 log10 ). These studies provide reasonable assurance that low levels of CJD/vCJD agent infectivity, if present in the starting material, would be removed. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11190 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammaplex |
Company | Bio Products Laboratory Limited |
Brand Description | Bio Products Laboratory Limited |
Prescribed For | Intravenous |
Chemical Name | 5 g/100mL |
Formulation | Gammaplex is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. Gammaplex is contraindicated in patients with hereditary intolerance to fructose, also in infants and neonates for whom sucrose or fructose tolerance has not been established. Gammaplex is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache, fever, nasal congestion, fatigue, nausea, vomiting, high blood pressure (hypertension), low blood pressure (hypotension), rash, infusion site reaction, vomiting, muscle pain, chills, fast heart rate, chest pain/discomfort, pain, dizziness, general feeling of being unwell (malaise), pain or difficultly urinating, dry skin, itching, dehydration, and joint pain. |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Gammaplex is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome and Immune Thrombocytopenic Purpura. Gammaplex may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Gammaplex is a ready to use sterile solution of polyclonal human Immunoglobulin G for intravenous administration that contains sorbitol, glycine and polysorbate 80 as stabilizers. Specifically, Gammaplex contains approximately 5 g normal human immunoglobulin and 5 g D-sorbitol in 100 mL of buffer solution containing: 0.6 g glycine, 0.2 g sodium acetate, 0.3 g sodium chloride and ~5 mg polysorbate 80. Immunoglobulin G purity is > 95%, the pH is in the range of 4.8 to 5.1, and osmolality is not less than 240 mOsmol/kg (typically 420 to 500 mOsmol/kg). The distribution of the four IgG subclasses is approximately 64% IgG1, 30% IgG2, 5% IgG3, and 1% IgG4. The content of IgA is lower than 10 μg/mL. The anti-D and anti-A/anti-B hemagglutinin content of the drug product is strictly controlled to specification. Gammaplex contains no reducing carbohydrate stabilizers (e.g. sucrose, maltose) and no preservative. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11191 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammaplex |
Company | Bio Products Laboratory Limited |
Brand Description | Bio Products Laboratory Limited |
Prescribed For | Intravenous |
Chemical Name | 5 g/50mL |
Formulation | Gammaplex is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. Gammaplex is contraindicated in patients with hereditary intolerance to fructose, also in infants and neonates for whom sucrose or fructose tolerance has not been established. Gammaplex is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity. |
Physical Appearance | headache, fever, nasal congestion, fatigue, nausea, vomiting, high blood pressure (hypertension), low blood pressure (hypotension), rash, infusion site reaction, vomiting, muscle pain, chills, fast heart rate, chest pain/discomfort, pain, dizziness, general feeling of being unwell (malaise), pain or difficultly urinating, dry skin, itching, dehydration, and joint pain. |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Gammaplex is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome and Immune Thrombocytopenic Purpura. Gammaplex may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Gammaplex is a ready to use sterile solution of polyclonal human Immunoglobulin G for intravenous administration that contains sorbitol, glycine and polysorbate 80 as stabilizers. Specifically, Gammaplex contains approximately 5 g normal human immunoglobulin and 5 g D-sorbitol in 100 mL of buffer solution containing: 0.6 g glycine, 0.2 g sodium acetate, 0.3 g sodium chloride and ~5 mg polysorbate 80. Immunoglobulin G purity is > 95%, the pH is in the range of 4.8 to 5.1, and osmolality is not less than 240 mOsmol/kg (typically 420 to 500 mOsmol/kg). The distribution of the four IgG subclasses is approximately 64% IgG1, 30% IgG2, 5% IgG3, and 1% IgG4. The content of IgA is lower than 10 μg/mL. The anti-D and anti-A/anti-B hemagglutinin content of the drug product is strictly controlled to specification. Gammaplex contains no reducing carbohydrate stabilizers (e.g. sucrose, maltose) and no preservative. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11192 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gammar Inj 165mg/ml |
Company | Armour Pharmaceutical Co. |
Brand Description | Armour Pharmaceutical Co. |
Prescribed For | Intramuscular |
Chemical Name | 165 mg / mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11193 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamunex |
Company | Grifols |
Brand Description | Grifols |
Prescribed For | Intravenous |
Chemical Name | 1 g/1g |
Formulation | GAMUNEX (immune globulin intravenous (human) 10%) is contraindicated in individuals with acute severe hypersensitivity reactions to Immune Globulin (Human). GAMUNEX (immune globulin intravenous (human) 10%) contains trace amounts of IgA. It is contraindicated in IgA deficient patients with antibodies against IgA and history of hypersensitivity. |
Physical Appearance | headache, fatigue, infusion site reaction, nausea, sinusitis, increased blood pressure, diarrhea, dizziness, tired feeling, lethargy, back pain, muscle cramps, minor chest pain, or flushing (warmth, redness, or tingly feeling) |
Route of Administration | Gamunex-C is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Gamunex-C injection is used to treat primary immunodeficiency (PI). This includes, but is not limited to, congenital agammaglobulinemia, common... |
Recommended Dosage | Gamunex is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), B-cell Chronic Lymphocytic Leukemia, Multifocal Motor Neuropathy and before and after a Bone Marrow Transplant. Gamunex may be used alone or with other medications. |
Contraindication | NA |
Side Effects | GAMUNEX is made from large pools of human plasma by a combination of cold ethanol fractionation, caprylate precipitation and filtration, and anion-exchange chromatography. Isotonicity is achieved by the addition of glycine. GAMUNEX (immune globulin intravenous human 10%) is incubated in the final container (at the low pH of 4.0 – 4.3), for a minimum of 21 days at 23° to 27°C. The product is intended for intravenous administration. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11194 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamunex |
Company | Grifols Therapeutics Llc |
Brand Description | Grifols Therapeutics Llc |
Prescribed For | Intravenous; Subcutaneous |
Chemical Name | 10 g / 100 mL |
Formulation | GAMUNEX (immune globulin intravenous (human) 10%) is contraindicated in individuals with acute severe hypersensitivity reactions to Immune Globulin (Human). GAMUNEX (immune globulin intravenous (human) 10%) contains trace amounts of IgA. It is contraindicated in IgA deficient patients with antibodies against IgA and history of hypersensitivity. |
Physical Appearance | headache, fatigue, infusion site reaction, nausea, sinusitis, increased blood pressure, diarrhea, dizziness, tired feeling, lethargy, back pain, muscle cramps, minor chest pain, or flushing (warmth, redness, or tingly feeling) |
Route of Administration | Gamunex-C is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Gamunex-C injection is used to treat primary immunodeficiency (PI). This includes, but is not limited to, congenital agammaglobulinemia, common... |
Recommended Dosage | Gamunex is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), B-cell Chronic Lymphocytic Leukemia, Multifocal Motor Neuropathy and before and after a Bone Marrow Transplant. Gamunex may be used alone or with other medications. |
Contraindication | NA |
Side Effects | GAMUNEX is made from large pools of human plasma by a combination of cold ethanol fractionation, caprylate precipitation and filtration, and anion-exchange chromatography. Isotonicity is achieved by the addition of glycine. GAMUNEX (immune globulin intravenous human 10%) is incubated in the final container (at the low pH of 4.0 – 4.3), for a minimum of 21 days at 23° to 27°C. The product is intended for intravenous administration. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11195 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Gamunex-C |
Company | GRIFOLS USA, LLC |
Brand Description | GRIFOLS USA, LLC |
Prescribed For | Intravenous; Subcutaneous |
Chemical Name | 10 g/100mL |
Formulation | Hypersensitivity Reactions To Immune Globulins GAMUNEX-C is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. IgA Sensitive Patients With History Of Hypersensitivity Reaction GAMUNEX-C is contraindicated in IgA deficient patients with antibodies against IgA and history of hypersensitivity. |
Physical Appearance | headache fever chills high blood pressure skin rash nausea vomiting muscle spasm physical weakness loss of strength blurred vision tired feeling sore throat cough injection site reactions (redness, itching, and swelling of skin back pain joint pain pain in your arms or legs |
Route of Administration | NA |
Recommended Dosage | Gamunex-C is a prescription medicine used to treat the symptoms of Primary Immune Deficiency. Gamunex-C may be used alone or with other medications. |
Contraindication | NA |
Side Effects | GAMUNEX-C is a ready-to-use sterile, non-pyrogenic solution of human immune globulin protein for intravenous and subcutaneous (PI indication only) administration. GAMUNEX-C consists of 9%–11% protein in 0.16–0.24 M glycine. Not less than 98% of the protein has the electrophoretic mobility of gamma globulin. GAMUNEX-C contains trace levels of fragments, IgA (average 0.046 mg/mL), and IgM. The distribution of IgG subclasses is similar to that found in normal serum. GAMUNEX-C doses of 1 g/kg correspond to a glycine dose of 0.15 g/kg. While toxic effects of glycine administration have been reported, the doses and rates of administration were 3–4 fold greater than those for GAMUNEX-C. In another study it was demonstrated that intravenous bolus doses of 0.44 g/kg glycine were not associated with serious adverse effects.(20) Caprylate is a saturated medium-chain (C8) fatty acid of plant origin. Medium chain fatty acids are considered to be essentially non-toxic. Human subjects receiving medium chain fatty acids parenterally have tolerated doses of 3.0 to 9.0 g/kg/day for periods of several months without adverse effects.(21) Residual caprylate concentrations in the final container are no more than 0.216 g/L (1.3 mmol/L). The measured buffer capacity is 35 mEq/L and the osmolality is 258 mOsmol/kg solvent, which is close to physiological osmolality (285-295 mOsmol/kg). The pH of GAMUNEX-C is 4.0–4.5. GAMUNEX-C contains no preservative. GAMUNEX-C is not made with natural rubber latex. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11196 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Hizentra |
Company | Csl Behring Ag |
Brand Description | Csl Behring Ag |
Prescribed For | Subcutaneous |
Chemical Name | 0.2 g/1mL |
Formulation | Hizentra is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin or to components of Hizentra, such as polysorbate 80. Hizentra is contraindicated in patients with hyperprolinemia (type I or II) because it contains the stabilizer L-proline [see DESCRIPTION]. Hizentra is contraindicated in IgA-deficient patients with antibodies against IgA and a history of hypersensitivity [see DESCRIPTION]. |
Physical Appearance | local injection site reactions (swelling redness heat pain and itching) headache, diarrhea, fatigue, back pain, nausea, pain in extremities, cough, rash, itching, vomiting , abdominal pain (upper), migraine , pain, joint pain, bruising, rash, and hives |
Route of Administration | Hizentra is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Hizentra subcutaneous injection(for injection under the skin) is used to treat primary immunodeficiency diseases. This includes, but is not limited... |
Recommended Dosage | Hizentra is a prescription medicine used to treat the symptoms of Primary Immune Deficiency and Chronic Inflammatory Demyelinating Polyneuropathy. Hizentra may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Hizentra, Immune Globulin Subcutaneous (Human), 20% Liquid, is a ready-to-use, sterile 20% (0.2 g/mL) protein liquid preparation of polyvalent human immunoglobulin G (IgG) for subcutaneous administration. Hizentra is manufactured from large pools of human plasma by a combination of cold alcohol fractionation, octanoic acid fractionation, and anion exchange chromatography. The IgG proteins are not subjected to heating or to chemical or enzymatic modification. The Fc and Fab functions of the IgG molecule are retained. Fab functions tested include antigen binding capacities, and Fc functions tested include complement activation and Fc-receptor-mediated leukocyte activation (determined with complexed IgG). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11197 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Hizentra |
Company | Csl Behring |
Brand Description | Csl Behring |
Prescribed For | Subcutaneous |
Chemical Name | 200 mg / mL |
Formulation | Hizentra is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin or to components of Hizentra, such as polysorbate 80. Hizentra is contraindicated in patients with hyperprolinemia (type I or II) because it contains the stabilizer L-proline [see DESCRIPTION]. Hizentra is contraindicated in IgA-deficient patients with antibodies against IgA and a history of hypersensitivity [see DESCRIPTION]. |
Physical Appearance | local injection site reactions (swelling redness heat pain and itching) headache, diarrhea, fatigue, back pain, nausea, pain in extremities, cough, rash, itching, vomiting , abdominal pain (upper), migraine , pain, joint pain, bruising, rash, and hives |
Route of Administration | Hizentra is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Hizentra subcutaneous injection(for injection under the skin) is used to treat primary immunodeficiency diseases. This includes, but is not limited... |
Recommended Dosage | Hizentra is a prescription medicine used to treat the symptoms of Primary Immune Deficiency and Chronic Inflammatory Demyelinating Polyneuropathy. Hizentra may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Hizentra, Immune Globulin Subcutaneous (Human), 20% Liquid, is a ready-to-use, sterile 20% (0.2 g/mL) protein liquid preparation of polyvalent human immunoglobulin G (IgG) for subcutaneous administration. Hizentra is manufactured from large pools of human plasma by a combination of cold alcohol fractionation, octanoic acid fractionation, and anion exchange chromatography. The IgG proteins are not subjected to heating or to chemical or enzymatic modification. The Fc and Fab functions of the IgG molecule are retained. Fab functions tested include antigen binding capacities, and Fc functions tested include complement activation and Fc-receptor-mediated leukocyte activation (determined with complexed IgG). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11198 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Hizentra |
Company | Csl Behring |
Brand Description | Csl Behring |
Prescribed For | Subcutaneous |
Chemical Name | 200 mg/ml |
Formulation | Hizentra is contraindicated in patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin or to components of Hizentra, such as polysorbate 80. Hizentra is contraindicated in patients with hyperprolinemia (type I or II) because it contains the stabilizer L-proline [see DESCRIPTION]. Hizentra is contraindicated in IgA-deficient patients with antibodies against IgA and a history of hypersensitivity [see DESCRIPTION]. |
Physical Appearance | local injection site reactions (swelling redness heat pain and itching) headache, diarrhea, fatigue, back pain, nausea, pain in extremities, cough, rash, itching, vomiting , abdominal pain (upper), migraine , pain, joint pain, bruising, rash, and hives |
Route of Administration | Hizentra is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Hizentra subcutaneous injection(for injection under the skin) is used to treat primary immunodeficiency diseases. This includes, but is not limited... |
Recommended Dosage | Hizentra is a prescription medicine used to treat the symptoms of Primary Immune Deficiency and Chronic Inflammatory Demyelinating Polyneuropathy. Hizentra may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Hizentra, Immune Globulin Subcutaneous (Human), 20% Liquid, is a ready-to-use, sterile 20% (0.2 g/mL) protein liquid preparation of polyvalent human immunoglobulin G (IgG) for subcutaneous administration. Hizentra is manufactured from large pools of human plasma by a combination of cold alcohol fractionation, octanoic acid fractionation, and anion exchange chromatography. The IgG proteins are not subjected to heating or to chemical or enzymatic modification. The Fc and Fab functions of the IgG molecule are retained. Fab functions tested include antigen binding capacities, and Fc functions tested include complement activation and Fc-receptor-mediated leukocyte activation (determined with complexed IgG). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11199 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Hyperrho S/d Full Dose |
Company | Grifols Therapeutics Llc |
Brand Description | Grifols Therapeutics Llc |
Prescribed For | Intramuscular |
Chemical Name | 1500 unit / dose |
Formulation | None known. |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11200 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Hyqvia |
Company | Baxalta US Inc. |
Brand Description | Baxalta US Inc. |
Prescribed For | Subcutaneous |
Chemical Name | NA |
Formulation | HYQVIA is contraindicated in: Patients who have had a history of anaphylactic or severe systemic reactions to the administration of IgG. IgA deficient patients with antibodies to IgA and a history of hypersensitivity. Patients with known systemic hypersensitivity to hyaluronidase including Recombinant Human Hyaluronidase of HYQVIA. Patients with known systemic hypersensitivity to human albumin (in the hyaluronidase solution). |
Physical Appearance | common variable immunodeficiency (CVID) X-linked agammaglobulinemia congenital agammaglobulinemia Wiskott- Aldrich syndrome, and severe combined immunodeficiencies. |
Route of Administration | Hyaluronidase is a genetically designed protein used as an aid in helping your body absorb other injected medications. Immune globulin is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Hyqvia are given... |
Recommended Dosage | HyQvia is a prescription medicine used to treat the symptoms of Primary Immune Deficiency. HyQvia may be used alone or with other medications. |
Contraindication | NA |
Side Effects | HYQVIA is a dual vial unit with one vial of Immune Globulin Infusion 10% (Human) and one vial of Recombinant Human Hyaluronidase. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11201 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Hyqvia |
Company | Baxalta Innovations Gmb H |
Brand Description | Baxalta Innovations Gmb H |
Prescribed For | Subcutaneous |
Chemical Name | 100 mg/ml |
Formulation | HYQVIA is contraindicated in: Patients who have had a history of anaphylactic or severe systemic reactions to the administration of IgG. IgA deficient patients with antibodies to IgA and a history of hypersensitivity. Patients with known systemic hypersensitivity to hyaluronidase including Recombinant Human Hyaluronidase of HYQVIA. Patients with known systemic hypersensitivity to human albumin (in the hyaluronidase solution). |
Physical Appearance | common variable immunodeficiency (CVID) X-linked agammaglobulinemia congenital agammaglobulinemia Wiskott- Aldrich syndrome, and severe combined immunodeficiencies. |
Route of Administration | Hyaluronidase is a genetically designed protein used as an aid in helping your body absorb other injected medications. Immune globulin is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Hyqvia are given... |
Recommended Dosage | HyQvia is a prescription medicine used to treat the symptoms of Primary Immune Deficiency. HyQvia may be used alone or with other medications. |
Contraindication | NA |
Side Effects | HYQVIA is a dual vial unit with one vial of Immune Globulin Infusion 10% (Human) and one vial of Recombinant Human Hyaluronidase. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11202 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Igivnex |
Company | Grifols Therapeutics Llc |
Brand Description | Grifols Therapeutics Llc |
Prescribed For | Intravenous; Subcutaneous |
Chemical Name | 10 g / 100 mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11203 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Immune Globulin Intravenous (human) 5% |
Company | Bayer |
Brand Description | Bayer |
Prescribed For | Intravenous |
Chemical Name | 50 mg / mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11204 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Immune Globulin Intravenous (human), 10% |
Company | Talecris Biotherapeutics Inc |
Brand Description | Talecris Biotherapeutics Inc |
Prescribed For | Intravenous |
Chemical Name | 10 g / 100 mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11205 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Immune Globulin Intravenous (human), 5% |
Company | Talecris Biotherapeutics Inc |
Brand Description | Talecris Biotherapeutics Inc |
Prescribed For | Intravenous |
Chemical Name | 5 g / 100 mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11206 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Immune Serum Globulin (human) |
Company | Grifols Therapeutics Llc |
Brand Description | Grifols Therapeutics Llc |
Prescribed For | Intramuscular |
Chemical Name | 0.18 |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11207 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Iveegam Immuno 5000mg (iv) |
Company | Baxter Ag |
Brand Description | Baxter Ag |
Prescribed For | Intravenous |
Chemical Name | NA |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11208 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Iypoly |
Company | Whoniz |
Brand Description | Whoniz |
Prescribed For | Nasal |
Chemical Name | 0.15 g/100mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11209 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Kiovig |
Company | Takeda Manufacturing Austria Ag |
Brand Description | Takeda Manufacturing Austria Ag |
Prescribed For | Intravenous |
Chemical Name | 100 mg/ml |
Formulation | NA |
Physical Appearance | The most common side effects with Kiovig (seen in more than 1 patient in 10) are headache, hypertension (high blood pressure), nausea (feeling sick), rash, tiredness, local reactions such as pain, swelling or itching at the site of injection, and fever. Some side effects are more likely when using a high rate of infusion, in patients with low immunoglobulin levels, or in patients who have not received Kiovig before or for a long time. |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11210 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Octagam 10% |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Intravenous |
Chemical Name | 100 mg / mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11211 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Octagam 5% |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Intravenous |
Chemical Name | 50 mg / mL |
Formulation | Octagam 5% liquid is contraindicated in patients who have acute severe hypersensitivity reactions to human immunoglobulin. Octagam 5% liquid contains trace amounts of IgA (not more than 0.2 mg/ml in a 5% solution). It is contraindicated in IgA deficient patients with antibodies against IgA and history of hypersensitivity (See DESCRIPTION). Octagam 5% liquid is contraindicated in patients with acute hypersensitivity reaction to corn. Octagam 5% liquid contains maltose, a disaccharide sugar which is derived from corn. Patients known to have corn allergies should avoid using Octagam 5% liquid. |
Physical Appearance | The most serious adverse reactions observed with Octagam 5% liquid treatment have been immediate anaphylactic reactions, aseptic meningitis, and hemolytic anemia. The most common adverse reactions observed with Octagam 5% liquid treatment during clinical trial ( > 5%) were headache and nausea. |
Route of Administration | Immune Globulin Intravenous (Human), Octagam 5% liquid, is a solvent/detergent (S/D)-treated, sterile preparation of highly purified immunoglobulin G (IgG) derived from large pools of human plasma. Octagam 5% liquid is a solution for infusion which must be administered intravenously. |
Recommended Dosage | indicated for treatment of primary humoral immunodeficiency (PI). |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11212 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Octagam Immune Globulin (Human) |
Company | Octapharma Pharmazeutika Produktionsgesellschaft M.B.H. |
Brand Description | Octapharma Pharmazeutika Produktionsgesellschaft M.B.H. |
Prescribed For | Intravenous |
Chemical Name | 50 mg/1mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11213 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Octagam Immune Globulin (Human) |
Company | Octapharma Ab |
Brand Description | Octapharma Ab |
Prescribed For | Intravenous |
Chemical Name | 50 mg/1mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11214 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Octagam Immune Globulin (Human) |
Company | Octapharma USA Inc |
Brand Description | Octapharma USA Inc |
Prescribed For | Intravenous |
Chemical Name | 100 mg/1mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11215 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Octagam Immune Globulin (Human) |
Company | Octapharma USA Inc |
Brand Description | Octapharma USA Inc |
Prescribed For | Intravenous |
Chemical Name | 50 mg/1mL |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11216 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Panzyga |
Company | Octapharma USA Inc |
Brand Description | Octapharma USA Inc |
Prescribed For | Intravenous |
Chemical Name | 100 mg/1mL |
Formulation | PANZYGA is contraindicated in patients who have a history of severe systemic hypersensitivity reactions, such as anaphylaxis, to human immunoglobulin. PANZYGA is contraindicated in IgA-deficient patients with antibodies against IgA and history of hypersensitivity. |
Physical Appearance | headache, nausea, fever, fatigue, abdominal pain, vomiting, dizziness, anemia, dermatitis, and increased blood pressure. |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Panzyga is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia, Multifocal Motor Neuropathy, and Dermatomyositis. Panzyga may be used alone or with other medications. |
Contraindication | NA |
Side Effects | PANZYGA, Immune Globulin Intravenous (Human) – ifas 10% Liquid Preparation |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11217 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Panzyga |
Company | Pfizer Laboratories Div Pfizer Inc |
Brand Description | Pfizer Laboratories Div Pfizer Inc |
Prescribed For | Intravenous |
Chemical Name | 100 mg/1mL |
Formulation | PANZYGA is contraindicated in patients who have a history of severe systemic hypersensitivity reactions, such as anaphylaxis, to human immunoglobulin. PANZYGA is contraindicated in IgA-deficient patients with antibodies against IgA and history of hypersensitivity. |
Physical Appearance | headache, nausea, fever, fatigue, abdominal pain, vomiting, dizziness, anemia, dermatitis, and increased blood pressure. |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Panzyga is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia, Multifocal Motor Neuropathy, and Dermatomyositis. Panzyga may be used alone or with other medications. |
Contraindication | NA |
Side Effects | PANZYGA, Immune Globulin Intravenous (Human) – ifas 10% Liquid Preparation |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11218 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Panzyga |
Company | Octapharma Pharmazeutika Produktionsges M B H |
Brand Description | Octapharma Pharmazeutika Produktionsges M B H |
Prescribed For | Intravenous |
Chemical Name | 100 mg / mL |
Formulation | PANZYGA is contraindicated in patients who have a history of severe systemic hypersensitivity reactions, such as anaphylaxis, to human immunoglobulin. PANZYGA is contraindicated in IgA-deficient patients with antibodies against IgA and history of hypersensitivity. |
Physical Appearance | headache, nausea, fever, fatigue, abdominal pain, vomiting, dizziness, anemia, dermatitis, and increased blood pressure. |
Route of Administration | Immune globulin intravenous (IGIV, for injection into a vein) is used to treat primary immunodeficiency. IGIV is also used to increase platelets (blood clotting cells) in people with immune thrombocytopenic purpura. IGIV is also used in to help prevent certain infections in people with B-cell chronic... |
Recommended Dosage | Panzyga is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Bone Marrow Transplant, B-cell Chronic Lymphocytic Leukemia, Multifocal Motor Neuropathy, and Dermatomyositis. Panzyga may be used alone or with other medications. |
Contraindication | NA |
Side Effects | PANZYGA, Immune Globulin Intravenous (Human) – ifas 10% Liquid Preparation |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11219 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Privigen |
Company | Csl Behring Ag |
Brand Description | Csl Behring Ag |
Prescribed For | Intravenous |
Chemical Name | 5 g/50mL |
Formulation | Privigen is contraindicated in patients who have a history of anaphylactic or severe systemic reaction to the administration of human immune globulin. Privigen is contraindicated in patients with hyperprolinemia because it contains the stabilizer L-proline [see DESCRIPTION]. Privigen is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity [see WARNINGS AND PRECAUTIONS]. |
Physical Appearance | headache, back or joint pain, nausea, vomiting, fatigue, chills, fever, low levels of iron in the blood (anemia), dizziness, tired feeling, muscle cramps, minor chest pain, or flushing (warmth, redness, or tingly feeling) |
Route of Administration | Privigen ) is a sterile solution made from human plasma. It contains antibodies to help your body protect itself against infection from various diseases. Privigen is used as a replacement therapy for primary humoral immunodeficiency (PI). This includes, but is not limited to congenital agammaglobulinemia,... |
Recommended Dosage | Privigen I[mmune Globulin Intravenous (Human)] is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) and before and after a Bone Marrow Transplant. Privigen may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Privigen is a ready-to-use, sterile, 10% protein liquid preparation of polyvalent human immunoglobulin G (IgG) for intravenous administration. Privigen has a purity of at least 98% IgG, consisting primarily of monomers. The balance consists of IgG dimers ( ≤ 12%), small amounts of fragments and polymers, and albumin. Privigen contains ≤ 25 mcg/mL IgA. The IgG subclass distribution (approximate mean values) is IgG1, 67.8%; IgG2, 28.7%; IgG3, 2.3%; and IgG4, 1.2%. Privigen has an osmolality of approximately 320 mOsmol/kg (range: 240 to 440) and a pH of 4.8 (range: 4.6 to 5.0). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11220 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Privigen |
Company | Csl Behring Ag |
Brand Description | Csl Behring Ag |
Prescribed For | Intravenous |
Chemical Name | 10 g/100mL |
Formulation | Privigen is contraindicated in patients who have a history of anaphylactic or severe systemic reaction to the administration of human immune globulin. Privigen is contraindicated in patients with hyperprolinemia because it contains the stabilizer L-proline [see DESCRIPTION]. Privigen is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity [see WARNINGS AND PRECAUTIONS]. |
Physical Appearance | headache, back or joint pain, nausea, vomiting, fatigue, chills, fever, low levels of iron in the blood (anemia), dizziness, tired feeling, muscle cramps, minor chest pain, or flushing (warmth, redness, or tingly feeling) |
Route of Administration | Privigen ) is a sterile solution made from human plasma. It contains antibodies to help your body protect itself against infection from various diseases. Privigen is used as a replacement therapy for primary humoral immunodeficiency (PI). This includes, but is not limited to congenital agammaglobulinemia,... |
Recommended Dosage | Privigen I[mmune Globulin Intravenous (Human)] is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) and before and after a Bone Marrow Transplant. Privigen may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Privigen is a ready-to-use, sterile, 10% protein liquid preparation of polyvalent human immunoglobulin G (IgG) for intravenous administration. Privigen has a purity of at least 98% IgG, consisting primarily of monomers. The balance consists of IgG dimers ( ≤ 12%), small amounts of fragments and polymers, and albumin. Privigen contains ≤ 25 mcg/mL IgA. The IgG subclass distribution (approximate mean values) is IgG1, 67.8%; IgG2, 28.7%; IgG3, 2.3%; and IgG4, 1.2%. Privigen has an osmolality of approximately 320 mOsmol/kg (range: 240 to 440) and a pH of 4.8 (range: 4.6 to 5.0). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11221 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Privigen |
Company | Csl Behring Ag |
Brand Description | Csl Behring Ag |
Prescribed For | Intravenous |
Chemical Name | 20 g/200mL |
Formulation | Privigen is contraindicated in patients who have a history of anaphylactic or severe systemic reaction to the administration of human immune globulin. Privigen is contraindicated in patients with hyperprolinemia because it contains the stabilizer L-proline [see DESCRIPTION]. Privigen is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity [see WARNINGS AND PRECAUTIONS]. |
Physical Appearance | headache, back or joint pain, nausea, vomiting, fatigue, chills, fever, low levels of iron in the blood (anemia), dizziness, tired feeling, muscle cramps, minor chest pain, or flushing (warmth, redness, or tingly feeling) |
Route of Administration | Privigen ) is a sterile solution made from human plasma. It contains antibodies to help your body protect itself against infection from various diseases. Privigen is used as a replacement therapy for primary humoral immunodeficiency (PI). This includes, but is not limited to congenital agammaglobulinemia,... |
Recommended Dosage | Privigen I[mmune Globulin Intravenous (Human)] is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) and before and after a Bone Marrow Transplant. Privigen may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Privigen is a ready-to-use, sterile, 10% protein liquid preparation of polyvalent human immunoglobulin G (IgG) for intravenous administration. Privigen has a purity of at least 98% IgG, consisting primarily of monomers. The balance consists of IgG dimers ( ≤ 12%), small amounts of fragments and polymers, and albumin. Privigen contains ≤ 25 mcg/mL IgA. The IgG subclass distribution (approximate mean values) is IgG1, 67.8%; IgG2, 28.7%; IgG3, 2.3%; and IgG4, 1.2%. Privigen has an osmolality of approximately 320 mOsmol/kg (range: 240 to 440) and a pH of 4.8 (range: 4.6 to 5.0). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11222 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Privigen |
Company | Csl Behring Ag |
Brand Description | Csl Behring Ag |
Prescribed For | Intravenous |
Chemical Name | 40 g/400mL |
Formulation | Privigen is contraindicated in patients who have a history of anaphylactic or severe systemic reaction to the administration of human immune globulin. Privigen is contraindicated in patients with hyperprolinemia because it contains the stabilizer L-proline [see DESCRIPTION]. Privigen is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity [see WARNINGS AND PRECAUTIONS]. |
Physical Appearance | headache, back or joint pain, nausea, vomiting, fatigue, chills, fever, low levels of iron in the blood (anemia), dizziness, tired feeling, muscle cramps, minor chest pain, or flushing (warmth, redness, or tingly feeling) |
Route of Administration | Privigen ) is a sterile solution made from human plasma. It contains antibodies to help your body protect itself against infection from various diseases. Privigen is used as a replacement therapy for primary humoral immunodeficiency (PI). This includes, but is not limited to congenital agammaglobulinemia,... |
Recommended Dosage | Privigen I[mmune Globulin Intravenous (Human)] is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) and before and after a Bone Marrow Transplant. Privigen may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Privigen is a ready-to-use, sterile, 10% protein liquid preparation of polyvalent human immunoglobulin G (IgG) for intravenous administration. Privigen has a purity of at least 98% IgG, consisting primarily of monomers. The balance consists of IgG dimers ( ≤ 12%), small amounts of fragments and polymers, and albumin. Privigen contains ≤ 25 mcg/mL IgA. The IgG subclass distribution (approximate mean values) is IgG1, 67.8%; IgG2, 28.7%; IgG3, 2.3%; and IgG4, 1.2%. Privigen has an osmolality of approximately 320 mOsmol/kg (range: 240 to 440) and a pH of 4.8 (range: 4.6 to 5.0). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11223 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Privigen |
Company | Csl Behring |
Brand Description | Csl Behring |
Prescribed For | Intravenous |
Chemical Name | 0.1 |
Formulation | Privigen is contraindicated in patients who have a history of anaphylactic or severe systemic reaction to the administration of human immune globulin. Privigen is contraindicated in patients with hyperprolinemia because it contains the stabilizer L-proline [see DESCRIPTION]. Privigen is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity [see WARNINGS AND PRECAUTIONS]. |
Physical Appearance | headache, back or joint pain, nausea, vomiting, fatigue, chills, fever, low levels of iron in the blood (anemia), dizziness, tired feeling, muscle cramps, minor chest pain, or flushing (warmth, redness, or tingly feeling) |
Route of Administration | Privigen ) is a sterile solution made from human plasma. It contains antibodies to help your body protect itself against infection from various diseases. Privigen is used as a replacement therapy for primary humoral immunodeficiency (PI). This includes, but is not limited to congenital agammaglobulinemia,... |
Recommended Dosage | Privigen I[mmune Globulin Intravenous (Human)] is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) and before and after a Bone Marrow Transplant. Privigen may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Privigen is a ready-to-use, sterile, 10% protein liquid preparation of polyvalent human immunoglobulin G (IgG) for intravenous administration. Privigen has a purity of at least 98% IgG, consisting primarily of monomers. The balance consists of IgG dimers ( ≤ 12%), small amounts of fragments and polymers, and albumin. Privigen contains ≤ 25 mcg/mL IgA. The IgG subclass distribution (approximate mean values) is IgG1, 67.8%; IgG2, 28.7%; IgG3, 2.3%; and IgG4, 1.2%. Privigen has an osmolality of approximately 320 mOsmol/kg (range: 240 to 440) and a pH of 4.8 (range: 4.6 to 5.0). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11224 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Privigen |
Company | Csl Behring |
Brand Description | Csl Behring |
Prescribed For | Intravenous |
Chemical Name | 100 mg/ml |
Formulation | Privigen is contraindicated in patients who have a history of anaphylactic or severe systemic reaction to the administration of human immune globulin. Privigen is contraindicated in patients with hyperprolinemia because it contains the stabilizer L-proline [see DESCRIPTION]. Privigen is contraindicated in IgA-deficient patients with antibodies to IgA and a history of hypersensitivity [see WARNINGS AND PRECAUTIONS]. |
Physical Appearance | headache, back or joint pain, nausea, vomiting, fatigue, chills, fever, low levels of iron in the blood (anemia), dizziness, tired feeling, muscle cramps, minor chest pain, or flushing (warmth, redness, or tingly feeling) |
Route of Administration | Privigen ) is a sterile solution made from human plasma. It contains antibodies to help your body protect itself against infection from various diseases. Privigen is used as a replacement therapy for primary humoral immunodeficiency (PI). This includes, but is not limited to congenital agammaglobulinemia,... |
Recommended Dosage | Privigen I[mmune Globulin Intravenous (Human)] is a prescription medicine used to treat the symptoms of Primary Immunodeficiency Syndrome, Immune Thrombocytopenic Purpura, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) and before and after a Bone Marrow Transplant. Privigen may be used alone or with other medications. |
Contraindication | NA |
Side Effects | Privigen is a ready-to-use, sterile, 10% protein liquid preparation of polyvalent human immunoglobulin G (IgG) for intravenous administration. Privigen has a purity of at least 98% IgG, consisting primarily of monomers. The balance consists of IgG dimers ( ≤ 12%), small amounts of fragments and polymers, and albumin. Privigen contains ≤ 25 mcg/mL IgA. The IgG subclass distribution (approximate mean values) is IgG1, 67.8%; IgG2, 28.7%; IgG3, 2.3%; and IgG4, 1.2%. Privigen has an osmolality of approximately 320 mOsmol/kg (range: 240 to 440) and a pH of 4.8 (range: 4.6 to 5.0). |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11225 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Sandoglobulin Nf Liquid |
Company | Csl Behring |
Brand Description | Csl Behring |
Prescribed For | Intravenous |
Chemical Name | 120 g / L |
Formulation | NA |
Physical Appearance | NA |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | NA |
Remarks | NA |
Primary information | |
---|---|
ID | 11226 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Vivaglobin |
Company | Csl Behring |
Brand Description | Csl Behring |
Prescribed For | Subcutaneous |
Chemical Name | 160 mg/1mL |
Formulation | As with all immune globulin products, Vivaglobin® (immune globulin subcutaneous (human)) Immune Globulin Subcutaneous (Human) is contraindicated in individuals with a history of anaphylactic or severe systemic response to immune globulin preparations and in persons with selective immunoglobulin A (IgA) deficiency (serum IgA < 0.05 g/L) who have known antibody against IgA. |
Physical Appearance | injection site reactions (mild swelling, redness, itching, bruising, pain, or warmth) that will usually lessen as your body adjusts to the medication headache upset stomach fever nausea vomiting stomach pain diarrhea bloating sore throat cough back pain itching or skin rash joint or muscle pain tiredness, or pain anywhere in the body |
Route of Administration | Vivaglobin is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Vivaglobin subcutaneous (for injection under the skin) is used to treat primary immunodeficiency (PI). This includes, but is not limited to,... |
Recommended Dosage | Vivaglobin® Immune Globulin Subcutaneous (Human), is indicated for the treatment of patients with primary immune deficiency (PID). |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11227 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Vivaglobin |
Company | Csl Behring |
Brand Description | Csl Behring |
Prescribed For | Subcutaneous |
Chemical Name | 160 mg / mL |
Formulation | As with all immune globulin products, Vivaglobin® (immune globulin subcutaneous (human)) Immune Globulin Subcutaneous (Human) is contraindicated in individuals with a history of anaphylactic or severe systemic response to immune globulin preparations and in persons with selective immunoglobulin A (IgA) deficiency (serum IgA < 0.05 g/L) who have known antibody against IgA. |
Physical Appearance | injection site reactions (mild swelling, redness, itching, bruising, pain, or warmth) that will usually lessen as your body adjusts to the medication headache upset stomach fever nausea vomiting stomach pain diarrhea bloating sore throat cough back pain itching or skin rash joint or muscle pain tiredness, or pain anywhere in the body |
Route of Administration | Vivaglobin is a sterilized solution made from human plasma. It contains the antibodies to help your body protect itself against infection from various diseases. Vivaglobin subcutaneous (for injection under the skin) is used to treat primary immunodeficiency (PI). This includes, but is not limited to,... |
Recommended Dosage | Vivaglobin® Immune Globulin Subcutaneous (Human), is indicated for the treatment of patients with primary immune deficiency (PID). |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11228 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Winrho |
Company | Cangene BioPharma, LLC |
Brand Description | Cangene BioPharma, LLC |
Prescribed For | Intramuscular; Intravenous |
Chemical Name | 600 [iU]/1mL |
Formulation | WinRho SDF is contraindicated in: Patients who have had known anaphylactic or severe systemic reaction to the administration of human immune globulin products. IgA-deficient patients with antibodies to IgA or a history of hypersensitivity reaction to WinRho SDF or any of its components. Patients with autoimmune hemolytic anemia, with pre-existing hemolysis or at high risk for hemolysis. Infants for the suppression of Rho (D) isoimmunization. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, rash, lightheadedness, chest tightness, fever, chills, shaking, back pain, unusual weakness, red or pink urine, pale or yellowed skin, dark colored urine, rapid breathing, rapid heart rate, confusion, shortness of breath, little or no urinating, swelling, rapid weight gain, sudden numbness or weakness, slurred speech, problems with vision or balance, chest pain, coughing up blood, and swelling with redness and warmth in one or both legs |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11229 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Winrho |
Company | Cangene BioPharma, LLC |
Brand Description | Cangene BioPharma, LLC |
Prescribed For | Intramuscular; Intravenous |
Chemical Name | 2500 [iU]/1mL |
Formulation | WinRho SDF is contraindicated in: Patients who have had known anaphylactic or severe systemic reaction to the administration of human immune globulin products. IgA-deficient patients with antibodies to IgA or a history of hypersensitivity reaction to WinRho SDF or any of its components. Patients with autoimmune hemolytic anemia, with pre-existing hemolysis or at high risk for hemolysis. Infants for the suppression of Rho (D) isoimmunization. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, rash, lightheadedness, chest tightness, fever, chills, shaking, back pain, unusual weakness, red or pink urine, pale or yellowed skin, dark colored urine, rapid breathing, rapid heart rate, confusion, shortness of breath, little or no urinating, swelling, rapid weight gain, sudden numbness or weakness, slurred speech, problems with vision or balance, chest pain, coughing up blood, and swelling with redness and warmth in one or both legs |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11230 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Winrho |
Company | Cangene BioPharma, LLC |
Brand Description | Cangene BioPharma, LLC |
Prescribed For | Intramuscular; Intravenous |
Chemical Name | 5000 [iU]/1mL |
Formulation | WinRho SDF is contraindicated in: Patients who have had known anaphylactic or severe systemic reaction to the administration of human immune globulin products. IgA-deficient patients with antibodies to IgA or a history of hypersensitivity reaction to WinRho SDF or any of its components. Patients with autoimmune hemolytic anemia, with pre-existing hemolysis or at high risk for hemolysis. Infants for the suppression of Rho (D) isoimmunization. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, rash, lightheadedness, chest tightness, fever, chills, shaking, back pain, unusual weakness, red or pink urine, pale or yellowed skin, dark colored urine, rapid breathing, rapid heart rate, confusion, shortness of breath, little or no urinating, swelling, rapid weight gain, sudden numbness or weakness, slurred speech, problems with vision or balance, chest pain, coughing up blood, and swelling with redness and warmth in one or both legs |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11231 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Winrho |
Company | Cangene BioPharma, LLC |
Brand Description | Cangene BioPharma, LLC |
Prescribed For | Intramuscular; Intravenous |
Chemical Name | 15000 [iU]/1mL |
Formulation | WinRho SDF is contraindicated in: Patients who have had known anaphylactic or severe systemic reaction to the administration of human immune globulin products. IgA-deficient patients with antibodies to IgA or a history of hypersensitivity reaction to WinRho SDF or any of its components. Patients with autoimmune hemolytic anemia, with pre-existing hemolysis or at high risk for hemolysis. Infants for the suppression of Rho (D) isoimmunization. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, rash, lightheadedness, chest tightness, fever, chills, shaking, back pain, unusual weakness, red or pink urine, pale or yellowed skin, dark colored urine, rapid breathing, rapid heart rate, confusion, shortness of breath, little or no urinating, swelling, rapid weight gain, sudden numbness or weakness, slurred speech, problems with vision or balance, chest pain, coughing up blood, and swelling with redness and warmth in one or both legs |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11232 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Winrho |
Company | Cangene BioPharma, LLC |
Brand Description | Cangene BioPharma, LLC |
Prescribed For | Intramuscular; Intravenous |
Chemical Name | 1500 [iU]/1mL |
Formulation | WinRho SDF is contraindicated in: Patients who have had known anaphylactic or severe systemic reaction to the administration of human immune globulin products. IgA-deficient patients with antibodies to IgA or a history of hypersensitivity reaction to WinRho SDF or any of its components. Patients with autoimmune hemolytic anemia, with pre-existing hemolysis or at high risk for hemolysis. Infants for the suppression of Rho (D) isoimmunization. |
Physical Appearance | hives, difficulty breathing, swelling of your face, lips, tongue, or throat, rash, lightheadedness, chest tightness, fever, chills, shaking, back pain, unusual weakness, red or pink urine, pale or yellowed skin, dark colored urine, rapid breathing, rapid heart rate, confusion, shortness of breath, little or no urinating, swelling, rapid weight gain, sudden numbness or weakness, slurred speech, problems with vision or balance, chest pain, coughing up blood, and swelling with redness and warmth in one or both legs |
Route of Administration | NA |
Recommended Dosage | NA |
Contraindication | NA |
Side Effects | NA |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11233 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Xembify |
Company | GRIFOLS USA, LLC |
Brand Description | GRIFOLS USA, LLC |
Prescribed For | Subcutaneous |
Chemical Name | 200 mg/1mL |
Formulation | XEMBIFY is contraindicated in: Patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. IgA deficient patients with antibodies against IgA and history of hypersensitivity to human immune globulin treatment. |
Physical Appearance | infusion site reactions (redness, pain, swelling, bruising, hard lump itching, firmness, scabbing), cough, and diarrhea |
Route of Administration | Xembify (for injection under the skin) is used to treat primary immunodeficiency diseases. Xembify is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Xembify may also be... |
Recommended Dosage | XEMBIFY (immune globulin subcutaneous, human - klhw) is a 20% immune globulin solution for subcutaneous injection indicated for treatment of primary humoral immunodeficiency (PI) in patients 2 years of age and older. This includes, but is not limited to, congenital agammaglobulinemia, common variable immunodeficiency, X-linked agammaglobulinemia, Wiskott-Aldrich syndrome, and severe combined immunodeficiencies.1-4 |
Contraindication | NA |
Side Effects | Several of the individual production steps of the manufacturing process have been shown to decrease TSE infectivity of an experimental model agent. TSE reduction steps include depth filtrations (a total of ≥ 6.6 log10). These studies provide reasonable assurance that low levels of vCJD/CJD agent infectivity, if present in the starting material, would be removed. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |
Primary information | |
---|---|
ID | 11234 |
Therapeutic ID | Th1243 |
Protein Name | Human immunoglobulin G |
Sequence | >Th1243_Human_immunoglobulin_G PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGKAPKVIIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSDNFVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATEVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECSPLVLQESGPGLVKPSEALSLTCTVSGDSINTILYYWSWIRQPPGKGLEWIGYIYYSGSTYGNPSLKSRVTISVNTSKNQFYSKLSSVTAADTAVYYCARVPLVVNPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPQPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL |
Molecular Weight | 142682.3 |
Chemical Formula | C6332H9826N1692O1980S42 |
Isoelectric Point | 8.13 |
Hydrophobicity | -0.331 |
Melting point | 61 °C (FAB fragment), 71 °C (whole mAb) |
Half-life | >20 hours (mammalian reticulocytes, in vitro). |
Description | Intravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. |
Indication/Disease | IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases. |
Pharmacodynamics | Used as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens. |
Mechanism of Action | IVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab')2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components. |
Toxicity | NA |
Metabolism | NA |
Absorption | NA |
NA | |
Clearance | NA |
Categories | NA |
Patents Number | NA |
Date of Issue | NA |
Date of Expiry | NA |
Drug Interaction | NA |
Target | High affinity immunoglobulin gamma Fc receptor I,High affinity immunoglobulin gamma Fc receptor IB,Low affinity immunoglobulin gamma Fc region receptor II-a,Low affinity immunoglobulin gamma Fc region receptor II-b,Low affinity immunoglobulin gamma Fc region receptor II-c,Low affinity immunoglobulin gamma Fc region receptor III-A,Low affinity immunoglobulin gamma Fc region receptor III-B,Complement C3,Complement C4-A,Complement C4-B,Complement C5 |
Brand Name | Xembify |
Company | Grifols Therapeutics Llc |
Brand Description | Grifols Therapeutics Llc |
Prescribed For | Subcutaneous |
Chemical Name | 0.2 |
Formulation | XEMBIFY is contraindicated in: Patients who have had an anaphylactic or severe systemic reaction to the administration of human immune globulin. IgA deficient patients with antibodies against IgA and history of hypersensitivity to human immune globulin treatment. |
Physical Appearance | infusion site reactions (redness, pain, swelling, bruising, hard lump itching, firmness, scabbing), cough, and diarrhea |
Route of Administration | Xembify (for injection under the skin) is used to treat primary immunodeficiency diseases. Xembify is also used to treat chronic inflammatory demyelinating polyneuropathy (an autoimmune disorder in which the immune system attacks the nerves, causing muscle weakness and numbness). Xembify may also be... |
Recommended Dosage | XEMBIFY (immune globulin subcutaneous, human - klhw) is a 20% immune globulin solution for subcutaneous injection indicated for treatment of primary humoral immunodeficiency (PI) in patients 2 years of age and older. This includes, but is not limited to, congenital agammaglobulinemia, common variable immunodeficiency, X-linked agammaglobulinemia, Wiskott-Aldrich syndrome, and severe combined immunodeficiencies.1-4 |
Contraindication | NA |
Side Effects | Several of the individual production steps of the manufacturing process have been shown to decrease TSE infectivity of an experimental model agent. TSE reduction steps include depth filtrations (a total of ≥ 6.6 log10). These studies provide reasonable assurance that low levels of vCJD/CJD agent infectivity, if present in the starting material, would be removed. |
Useful Link 1 | Link |
Useful Link 2 | Link |
Remarks | NA |