# Support Vector Machine and its Appliactions

### G P S Raghava Institute of Microbial Technology Sector 39A, Chandigrah, India

Email: Raghava@imtech.res.in

Web: http://www.imtech.res.in/raghava/ http://crdd.osdd.net/

### Why Machine Learning?

- Similarity based methods
- Linear seperations
- Statistical methods (static)
- Unable to handle non-linear data

# Supervised & Unsupervised

- Learn an unknown function f(X) = Y, where X is an input example and Y is the desired output.
- Supervised learning implies we are given a training set of (X, Y) pairs by a "teacher"
- Unsupervised learning means we are only given the Xs and some (ultimate) feedback function on our performance.

### Concept learning or classification

- Given a set of examples of some concept/class/category, determine if a given example is an instance of the concept or not
- If it is an instance, we call it a positive example
- If it is not, it is called a negative exampl
- Or we can make a probabilistic prediction (e.g., using a Bayes net)

# Supervised concept learning

- Given a training set of positive and negative examples of a concept
- Construct a description that will accurately classify whether future examples are positive or negative
- That is, learn some good estimate of function f given a training set {(x<sub>1</sub>, y<sub>1</sub>), (x<sub>2</sub>, y<sub>2</sub>), ..., (x<sub>n</sub>, y<sub>n</sub>)} where each y<sub>i</sub> is either + (positive) or (negative), or a probability distribution over +/-

### Major Machine Learning Technoques

Artificial Neural Networks

Hidden Markov Model

Nearest Neighbur Methods

Support Vector Machines

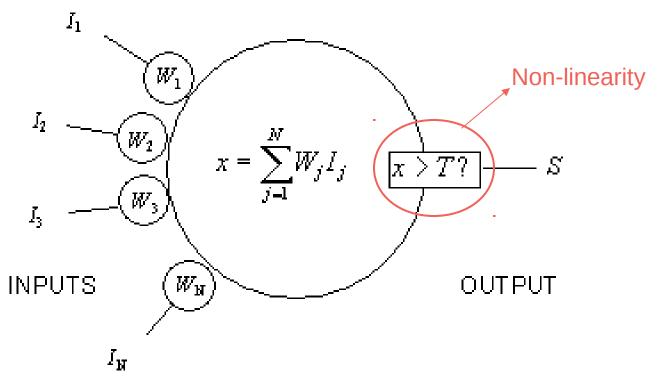
#### Introduction to Neural Networks

- Neural network: information processing paradigm inspired by biological nervous systems, such as our brain
- Structure: large number of highly interconnected processing elements (neurons) working together
- Like people, they learn from experience (by example)
- Neural networks are configured for a specific application

# Neural networks to the rescue

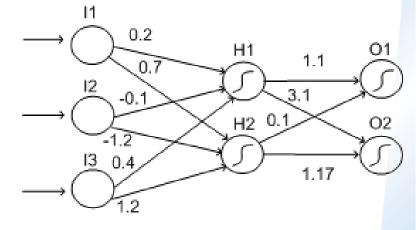
- Neural networks are configured for a specific application, such as pattern recognition or data classification, through a learning process
- In a biological system, learning involves adjustments to the synaptic connections between neurons
- → same for artificial neural networks (ANNs)

# Where can neural network systems help


- when we can't formulate an algorithmic solution.
- when we can get lots of examples of the behavior we require.

### 'learning from experience'

 when we need to pick out the structure from existing data.

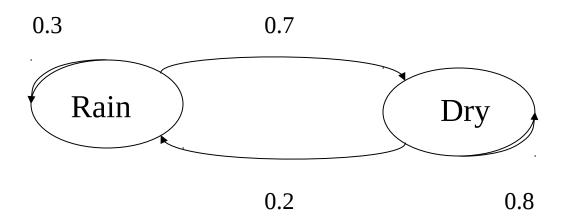

# Mathematical representation

The neuron calculates a weighted sum of inputs and compares it to a threshold. If the sum is higher than the threshold, the output is set to 1, otherwise to -1.



### **Artificial Neural Networks**

- Layers of nodes
  - Input is transformed into numbers
  - Weighted averages are fed into nodes
- High or low numbers come out of nodes
  - A Threshold function determines whether high or low
- Output nodes will "fire" or not
  - Determines classification
    - For an example




# Markov Chains and hidden Markov models

# A widely used machine learning approach: Markov models

- •Markov chain models (1st order, higher order and inhomogeneous models; parameter estimation; classification)
- Interpolated Markov models (and back-off models)
- Hidden Markov models (forward, backward and Baum-Welch algorithms; model topologies; applications to gene finding and protein family modeling

# Example of Markov Model

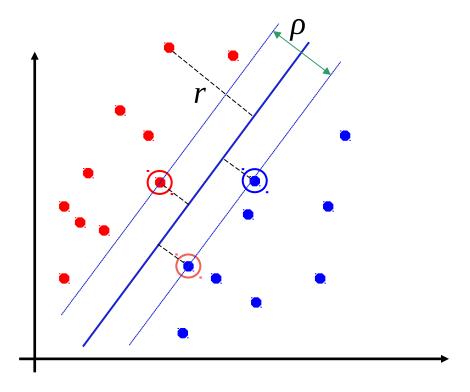


- Two states: 'Rain' and 'Dry'.
- Transition probabilities: P(`Rain'|`Rain')=0.3,

$$P('Dry'|'Rain')=0.7$$
,  $P('Rain'|'Dry')=0.2$ ,

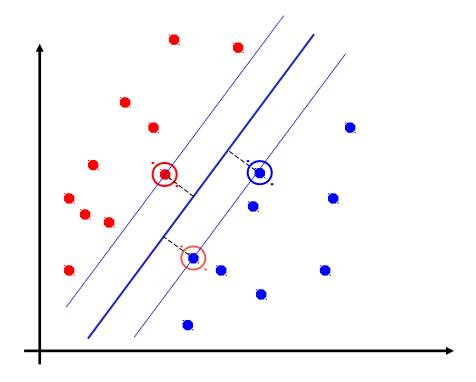
• Initial probabilities: say P(`Rain')=0.4, P(`Dry')=0.6.

# k Nearest-Neighbors Problem


- Example based learning
- Weight for examples
- Closest examples for decision
- Time consuming
- Fail in absence of sufficient examples
- Performance depend on closesness

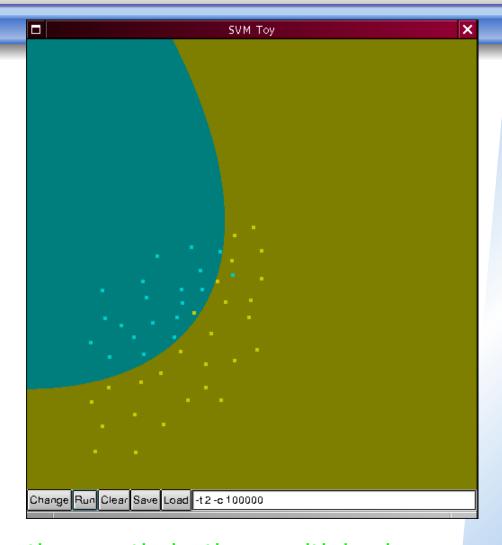
## SVM: Support Vector Machine

 Support vector machines (SVM) are a group of supervised learning methods that can be applied to classification or regression. Support vector machines represent an extension to nonlinear models of the generalized portrait algorithm developed by Vladimir Vapnik. The SVM algorithm is based on the statistical learning theory and the Vapnik-Chervonenkis (VC) dimension introduced by Vladimir Vapnik and Alexey Chervonenkis in 1992.


## **Classification Margin**

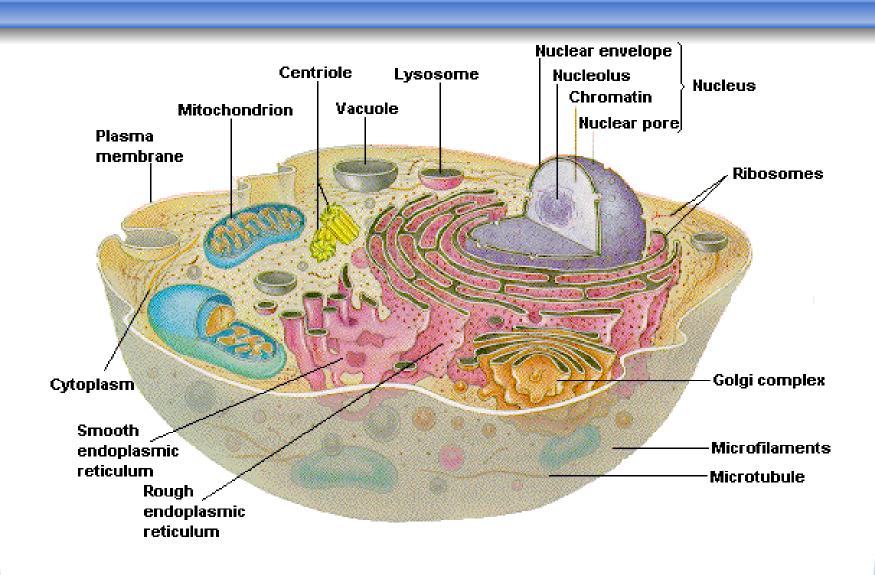
- Distance from example to the separator is=  $\frac{\mathbf{w}^T\mathbf{x} + \mathbf{b}}{\| \cdot \|}$
- Examples closest to the hyperplane are **support vectors**.
- **Margin**  $\rho$  of the separator is the width of separation between classes.




### Maximum Margin Classification

- Maximizing the margin is good
- Implies that only support vectors are important;
- other training examples are ignorable.




## **SVM** implementations

- SVMlight
  - Simple text data format
  - Fast, C routines
- bsvm
  - Multiple class.
- LIBSVM
  - GUI: svm-toy
- SMO
  - Less optimization
  - Fast
  - Weka implemented



Differences: available Kernel functions, optimization, multiple class., user interfaces

### **Subcellular Locations**



#### PREDICTION OF PROTEINS TO BE LOCALIZED IN

Mitoch Mitor Mitor

(Positive dataset)

>Mit1 DRLVRGFYFLLRRMV **SHNTVSOVWFGHRYS**  Non-mitochondiral Located proteins

(Negative dataset)

>Non-Mit1

>Non-Mit2

KNRNTKVGSDRLVRG **WEGHRYSMVHS** 

fasta2sfasta.pl program

>Mit1

##DRLVRGFYFLLRRMVSHNTVSQVWFGHR

YS

L>Mit2

##RMVKNRNTKVGDRLVRGFYFLLRR

<del>L##LVRGFYFLLRRMVKNRNSHRVSQ</del> pro2aac.pl program

# Amino Acid Composition of Mit proteins # A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y

0.0,0.0,3.3,0.0,10.0,6.7,6.7,0.0,0.0,10.0,3.3,3.3,0.0,3.3,16.7,10.0,3.3.13.3.3.3.6.7

0.0,0.0,4.2,0.0,8.3,8.3,0.0,0.0,8.3,12.5,4.2,8.3,0.0,0.0,25.0,0.0,4.2,

12.5,0.0,4.2

col2svm.pl program

+1 1:0.0 2:0.0 3:3.3 4:0.0 5:10.0 6:6.7 7:6.7 8:0.0 9:0.0 10:10.0 11:3.3 12:3.3 13:0.0 14:3.3 15:16.7 16:10.0 17:3.3 18:13.3 19:3.3 20:6.7 +1 1:0.0 2:0.0 3:4.2 4:0.0 5:8.3 6:8.3 7:0.0 8:0.0 9:8.3 10:12.5 11:4.2 12:8.3 13:0.0 14:0.0 15:25.0 16:0.0 17:4.2

18:12.5 19:0.0 20:4.2

**SVM-input** file

# Amino Acid Composition of Non-Mit proteins # A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y 0.0,0.0,3.8,0.0,3.8,11.5,7.7,0.0,7.7,3.8,3.8,7.7,0.0,0.0,15.4,11.5,3.8,1 1.5,3.8,3.8 0.0,0.0,0.0,0.0,8.7,4.3,4.3,0.0,4.3,13.0,4.3,8.7,0.0,4.3,21.7,8.7,0.0,13 .0.0.0.4.3

##KNRNTKVGSDRLVRGWFGHRYSMVHS

-1 1:0.0 2:0.0 3:3.8 4:0.0 5:3.8 6:11.5 7:7.7 8:0.0 9:7.7 10:3.8 11:3.8 12:7.7 13:0.0 14:0.0 15:15.4 16:11.5 17:3.8 18:11.5 19:3.8 20:3.8 -1 1:0.0 2:0.0 3:0.0 4:0.0 5:8.7 6:4.3 7:4.3 8:0.0 9:4.3 10:13.0 11:4.3 12:8.7 13:0.0 14:4.3 15:21.7 16:8.7 17:0.0 18:13.0 19:0.0 20:4.3

### PREDICTION OF PROTEINS TO BE LOCALIZED IN MITOCHONDRIA (MITPRED)

+1 1:0.0 2:0.0 3:3.3 4:0.0 5:10.0 6:6.7 7:6.7 8:0.0 9:0.0 10:10.0 11:3.3 12:3.3 13:0.0 14:3.3 15:16.7 16:10.0 17:3.3 18:13.3 19:3.3 20:6.7

+1 1:0.0 2:0.0 3:4.2 4:0.0 5:8.3 6:8.3 7:0.0 8:0.0 9:8.3 10:12.5 11:4.2 12:8.3 13:0.0 14:0.0 15:25.0 16:0.0 17:4.2 18:12.5 19:0.0 20:4.2

-1 1:0.0 2:0.0 3:3.8 4:0.0 5:3.8 6:11.5 7:7.7 8:0.0 9:7.7 10:3.8 11:3.8 12:7.7 13:0.0 14:0.0 15:15.4 16:11.5 17:3.8 18:11.5 19:3.8 20:3.8

-1 1:0.0 2:0.0 3:0.0 4:0.0 5:8.7 6:4.3 7:4.3 8:0.0 9:4.3 10:13.0 11:4.3 12:8.7 13:0.0 14:4.3 15:21.7 16:8.7 17:0.0 18:13.0 19:0.0 20:4.3

#### Training file

+1 1:0.0 2:0.0 3:3.3 4:0.0 5:10.0 6:6.7 7:6.7 8:0.0 9:0.0 10:10.0 11:3.3 12:3.3 13:0.0 14:3.3 15:16.7 16:10.0 17:3.3 18:13.3 19:3.3 20:6.7 -1 1:0.0 2:0.0 3:0.0 4:0.0 5:8.7 6:4.3 7:4.3 8:0.0 9:4.3 10:13.0 11:4.3 12:8.7 13:0.0 14:4.3 15:21.7 16:8.7 17:0.0 18:13.0 19:0.0 20:4.3

svm\_learn training file model

#### Test file

+1 1:0.0 2:0.0 3:4.2 4:0.0 5:8.3 6:8.3 7:0.0 8:0.0 9:8.3 10:12.5 11:4.2 12:8.3 13:0.0 14:0.0 15:25.0 16:0.0 17:4.2 18:12.5 19:0.0 20:4.2 -1 1:0.0 2:0.0 3:3.8 4:0.0 5:3.8 6:11.5 7:7.7 8:0.0 9:7.7 10:3.8 11:3.8 12:7.7 13:0.0 14:0.0 15:15.4 16:11.5 17:3.8 18:11.5 19:3.8 20:3.8

svm\_classify test-file model result

This result file contains a numeric value, using this value we can evaluate the model performance by varying threshold

#### SVM\_light training/testing pattern

Output Input (frequency)

```
• 0.902 1:3 2:8 3:6 4:4 5:0 6:0 7:2
```

svm\_learn train.svm model
svm\_classify test model output

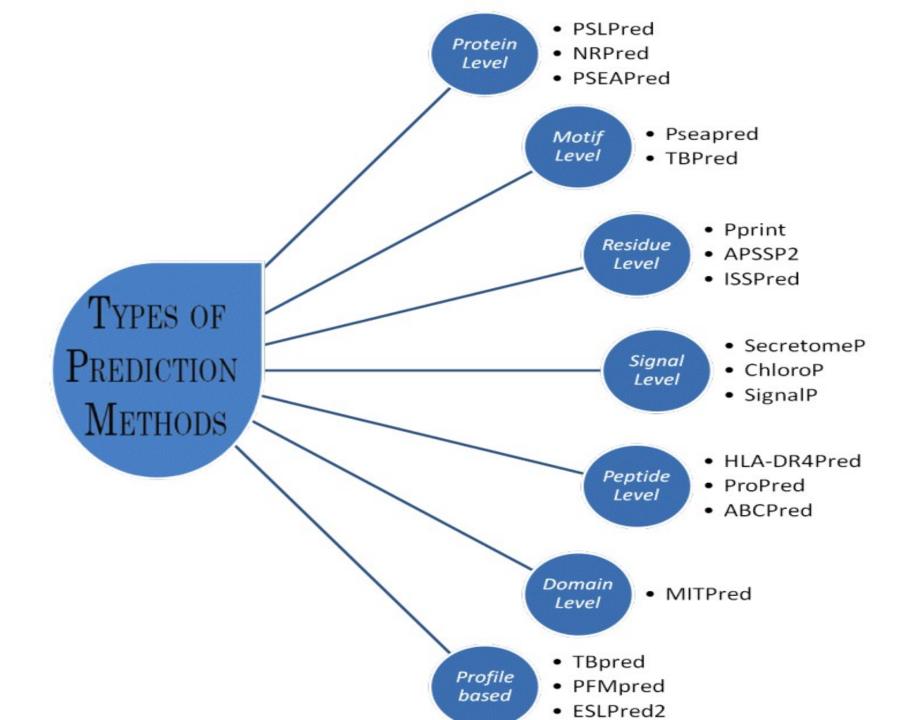
#### **Options**

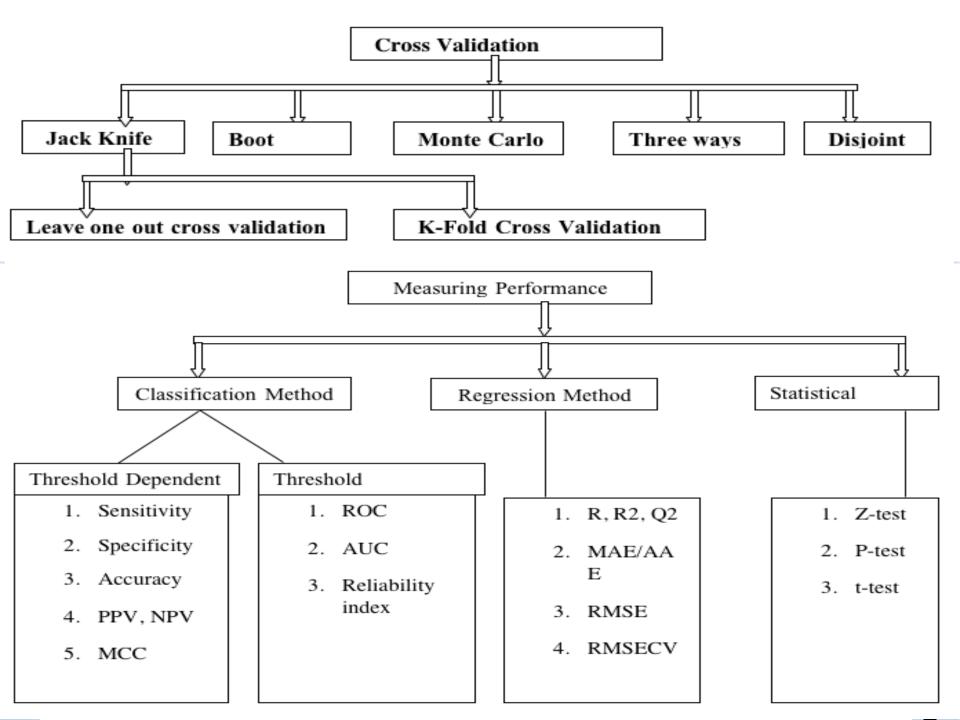
-z c for classification

-z r for regression

-t 0 linear kernel

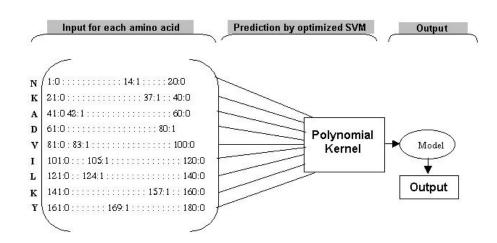
-t 1 polynomial


-t 2 RBF

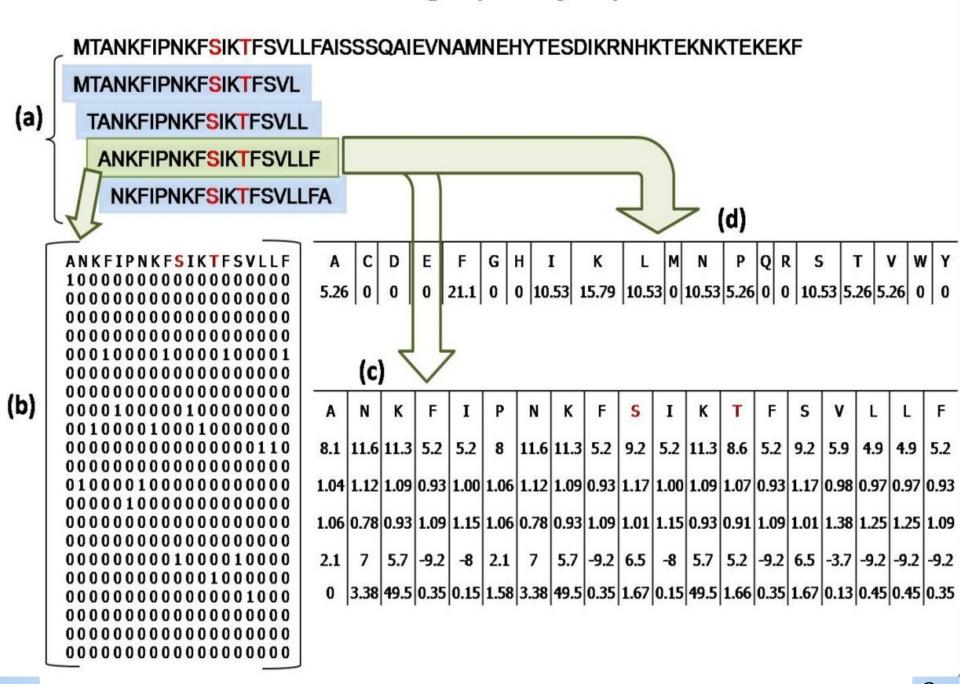

# Important Points in Developing New Method

- Importance of problem
- Acceptable dataset
  - Dataset should be large
  - Recently used in any other study
  - Realistic, balance & independent
  - Level of redundancy
- Develop standalone and/or web service
- Cross-validation (Benchmarking)

# Important Points in Developing New Method (Cont.)


- Integrate BLAST with ML techniques
- Using PSIBLAST profile
- Discover exclusive domian/motif present or absent in proteins.
- Features from proteins (fixed length pattern)
  - Amino acid composition (split composition)
  - Dipeptide composition (higher order)
  - Pseudo amino acid composition
  - DSSM composition






### **Creation of Pattern**

- Fix the length of pattern
  - For example protein (composition)
  - Represent Segment by vector



#### Feature extraction from an antigen primary sequence





# GPSR: A Resource for Genomics Proteomics and Systems Biology

### Small programs as building unit

- Why PERL?
- Why not BioPerl?
- Why not PERL modules?
- Advantage of independent programs
  - Language independent
  - Can be run independently

| Program         | Purpose                                                                      |
|-----------------|------------------------------------------------------------------------------|
| ❖ fasta2sfasta  | Convert fasta format to single fasta format                                  |
| ❖ pro2aac       | To calculate amino acid composition of protein                               |
| pro2aac_nt      | To calculate amino acid composition of N-terminal (nt) residues of a protein |
| ❖ pro2aac_ct    | To calculate amino acid composition                                          |
|                 | of C-terminal (ct) residues of a protein                                     |
| pro2aac_rest.pl | To calculate amino acid composition of a                                     |
|                 | protein after removing N-, and C-terminal residues                           |
| pro2aac_split   | To calculate split amino acid composition (SSAC) of a protein                |
| pro2dpc         | To calculate dipeptide composition of protein                                |
| pro2dpc_nt      | To calculate dipeptide composition of N-terminal (nt) residues of a protein  |
| ❖ pro2dpc_ct    | To calculate dipeptide composition of C-terminal (ct)                        |
|                 | residues of a protein                                                        |
| ❖ pro2tpc       | To calculate tripeptide composition of protein                               |
| ❖ add_cols      | To add columns of two files                                                  |
| ❖ col2svm       | To generating SVM_light input format                                         |
| ❖ col_mult      | To multiplying each column of input file with a number                       |
| col_mult_sel    | To multiplying selective columns with a number                               |
| perl col_rem    | To remove selective columns from a file                                      |
| ❖ col_ext       | To extract selective columns from a file                                     |
| ❖ col_corr      | To compute correlation co-efficient between two column                       |
| ❖ col_avg       | To calculate average column of two files                                     |
| ❖ seq2pssm_imp  | To calculate PSSM matrix in column format without any normalization          |
| ❖ pssm_nl       | To normalize pssm profile based on 1/(1+e-x) formula                         |

| Title   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         | pro2aac (To calculate amino acid composition of protein)  The amino acid composition in a protein is simply the percentage of the different amino acids represented in a particular protein. The aim of calculating the composition of proteins is to transform the variable length of protein sequences to fixed length feature vectors. In addition the conversion of a protein sequence to a vector of 20 dimensions using amino acid composition will encapsulate the properties of the protein into the vector. The composition of all 20 natural amino acids were calculated by using the following equation  Composition of amino acid $i = \frac{\text{Total number of amino acid } i \times 100}{\text{Total number of all amino acids in protein}}$ Where i can be any amino acid |  |  |
| Usage   | pro2aac -i seq.sfa -o seq.out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| -i      | Input file name contains single fasta format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| -0      | Output file name gives amino acid composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| seq.sfa | >seq_1##MRNRGFGRRELLVAMAMLVSVTGCARHASGARPASTTLPAGADLADRFAEL<br>ERRYDARLGVYVPATGTTAAIE<br>>seq_2##ACGRGFGVKLACNMNNACRTYFSDVAMAMLVSVTGCARHASGARPASTTL<br>PAGADLADIEYRADERFAFCSTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| seq.out | # Amino Acid Composition of proteins # A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, 19.18, 1.37, 4.11, 5.48, 2.74, 9.59, 1.37, 1.37, 0.00, 9.59, 4.11, 1.37, 4.11, 0.00,13.70, 4.11, 8.22, 6.85, 0.00, 2.74, 19.18, 6.85, 5.48, 2.74, 6.85, 8.22, 1.37, 1.37, 1.37, 5.48, 4.11, 4.11, 2.74, 0.00, 8.22, 6.85, 6.85, 5.48, 0.00, 2.74,                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Vector  | 20 dimension (i.e 20 types of amino acid composition is generated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

| Section | Contents                         | Page |  |
|---------|----------------------------------|------|--|
| 7       | Stand-alone programs             |      |  |
|         | Installation of GPSR 1.0 package | 127  |  |
|         | ESLPred                          | 128  |  |
|         | HSLPred                          | 132  |  |
|         | PSLpred                          | 134  |  |
|         | SRTPred                          | 136  |  |
|         | OxyPred                          | 139  |  |
|         | DPROT                            | 141  |  |
|         | NRpred                           | 143  |  |
|         | PLPred                           | 145  |  |
|         | AntiBP                           | 147  |  |
|         | PolyApred                        | 149  |  |
|         | ABCpred                          | 151  |  |
|         | WebCdk                           | 153  |  |
|         | NADbinder                        | 155  |  |
|         | MITPRED                          | 158  |  |
|         | NpPred                           | 161  |  |
|         | Pprint                           | 163  |  |
|         | SPpred                           | 166  |  |
|         | ISSPred                          | 167  |  |
|         | GSTPred                          | 169  |  |
|         | TBPRED                           | 171  |  |
|         | PSEAPRED2                        | 173  |  |
| 8       | List of contributors             |      |  |

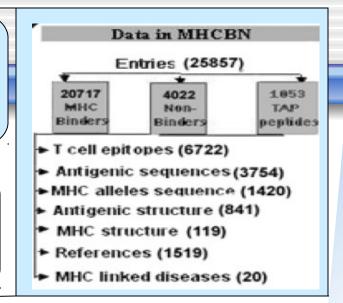
#### **Modelling of Immune System for Designing Epitope-based Vaccines**

Adaptive Immunity (Cellular Response) : T<sub>helper</sub> Epitopes **Propred:** for promiscuous MHC II binders

**MMBpred:** for high affinity mutated binders

MHC2pred: SVM based method

MHCBN: A database of MHC/TAP binders


and non-binders

Pcleavage: for proteome cleavage sites

**TAPpred:** for predicting TAP binders

**Propred1:** for promiscuous MHC I binders

CTLpred: Prediction of CTL epitopes



Adaptive Immunity (Cellular Response) : CTL Epitopes

BClpep: A database of B-cell eptioes;

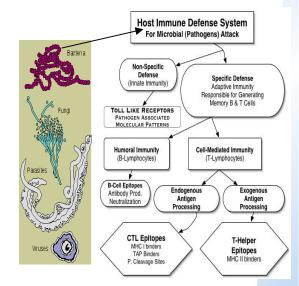
ABCpred: for predicting B-cell epitopes

**ALGpred:** for allergens and IgE eptopes

**HaptenDB:** A datbase of haptens

Adaptive Immunity (Humoral Response):B-cell

**Epitopes** 


Innate Immunity:
Pathogen Recognizing
Receptors and ligands

**PRRDB:** A database of PRRs & ligands

**Antibp:** for anti-bacterial peptides

Signal transduction in Immune System

**Cytopred:** for classification of Cytokines



#### **Computer-Aided Drug Discovery**

Searching Drug Targets: Bioinformatics

#### **Genome Annotation**

FTGpred: Prediction of Prokaryotic genes

**EGpred:** Prediction of eukaryotic genes

GeneBench: Benchmarking of gene finders

**SRF:** Spectral Repeat finder

#### **Comparative genomics**

**GWFASTA:** Genome-Wide FASTA Search

**GWBLAST:** Genome wide BLAST search

**COPID:** Composition based similarity search

**LGEpred:** Gene from protein sequence

#### **Subcellular Localization Methods**

PSLpred: localization of prokaryotic proteins

**ESLpred: localization of Eukaryotic proteins** 

**HSLpred: localization of Human proteins** 

**MITpred: Prediction of Mitochndrial proteins** 

**TBpred: Localization of mycobacterial proteins** 

#### **Prediction of drugable proteins**

Nrpred: Classification of nuclear receptors

**GPCRpred:** Prediction of G-protein-coupled receptors

**GPCRsclass:** Amine type of GPCR **VGIchan:** Voltage gated ion channel

**Pprint:** RNA interacting residues in proteins

**GSTpred:** Glutathione S-transferases proteins

#### **Protein Structure Prediction**

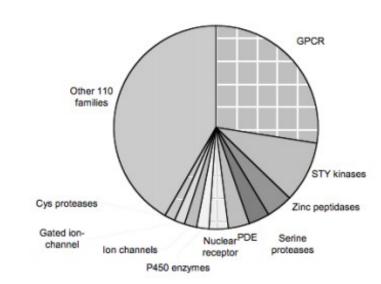
**APSSP2**: protein secondary structure prediction

**Betatpred:** Consensus method for  $\beta$ -turns prediction

**Bteval:** Benchmarking of  $\beta$ -turns prediction

**BetaTurns**: Prediction of -turn types in proteins

**Turn Predictions:** Prediction of  $\alpha$ /  $\beta$ / $\gamma$ -turns in proteins


GammaPred: Prediction of-turns in proteins

**BhairPred:** Prediction of Beta Hairpins

**TBBpred:** Prediction of trans membrane beta barrel proteins

**SARpred:** Prediction of surface accessibility (real accessibility)

**PepStr:** Prediction of tertiary structure of Bioactive peptides



# Thanks for Listening and Wish Collobrative Research with Russian Scientist