This page serves as a comprehensive resource for users of NTxPred2, offering valuable assistance in effectively utilizing its diverse prediction modules. Within this guide, you will find detailed information, figures, and step-by-step instructions on leveraging each module integrated into NTxPred2. We aim to equip you with a clear understanding of how to navigate and make the most of every module within the platform.
GitHub & pip
Follow these steps to replicate the core results of our paper:
# 1. Clone the repository git clone https://github.com/raghavagps/ntxpred2.git cd ntxpred2 # 2. Set up the environment (conda recommended) conda env create -f environment.yml conda activate NTxPred2 # 3. Download pre-trained models # Visit: https://webs.iiitd.edu.in/raghava/ntxpred2/download.html # Download the model ZIP and extract it in the root directory # 4. Run prediction on sample input python ntxpred2.py -i example.fasta -o output.csv -m 1 -j 1 -wd working_direcotory_path
To install NTxPred2 via PIP, run:
pip install ntxpred2
To check available options, type:
ntxpred2 -h
NTxPred2 is written in Python 3 and requires the following dependencies:
python=3.10.7 pytorch
Additional required packages:
pip install scikit-learn==1.5.2 pip install pandas==1.5.3 pip install numpy==1.25.2 pip install torch==2.1.0 pip install transformers==4.34.0 pip install joblib==1.4.2 pip install onnxruntime==1.15.1 Bio (Biopython): 1.81 tqdm: 4.64.1 torch: 2.6.0
conda env create -f environment.yml
conda activate NTxPred2
NTxPred2 classifies peptides and proteins as neurotoxic or non-neurotoxic based on their primary sequence.
ntxpred2.py -h
To run an example:
ntxpred2.py -i example.fasta
usage: ntxpred2.py [-h]
[-i INPUT]
[-o OUTPUT]
[-t THRESHOLD]
[-j {1,2,3,4}]
[-m {1,2,3}]
[-d {1,2}]
[-wd WORKING DIRECTORY]
| Argument | Description |
|---|---|
-i INPUT |
Input: Peptide or protein sequence (FASTA format or simple format) |
-o OUTPUT |
Output file (default: outfile.csv) |
-t THRESHOLD |
Threshold (0-1, default: 0.5) |
-j {1,2,3,4} |
Job type: 1-Prediction, 2-Protein Scanning, 3-Design, 4-Design all possible mutants |
-m {1,2,3} |
Model selection: 1-ESM2-t30 (Peptides), 2-ET (Proteins), 3-ET (Combined) |
-wd WORKING |
Working directory for saving results |
NTxPred2 supports two formats:
example.fasta)example.seq, each sequence on a new line)outfile.csv.| Job | Description |
|---|---|
| 1๏ธโฃ Prediction | Predicts whether input peptide/protein is neurotoxic or not. |
| 2๏ธโฃ Protein Scanning | Identifies neurotoxic regions in a protein sequence. |
| 3๏ธโฃ Design | Generates mutant peptides/proteins with a single amino acid/dipeptide at a specified position. |
| 4๏ธโฃ Design All Possible Mutants | Generates and predicts all possible mutants. |
| Option | Description |
|---|---|
-p POSITION |
Position to insert mutation (1-indexed) |
-r RESIDUES |
Mutated residues (single/double letter amino acid codes) |
-w {8-20} |
Window length (Protein Scan mode only, default: 12) |
-d {1,2} |
Display: 1-Neurotoxic only, 2-All peptides (default) |
| File | Description |
|---|---|
| INSTALLATION | Installation instructions |
| LICENSE | License information |
| README.md | This file |
| ntxpred2.py | Python program for classification |
| example.fasta | Example file (FASTA format) |
pip install ntxpred2
Check options:
ntxpred2 -h
Prediction Module
This module predicts neurotoxic/non-neurotoxic peptides/proteins based on the model selected by the user.
Protein Scanning
This module allows users to particularly identify neurotoxic regions within a specified protein/peptide sequence.
Design Module
This module design non-neurotoxic mutant peptides/proteins based on the user-specified residues and positions.
Important Tools
This page provides list of all the computational tools available for different types of toxicity prediction.
Download
This page allows to download the standalone and pip package of NTxPred2.
: