Detailed description page of ThPDB2

This page displays user query in tabular form.

Th1041 details
Primary information
ID10283
Therapeutic IDTh1041
Protein NameInsulin Glargine
Sequence>Th1041_Insulin_Glargine GIVEQCCTSICSLYQLENYCG
Molecular Weight6063
Chemical FormulaC267H404N72O78S6
Isoelectric Point6.88
Hydrophobicity0.098
Melting point81
Half-lifeNot reported in humans; 30 hours in mammalian reticulocytes.
DescriptionInsulin glargine is produced by recombinant DNA technology using a non-pathogenic laboratory strain of Escherichia coli (K12). It is an analogue of human insulin made by replacing the asparagine residue at position A21 of the A-chain with glycine and adding two arginines to the C-terminus (positions B31 and 32) of the B-chain. The resulting protein is soluble at pH 4 and forms microprecipitates at physiological pH 7.4. Small amounts of insulin glargine are slowly released from microprecipitates giving the drug a long duration of action (up to 24 hours) and no pronounced peak concentration.
Indication/DiseaseTo treat Type 1 or 2 diabetes mellitus in patients over 17 years old who require a long-acting (basal) insulin for the control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for glycemic control.
PharmacodynamicsInsulin is a natural hormone produced by beta cells of the pancreas. In non-diabetic individuals, a basal level of insulin is supplemented with insulin spikes following meals. Increased insulin secretion following meals is responsible for the metabolic changes that occur as the body transitions from a postabsorptive to absorptive state. Insulin promotes cellular uptake of glucose, particularly in muscle and adipose tissues, promotes energy storage via glycogenesis, opposes catabolism of energy stores, increases DNA replication and protein synthesis by stimulating amino acid uptake by liver, muscle and adipose tissue, and modifies the activity of numerous enzymes involved in glycogen synthesis and glycolysis. Insulin also promotes growth and is required for the actions of growth hormone (e.g. protein synthesis, cell division, DNA synthesis). Insulin lispro is a rapid-acting insulin analogue used to mimic postprandial insulin spikes in diabetic individuals. The onset of action of insulin lispro is 10-15 minutes. Its activity peaks 60 minutes following subcutaneous injection and its duration of action is 4-5 hours. Compared to regular human insulin, insulin lispro has a more rapid onset of action and a shorter duration of action. Insulin lispro is also shown to be equipotent to human insulin on a molar basis.
Mechanism of ActionInsulin glargine binds to the insulin receptor, a heterotetrameric protein consisting of two extracellular alpha units and two transmembrane beta units. The binding of insulin to the alpha subunit of IR stimulates the tyrosine kinase activity intrinsic to the beta subunit of the receptor. The bound receptor autophosphorylates and phosphorylates numerous intracellular substrates such as insulin receptor substrates (IRS) proteins, Cbl, APS, Shc and Gab 1. Activation of these proteins leads to the activation of downstream signaling molecules including PI3 kinase and Akt. Akt regulates the activity of glucose transporter 4 (GLUT4) and protein kinase C (PKC), both of which play critical roles in metabolism. Insulin glargine is completely soluble at pH 4, the pH of administered solution, and has low solubility at physiological pH 7.4. Upon subcuteous injection, the solution is neutralized resulting in the formation of microprecipitates. Small amounts of insulin glargine are released from microprecipitates giving the drug a relatively constant concentration over time profile over 24 hours with no pronounced peak. This release mechanism allows the drug to mimic basal insulin levels within the body.
ToxicityInappropriately high dosages relative to food intake and/or energy expenditure may result in severe and sometimes prolonged and life-threatening hypoglycemia. Neurogenic (autonomic) signs and symptoms of hypoglycemia include trembling, palpitations, sweat
MetabolismPartly metabolized to two active metabolites with similar in vitro activity to insulin: A21-Gly-insulin and A21-Gly-des-B30-Thr-insulin.
AbsorptionDue to the modifications in the A and B chain, the isoelectric point shifts towards a neutral pH and insulin glargine is more stable in acidic conditions than regular insulin. As insulin glargine is less soluble at neutral pH, once injected, forms micro-p
NA
ClearanceNA
CategoriesAlimentary Tract and Metabolism, Amino Acids, Peptides, and Proteins, Antimetabolites, Biological Products, Blood Glucose Lowering Agents, Complex Mixtures, Cytochrome P-450 CYP1A2 Inducers, Cytochrome P-450 CYP1A2 Inducers (strength unknown), Cytochrome P-450 Enzyme Inducers, Drugs Used in Diabetes, Hormones, Hormones, Hormone Substitutes, and Hormone Antagonists, Hypoglycemia-Associated Agents, Hypolipidemic Agents, Insulin, Insulin Analog, Insulin, Long-Acting, Lipid Regulating Agents, Pancreatic Hormones, Peptide Hormones, Peptides
Patents NumberUS7476652
Date of Issue13-Jan-2009
Date of Expiry23-Jul-2023
Drug InteractionSomatropin may antagonize the hypoglycemic effect of insulin glargine. Monitor for changes in fasting and postprandial blood sugars.
TargetInsulin receptor,Insulin-like growth factor 1 receptor
Brand NameLantus
CompanySanofi-Aventis
Brand DescriptionSanofi-Aventis
Prescribed ForIts used to improve glycemic control in adults and children with type 1 diabetes mellitus and in adults with type 2 diabetes mellitus.
Chemical Name21A-Gly-30Ba-L-Arg-30Bb-L-Arg-human insulin
FormulationLANTUS consists of insulin glargine dissolved in a clear aqueous fluid. Each milliliter of LANTUS contains 100 Units (3.6378 mg) insulin glargine. The 10 mL vial presentation contains the following inactive ingredients per mL: 30 mcg zinc, 2.7 mg m-cresol
Physical Appearance Solution
Route of AdministrationSubcutaneous Injection
Recommended DosageLANTUS may be administered at any time during the day. LANTUS should be administered subcutaneously once a day at the same time every day. The dose of LANTUS must be individualized based on clinical response.
ContraindicationHypersensitivity
Side EffectsLow blood sugar (headache, hunger, weakness, sweating, confusion, irritability, dizziness, fast heart rate, or feeling jittery). Sign of insulin allergy include itching skin rash over the entire body, wheezing, trouble breathing, fast heart rate, sweating.
Useful Link 1Link
Useful Link 2NA
RemarksNA


Primary information
ID10284
Therapeutic IDTh1041
Protein NameInsulin Glargine
Sequence>Th1041_Insulin_Glargine GIVEQCCTSICSLYQLENYCG
Molecular Weight6063
Chemical FormulaC267H404N72O78S6
Isoelectric Point6.88
Hydrophobicity0.098
Melting point81
Half-lifeNot reported in humans; 30 hours in mammalian reticulocytes.
DescriptionInsulin glargine is produced by recombinant DNA technology using a non-pathogenic laboratory strain of Escherichia coli (K12). It is an analogue of human insulin made by replacing the asparagine residue at position A21 of the A-chain with glycine and adding two arginines to the C-terminus (positions B31 and 32) of the B-chain. The resulting protein is soluble at pH 4 and forms microprecipitates at physiological pH 7.4. Small amounts of insulin glargine are slowly released from microprecipitates giving the drug a long duration of action (up to 24 hours) and no pronounced peak concentration.
Indication/DiseaseTo treat Type 1 or 2 diabetes mellitus in patients over 17 years old who require a long-acting (basal) insulin for the control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for glycemic control.
PharmacodynamicsInsulin is a natural hormone produced by beta cells of the pancreas. In non-diabetic individuals, a basal level of insulin is supplemented with insulin spikes following meals. Increased insulin secretion following meals is responsible for the metabolic changes that occur as the body transitions from a postabsorptive to absorptive state. Insulin promotes cellular uptake of glucose, particularly in muscle and adipose tissues, promotes energy storage via glycogenesis, opposes catabolism of energy stores, increases DNA replication and protein synthesis by stimulating amino acid uptake by liver, muscle and adipose tissue, and modifies the activity of numerous enzymes involved in glycogen synthesis and glycolysis. Insulin also promotes growth and is required for the actions of growth hormone (e.g. protein synthesis, cell division, DNA synthesis). Insulin lispro is a rapid-acting insulin analogue used to mimic postprandial insulin spikes in diabetic individuals. The onset of action of insulin lispro is 10-15 minutes. Its activity peaks 60 minutes following subcutaneous injection and its duration of action is 4-5 hours. Compared to regular human insulin, insulin lispro has a more rapid onset of action and a shorter duration of action. Insulin lispro is also shown to be equipotent to human insulin on a molar basis.
Mechanism of ActionInsulin glargine binds to the insulin receptor, a heterotetrameric protein consisting of two extracellular alpha units and two transmembrane beta units. The binding of insulin to the alpha subunit of IR stimulates the tyrosine kinase activity intrinsic to the beta subunit of the receptor. The bound receptor autophosphorylates and phosphorylates numerous intracellular substrates such as insulin receptor substrates (IRS) proteins, Cbl, APS, Shc and Gab 1. Activation of these proteins leads to the activation of downstream signaling molecules including PI3 kinase and Akt. Akt regulates the activity of glucose transporter 4 (GLUT4) and protein kinase C (PKC), both of which play critical roles in metabolism. Insulin glargine is completely soluble at pH 4, the pH of administered solution, and has low solubility at physiological pH 7.4. Upon subcuteous injection, the solution is neutralized resulting in the formation of microprecipitates. Small amounts of insulin glargine are released from microprecipitates giving the drug a relatively constant concentration over time profile over 24 hours with no pronounced peak. This release mechanism allows the drug to mimic basal insulin levels within the body.
ToxicityInappropriately high dosages relative to food intake and/or energy expenditure may result in severe and sometimes prolonged and life-threatening hypoglycemia. Neurogenic (autonomic) signs and symptoms of hypoglycemia include trembling, palpitations, sweat
MetabolismPartly metabolized to two active metabolites with similar in vitro activity to insulin: A21-Gly-insulin and A21-Gly-des-B30-Thr-insulin.
AbsorptionDue to the modifications in the A and B chain, the isoelectric point shifts towards a neutral pH and insulin glargine is more stable in acidic conditions than regular insulin. As insulin glargine is less soluble at neutral pH, once injected, forms micro-p
NA
ClearanceNA
CategoriesAlimentary Tract and Metabolism, Amino Acids, Peptides, and Proteins, Antimetabolites, Biological Products, Blood Glucose Lowering Agents, Complex Mixtures, Cytochrome P-450 CYP1A2 Inducers, Cytochrome P-450 CYP1A2 Inducers (strength unknown), Cytochrome P-450 Enzyme Inducers, Drugs Used in Diabetes, Hormones, Hormones, Hormone Substitutes, and Hormone Antagonists, Hypoglycemia-Associated Agents, Hypolipidemic Agents, Insulin, Insulin Analog, Insulin, Long-Acting, Lipid Regulating Agents, Pancreatic Hormones, Peptide Hormones, Peptides
Patents NumberUS6100376
Date of Issue8-Aug-2000
Date of Expiry6-Nov-2009
Drug InteractionThe beta-blocker, Timolol, Sotalol, Propranolol, Practolol, Acebutolol, Atenolol, Betaxolol, Bevantolol, Bisoprolol, Carteolol, Carvedilol, Esmolol
TargetNA
Brand NameLantus R / Lusduna Nexvue / Optisulin / Semglee
Company(Mylan Pharmaceuticals Inc)
Brand Description(Mylan Pharmaceuticals Inc)
Prescribed Forto control high blood sugar in adults with diabetes mellitus.
Chemical NameNA
FormulationNA
Physical Appearance clear aqueous fluid
Route of AdministrationInjection
Recommended DosageNA
ContraindicationLANTUS is contraindicated: during episodes of hypoglycemia in patients with hypersensitivity to LANTUS or one of its excipients
Side EffectsNA
Useful Link 1Link
Useful Link 2NA
RemarksNA


Primary information
ID10285
Therapeutic IDTh1041
Protein NameInsulin Glargine
Sequence>Th1041_Insulin_Glargine GIVEQCCTSICSLYQLENYCG
Molecular Weight6063
Chemical FormulaC267H404N72O78S6
Isoelectric Point6.88
Hydrophobicity0.098
Melting point81
Half-lifeNot reported in humans; 30 hours in mammalian reticulocytes.
DescriptionInsulin glargine is produced by recombinant DNA technology using a non-pathogenic laboratory strain of Escherichia coli (K12). It is an analogue of human insulin made by replacing the asparagine residue at position A21 of the A-chain with glycine and adding two arginines to the C-terminus (positions B31 and 32) of the B-chain. The resulting protein is soluble at pH 4 and forms microprecipitates at physiological pH 7.4. Small amounts of insulin glargine are slowly released from microprecipitates giving the drug a long duration of action (up to 24 hours) and no pronounced peak concentration.
Indication/DiseaseTo treat Type 1 or 2 diabetes mellitus in patients over 17 years old who require a long-acting (basal) insulin for the control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for glycemic control.
PharmacodynamicsInsulin is a natural hormone produced by beta cells of the pancreas. In non-diabetic individuals, a basal level of insulin is supplemented with insulin spikes following meals. Increased insulin secretion following meals is responsible for the metabolic changes that occur as the body transitions from a postabsorptive to absorptive state. Insulin promotes cellular uptake of glucose, particularly in muscle and adipose tissues, promotes energy storage via glycogenesis, opposes catabolism of energy stores, increases DNA replication and protein synthesis by stimulating amino acid uptake by liver, muscle and adipose tissue, and modifies the activity of numerous enzymes involved in glycogen synthesis and glycolysis. Insulin also promotes growth and is required for the actions of growth hormone (e.g. protein synthesis, cell division, DNA synthesis). Insulin lispro is a rapid-acting insulin analogue used to mimic postprandial insulin spikes in diabetic individuals. The onset of action of insulin lispro is 10-15 minutes. Its activity peaks 60 minutes following subcutaneous injection and its duration of action is 4-5 hours. Compared to regular human insulin, insulin lispro has a more rapid onset of action and a shorter duration of action. Insulin lispro is also shown to be equipotent to human insulin on a molar basis.
Mechanism of ActionInsulin glargine binds to the insulin receptor, a heterotetrameric protein consisting of two extracellular alpha units and two transmembrane beta units. The binding of insulin to the alpha subunit of IR stimulates the tyrosine kinase activity intrinsic to the beta subunit of the receptor. The bound receptor autophosphorylates and phosphorylates numerous intracellular substrates such as insulin receptor substrates (IRS) proteins, Cbl, APS, Shc and Gab 1. Activation of these proteins leads to the activation of downstream signaling molecules including PI3 kinase and Akt. Akt regulates the activity of glucose transporter 4 (GLUT4) and protein kinase C (PKC), both of which play critical roles in metabolism. Insulin glargine is completely soluble at pH 4, the pH of administered solution, and has low solubility at physiological pH 7.4. Upon subcuteous injection, the solution is neutralized resulting in the formation of microprecipitates. Small amounts of insulin glargine are released from microprecipitates giving the drug a relatively constant concentration over time profile over 24 hours with no pronounced peak. This release mechanism allows the drug to mimic basal insulin levels within the body.
ToxicityInappropriately high dosages relative to food intake and/or energy expenditure may result in severe and sometimes prolonged and life-threatening hypoglycemia. Neurogenic (autonomic) signs and symptoms of hypoglycemia include trembling, palpitations, sweat
MetabolismPartly metabolized to two active metabolites with similar in vitro activity to insulin: A21-Gly-insulin and A21-Gly-des-B30-Thr-insulin.
AbsorptionDue to the modifications in the A and B chain, the isoelectric point shifts towards a neutral pH and insulin glargine is more stable in acidic conditions than regular insulin. As insulin glargine is less soluble at neutral pH, once injected, forms micro-p
NA
ClearanceNA
CategoriesAlimentary Tract and Metabolism, Amino Acids, Peptides, and Proteins, Antimetabolites, Biological Products, Blood Glucose Lowering Agents, Complex Mixtures, Cytochrome P-450 CYP1A2 Inducers, Cytochrome P-450 CYP1A2 Inducers (strength unknown), Cytochrome P-450 Enzyme Inducers, Drugs Used in Diabetes, Hormones, Hormones, Hormone Substitutes, and Hormone Antagonists, Hypoglycemia-Associated Agents, Hypolipidemic Agents, Insulin, Insulin Analog, Insulin, Long-Acting, Lipid Regulating Agents, Pancreatic Hormones, Peptide Hormones, Peptides
Patents NumberCA1339044
Date of Issue1-Apr-1997
Date of Expiry1-Apr-2014
Drug InteractionNA
TargetNA
Brand NameAbasaglar/Basaglar
CompanyEli Lilly Nederland B.V
Brand DescriptionEli Lilly Nederland B.V
Prescribed Forto control high blood sugar in adults and children with type 1 diabetes mellitus and adults with type 2 diabetes mellitus.
Chemical NameNA
FormulationBASAGLAR is produced by recombinant DNA technology utilizing a non-pathogenic laboratory strain of Escherichia coli (K12) as the production organism. Insulin glargine differs from human insulin in that the amino acid asparagine at position A21 is replaced by glycine and two arginines are added to the C-terminus of the B-chain.
Physical Appearance clear, colorless, sterile aqueous solution
Route of Administrationsubcutaneously into the abdominal area, thigh, or deltoid, and rotate injection sites within the same region from one injection to the next
Recommended DosageInject between 1 and 80 units per injection.
ContraindicationBASAGLAR is contraindicated: During episodes of hypoglycemia. In patients with hypersensitivity to insulin glargine or one of its excipients
Side Effectslow blood sugar (hypoglycemia), allergic reactions, injection site reactions, body fat redistribution, itching, rash, swelling, weight gain, upper respiratory tract infection, runny or stuffy nose, back pain, cough, urinary tract infection, diarrhea, depression, or headache.
Useful Link 1Link
Useful Link 2NA
RemarksNA


Primary information
ID10286
Therapeutic IDTh1041
Protein NameInsulin Glargine
Sequence>Th1041_Insulin_Glargine GIVEQCCTSICSLYQLENYCG
Molecular Weight6063
Chemical FormulaC267H404N72O78S6
Isoelectric Point6.88
Hydrophobicity0.098
Melting point81
Half-lifeNot reported in humans; 30 hours in mammalian reticulocytes.
DescriptionInsulin glargine is produced by recombinant DNA technology using a non-pathogenic laboratory strain of Escherichia coli (K12). It is an analogue of human insulin made by replacing the asparagine residue at position A21 of the A-chain with glycine and adding two arginines to the C-terminus (positions B31 and 32) of the B-chain. The resulting protein is soluble at pH 4 and forms microprecipitates at physiological pH 7.4. Small amounts of insulin glargine are slowly released from microprecipitates giving the drug a long duration of action (up to 24 hours) and no pronounced peak concentration.
Indication/DiseaseTo treat Type 1 or 2 diabetes mellitus in patients over 17 years old who require a long-acting (basal) insulin for the control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for glycemic control.
PharmacodynamicsInsulin is a natural hormone produced by beta cells of the pancreas. In non-diabetic individuals, a basal level of insulin is supplemented with insulin spikes following meals. Increased insulin secretion following meals is responsible for the metabolic changes that occur as the body transitions from a postabsorptive to absorptive state. Insulin promotes cellular uptake of glucose, particularly in muscle and adipose tissues, promotes energy storage via glycogenesis, opposes catabolism of energy stores, increases DNA replication and protein synthesis by stimulating amino acid uptake by liver, muscle and adipose tissue, and modifies the activity of numerous enzymes involved in glycogen synthesis and glycolysis. Insulin also promotes growth and is required for the actions of growth hormone (e.g. protein synthesis, cell division, DNA synthesis). Insulin lispro is a rapid-acting insulin analogue used to mimic postprandial insulin spikes in diabetic individuals. The onset of action of insulin lispro is 10-15 minutes. Its activity peaks 60 minutes following subcutaneous injection and its duration of action is 4-5 hours. Compared to regular human insulin, insulin lispro has a more rapid onset of action and a shorter duration of action. Insulin lispro is also shown to be equipotent to human insulin on a molar basis.
Mechanism of ActionInsulin glargine binds to the insulin receptor, a heterotetrameric protein consisting of two extracellular alpha units and two transmembrane beta units. The binding of insulin to the alpha subunit of IR stimulates the tyrosine kinase activity intrinsic to the beta subunit of the receptor. The bound receptor autophosphorylates and phosphorylates numerous intracellular substrates such as insulin receptor substrates (IRS) proteins, Cbl, APS, Shc and Gab 1. Activation of these proteins leads to the activation of downstream signaling molecules including PI3 kinase and Akt. Akt regulates the activity of glucose transporter 4 (GLUT4) and protein kinase C (PKC), both of which play critical roles in metabolism. Insulin glargine is completely soluble at pH 4, the pH of administered solution, and has low solubility at physiological pH 7.4. Upon subcuteous injection, the solution is neutralized resulting in the formation of microprecipitates. Small amounts of insulin glargine are released from microprecipitates giving the drug a relatively constant concentration over time profile over 24 hours with no pronounced peak. This release mechanism allows the drug to mimic basal insulin levels within the body.
ToxicityInappropriately high dosages relative to food intake and/or energy expenditure may result in severe and sometimes prolonged and life-threatening hypoglycemia. Neurogenic (autonomic) signs and symptoms of hypoglycemia include trembling, palpitations, sweat
MetabolismPartly metabolized to two active metabolites with similar in vitro activity to insulin: A21-Gly-insulin and A21-Gly-des-B30-Thr-insulin.
AbsorptionDue to the modifications in the A and B chain, the isoelectric point shifts towards a neutral pH and insulin glargine is more stable in acidic conditions than regular insulin. As insulin glargine is less soluble at neutral pH, once injected, forms micro-p
NA
ClearanceNA
CategoriesAlimentary Tract and Metabolism, Amino Acids, Peptides, and Proteins, Antimetabolites, Biological Products, Blood Glucose Lowering Agents, Complex Mixtures, Cytochrome P-450 CYP1A2 Inducers, Cytochrome P-450 CYP1A2 Inducers (strength unknown), Cytochrome P-450 Enzyme Inducers, Drugs Used in Diabetes, Hormones, Hormones, Hormone Substitutes, and Hormone Antagonists, Hypoglycemia-Associated Agents, Hypolipidemic Agents, Insulin, Insulin Analog, Insulin, Long-Acting, Lipid Regulating Agents, Pancreatic Hormones, Peptide Hormones, Peptides
Patents NumberNA
Date of IssueNA
Date of ExpiryNA
Drug InteractionNA
TargetNA
Brand NameLantus OptiSet
CompanyNA
Brand DescriptionNA
Prescribed ForIts used to reduce high blood sugar in adults, adolescents and children of 6 years or above with diabetes mellitus.
Chemical NameNA
FormulationNA
Physical Appearance Solution
Route of AdministrationSubcutaneous Injection
Recommended DosagePatients need one injection of Lantus every day, at the same time of the day. In children, only evening injection has been studied.OptiSet delivers insulin in increments of 2 units up to a maximum single dose of 40 units. The dosage may vary from person tto person.
ContraindicationHypersensitivity
Side EffectsHypoglycemia, skin changes at the injection site, allergic reactions, large-scale skin reactions (rash and itching all over the body), severe swelling of skin or mucous membranes (angio-oedema), shortness of breath, a fall in blood pressure with rapid headache.
Useful Link 1Link
Useful Link 2NA
RemarksNA


Primary information
ID10287
Therapeutic IDTh1041
Protein NameInsulin Glargine
Sequence>Th1041_Insulin_Glargine GIVEQCCTSICSLYQLENYCG
Molecular Weight6063
Chemical FormulaC267H404N72O78S6
Isoelectric Point6.88
Hydrophobicity0.098
Melting point81
Half-lifeNot reported in humans; 30 hours in mammalian reticulocytes.
DescriptionInsulin glargine is produced by recombinant DNA technology using a non-pathogenic laboratory strain of Escherichia coli (K12). It is an analogue of human insulin made by replacing the asparagine residue at position A21 of the A-chain with glycine and adding two arginines to the C-terminus (positions B31 and 32) of the B-chain. The resulting protein is soluble at pH 4 and forms microprecipitates at physiological pH 7.4. Small amounts of insulin glargine are slowly released from microprecipitates giving the drug a long duration of action (up to 24 hours) and no pronounced peak concentration.
Indication/DiseaseTo treat Type 1 or 2 diabetes mellitus in patients over 17 years old who require a long-acting (basal) insulin for the control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for control of hyperglycemia. May be used in pediatric patients with Type 1 diabetes mellitus who require a long-acting (basal) insulin for glycemic control.
PharmacodynamicsInsulin is a natural hormone produced by beta cells of the pancreas. In non-diabetic individuals, a basal level of insulin is supplemented with insulin spikes following meals. Increased insulin secretion following meals is responsible for the metabolic changes that occur as the body transitions from a postabsorptive to absorptive state. Insulin promotes cellular uptake of glucose, particularly in muscle and adipose tissues, promotes energy storage via glycogenesis, opposes catabolism of energy stores, increases DNA replication and protein synthesis by stimulating amino acid uptake by liver, muscle and adipose tissue, and modifies the activity of numerous enzymes involved in glycogen synthesis and glycolysis. Insulin also promotes growth and is required for the actions of growth hormone (e.g. protein synthesis, cell division, DNA synthesis). Insulin lispro is a rapid-acting insulin analogue used to mimic postprandial insulin spikes in diabetic individuals. The onset of action of insulin lispro is 10-15 minutes. Its activity peaks 60 minutes following subcutaneous injection and its duration of action is 4-5 hours. Compared to regular human insulin, insulin lispro has a more rapid onset of action and a shorter duration of action. Insulin lispro is also shown to be equipotent to human insulin on a molar basis.
Mechanism of ActionInsulin glargine binds to the insulin receptor, a heterotetrameric protein consisting of two extracellular alpha units and two transmembrane beta units. The binding of insulin to the alpha subunit of IR stimulates the tyrosine kinase activity intrinsic to the beta subunit of the receptor. The bound receptor autophosphorylates and phosphorylates numerous intracellular substrates such as insulin receptor substrates (IRS) proteins, Cbl, APS, Shc and Gab 1. Activation of these proteins leads to the activation of downstream signaling molecules including PI3 kinase and Akt. Akt regulates the activity of glucose transporter 4 (GLUT4) and protein kinase C (PKC), both of which play critical roles in metabolism. Insulin glargine is completely soluble at pH 4, the pH of administered solution, and has low solubility at physiological pH 7.4. Upon subcuteous injection, the solution is neutralized resulting in the formation of microprecipitates. Small amounts of insulin glargine are released from microprecipitates giving the drug a relatively constant concentration over time profile over 24 hours with no pronounced peak. This release mechanism allows the drug to mimic basal insulin levels within the body.
ToxicityInappropriately high dosages relative to food intake and/or energy expenditure may result in severe and sometimes prolonged and life-threatening hypoglycemia. Neurogenic (autonomic) signs and symptoms of hypoglycemia include trembling, palpitations, sweat
MetabolismPartly metabolized to two active metabolites with similar in vitro activity to insulin: A21-Gly-insulin and A21-Gly-des-B30-Thr-insulin.
AbsorptionDue to the modifications in the A and B chain, the isoelectric point shifts towards a neutral pH and insulin glargine is more stable in acidic conditions than regular insulin. As insulin glargine is less soluble at neutral pH, once injected, forms micro-p
NA
ClearanceNA
CategoriesAlimentary Tract and Metabolism, Amino Acids, Peptides, and Proteins, Antimetabolites, Biological Products, Blood Glucose Lowering Agents, Complex Mixtures, Cytochrome P-450 CYP1A2 Inducers, Cytochrome P-450 CYP1A2 Inducers (strength unknown), Cytochrome P-450 Enzyme Inducers, Drugs Used in Diabetes, Hormones, Hormones, Hormone Substitutes, and Hormone Antagonists, Hypoglycemia-Associated Agents, Hypolipidemic Agents, Insulin, Insulin Analog, Insulin, Long-Acting, Lipid Regulating Agents, Pancreatic Hormones, Peptide Hormones, Peptides
Patents NumberNA
Date of IssueNA
Date of ExpiryNA
Drug InteractionNA
TargetNA
Brand NameLantus SoloStar
CompanyNA
Brand DescriptionNA
Prescribed ForIt works by helping your body to use sugar properly. This lowers the amount of glucose in the blood, which helps to treat diabetes.
Chemical NameNA
FormulationNA
Physical Appearance Solution
Route of AdministrationSubcutaneous Injection
Recommended DosageNA
ContraindicationHypersensitivity
Side EffectsSevere allergic reactions (rash; hives; itching; difficulty breathing; tightness in the chest; swelling of the mouth, face, lips, or tongue); changes in vision; chills; confusion; dizziness; drowsiness; fainting; fast heartbeat; fast, shallow breathing.
Useful Link 1Link
Useful Link 2NA
RemarksNA