Protein Secondary Structure Prediction

G P S Raghava

Protein Structure Prediction

- Importance
- CASP Competition
- What is secondary structure
- Assignment of secondary structure (SS)
- Type of SS prediction methods
- Description of various methods
- Role of multiple sequence alignment/profiles
- How to use

Importance of secondary structure prediction

- Classification of protein structures
- Definition of loops/core
- Use in fold recognition methods
- Improvements of alignments
- Definition of domain boundaries

CASP changed the landscape

- Critical Assessment of Structure Prediction competition. Even numbered years since 1994
 - Solved, but unpublished structures are posted in May, predictions due in September
 - Various categories
 - Relation to existing structures, *ab initio*, homology, fold, etc.
 - Partial vs. Fully automated approaches
 - Produces lots of information about what aspects of the problems are hard, and ends arguments about test sets.
- Results showing steady improvement, and the value of integrative approaches.

CASP Experiment

- Experimentalists are solicited to provide information about structures expected to be soon solved
- Predictors retrieve the sequence from prediction center (predictioncenter.llnl.gov)
- Deposit predictions throughout the season
- Meeting held to assess results

Assignment of Secondary Structure

- Program
 - DSSP (Sander Group)
 - Stride (Argos Group)
 - Pcurve
- DSSP
 - -3 helix states (I=3,4,5)
 - 2 Sheets (isolated and extended)
 - Irregular Regions

dssp

- The DSSP program defines secondary structure, geometrical features and solvent exposure of proteins, given atomic coordinates in Protein Data Bank format
- Usage: dssp [-na] [-v] pdb_file [dssp_file]
- Output:

```
26
                < S+
                                 132
24
     27
        R H < S+
25
                                 125
26
     28
                                  41
                <
27
     29
                                 197
28
                                   0
29
     34
                                  73
     35 I E
30
                   -cd
                         58
                             89B
     36 L E
31
                   -cd
                         59
                             90B
32
     37
                   -cd
                        60
                             91B
33
     38
                    -cd
                        61
                             92B
                                   0
```

Automatic assignment programs

- DSSP (http://www.cmbi.kun.nl/gv/dssp/)
- STRIDE (http://www.hgmp.mrc.ac.uk/Registered/Option/stride.html)

```
RESIDUE AA STRUCTURE BP1 BP2
                                       N-H-->0
                                                 0-->H-N
                                                                    0-->H-N
                                                                                    KAPPA ALPHA PHI
                                                                                                                X-CA
                                                                                                                       Y-CA
                                                                                                                              Z-CA
1
      4 A E
                                 205
                                        0, 0.0
                                                  2,-0.3
                                                           0, 0.0
                                                                     0, 0.0
                                                                              0.000 360.0 360.0 360.0 113.5
                                                                                                                 5.7
                                                                                                                       42.2
                                                                                                                              25.1
      5 A H
                                 127
                                        2, 0.0
                                                  2,-0.4
                                                          21, 0.0
                                                                    21, 0.0
                                                                             -0.987 360.0-152.8-149.1 154.0
                                                                                                                       41.3
                                                                                                                              24.7
                              0
                                                                                                                 9.4
                                        -2,-0.3
                                                21, -2.6
                                                           2, 0.0
                                                                     2,-0.5
                                                                             -0.995
                                                                                                                              23.5
      7 A I E
                         23
                              0A 106
                                        -2, -0.4
                                                  2,-0.4
                                                          19,-0.2
                                                                   19,-0.2
                                                                             -0.976 13.9-170.8-114.8 126.6
                                                                                                                15.0
                                                                                                                       37.6
                                                                                                                              24.5
                                       17,-2.8
                                                 17, -2.8
                                                                     2,-0.9
                                                                                     20.8-158.4-125.4 129.1
                                                                                                                              22.4
                              0Α
                                  74
                                                          -2,-0.5
                                                                             -0.972
                                                                                                                16.6
                                                                                                                       34.9
                              0Α
                                                  2,-0.4
                                                          15,-0.2
                                                                   15, -0.2
                                                                             -0.910
                                                                                     29.5-170.4 -98.9 106.4
                                                                                                                       33.0
                                                                                                                              23.0
                         20
                              0A
                                  18
                                       13,-2.5
                                                13, -2.5
                                                          -2,-0.9
                                                                     2,-0.3
                                                                             -0.852
                                                                                     11.5 172.8-108.1 141.7
                                                                                                                20.7
                                                                                                                       31.8
                                                                                                                              19.5
     11 A E
                         19
                              0A
                                  63
                                       -2, -0.4
                                                  2,-0.3
                                                          11,-0.2
                                                                    11, -0.2
                                                                             -0.933
                                                                                                                       29.4
                                                                                                                              18.4
                                                                                      4.4 175.4-139.1 156.9
                                                          -2,-0.3
                              0Α
                                        9,-1.5
                                                  9,-1.8
                                                                     2,-0.4
                                                                             -0.967
                                                                                     13.3-160.9-160.6 151.3
                                                                                                                       27.6
                                                                                                                              15.3
10
     13 A Y
                         17
                              0Α
                                  36
                                        -2,-0.3
                                                  2,-0.4
                                                           7,-0.2
                                                                     7,-0.2
                                                                             -0.994
                                                                                     16.5-156.0-136.8 132.1
                                                                                                                27.2
                                                                                                                       25.3
                                                                                                                              14.1
11
                >> -A
                         16
                              0Α
                                  24
                                        5,-3.2
                                                  4,-1.7
                                                          -2, -0.4
                                                                     5, -1.3
                                                                             -0.929
                                                                                     11.7-122.6-120.0
                                                                                                                28.0
                                                                                                                       24.8
                                                                                                                              10.4
                                        -2,-0.4
                                                 -2, 0.0
                                                           2,-0.2
                                                                     0, 0.0
                                                                             -0.884
                                                                                     84.3
                                                                                                                       22.0
                                                                                                                               8.6
                                        0, 0.0
                                                                    -2, 0.0
13
     16 A P T
                45S+
                              0
                                 114
                                                 -1, -0.2
                                                           0, 0.0
                                                                             -0.963 125.4 60.5 -86.5
                                                                                                                32.0
                                                                                                                       21.6
                                                                                                                                6.8
                45S-
                                        2,-0.1
                                                 -2, -0.2
                                                                     3,-0.1
                                                                              0.752
                                                                                                                33.0
14
                              0
                                                           1,-0.1
                                                                                     89.3-146.2 -64.6
                                                                                                                       25.2
                                                                                                                               7.6
15
                              0
                                 132
                                        -4, -1.7
                                                  2,-0.3
                                                           1,-0.2
                                                                    -3, -0.2
                                                                              0.936
                                                                                     51.1 134.1
                                                                                                                33.3
                                                                                                                       24.2
                                                                                                                              11.2
                                                 -5, -3.2
16
     19 A S
                  < +A
                         11
                              0A
                                  44
                                        -5, -1.3
                                                           2, 0.0
                                                                     2,-0.3
                                                                             -0.877
                                                                                     28.9 174.9-124.8 156.8
                                                                                                                32.1
                                                                                                                       27.7
                                                                                                                              12.3
17
     20 A G
                         10
                              0Α
                                       -2, -0.3
                                                  2,-0.3
                                                          -7, -0.2
                                                                    -7, -0.2
                                                                             -0.893
                                                                                     15.9-146.5-151.0-178.9
                                                                                                                29.6
                                                                                                                       28.7
                                                                                                                              14.8
                                                                                                                              16.7
                              0Α
                                                          -2, -0.3
                                                                     2,-0.4
                                                                             -0.979
                                                                                      5.0-169.6-158.6 146.0
                                                                                                                       31.5
19
     22 A F
                              0Α
                                       12, -0.4 12, -2.3
                                                          -2,-0.3
                                                                     2,-0.3
                                                                             -0.982
                                                                                     27.8 149.2-139.1 120.3
                                                                                                                26.5
                                                                                                                       32.2
                                                                                                                              20.1
20
     23 A M E
                             30A
                                      -13, -2.5
                                                -13, -2.5
                                                          -2, -0.4
                                                                     2,-0.4
                                                                             -0.983
                                                                                     39.7-127.8-152.1 161.6
                                                                                                                24.5
                                                                                                                       35.4
                                                                                                                              20.6
                                   0
                    -AB
                             29A
                                                  7, -2.9
                                                          -2, -0.3
                                                                     8,-1.0
                                                                             -0.934
                                                                                     23.9-164.1-112.5 137.7
                                                                                                                       37.0
                                                                                                                              22.6
     25 A D
                             27A
                                     -17, -2.8 -17, -2.8
                    -AB
                                   6
                                                          -2,-0.4
                                                                     2,-0.5
                                                                             -0.948
                                                                                      6.9-165.0-123.7 138.3
                                                                                                                18.9
                                                                                                                       38.9
                                                                                                                              20.8
             E >
                  S-AB
                          4
                             26A
                                        3,-3.5
                                                  3, -2.1
                                                          -2, -0.4 -19, -0.2
                                                                             -0.947 78.4 -27.2-127.3 111.5
                                                                                                                              22.3
                                  76
                                                                                                                16.4
                                                                                                                       41.3
24
                              0
                                      -21, -2.6 -20, -0.1
                                                          -2,-0.5
                                                                              0.904 128.9 -46.6 50.4
                                                                                                                13.4
                                                                                                                              20.2
                                  74
                                                                    -1, -0.1
            Т
                          0
                              0
                                      -22, -0.3
                                                  2,-0.4
                                                           1,-0.2
                                                                    -1, -0.3
                                                                              0.291 118.8 109.3 84.7 -11.1
                                                                                                                15.4
                                                                                                                       41.4
                                                                                                                              17.0
                         23
26
                  S-B
                              0A 114
                                       -3,-2.1
                                                 -3, -3.5 109, 0.0
                                                                     2,-0.3
                                                                             -0.822
                                                                                    71.8-114.7-103.1 140.3
                                                                                                                18.4
                                                                                                                       43.4
                                                                                                                              18.1
                         22
                                       -2, -0.4 -5, -0.3 -5, -0.2
     30 A E E
                                                                     3,-0.1
                                                                             -0.525
                                                                                     24.9-177.7 -74.1 127.5
                                                                                                                       41.8
                                                                                                                              19.1
```

Secondary Structure Types

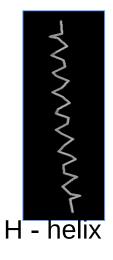
```
    * H = alpha helix
    * B = residue in isolated beta-bridge
    * E = extended strand, participates in beta ladder
    * G = 3-helix (3/10 helix)
    * I = 5 helix (pi helix)
    * T = hydrogen bonded turn
    * S = bend
```

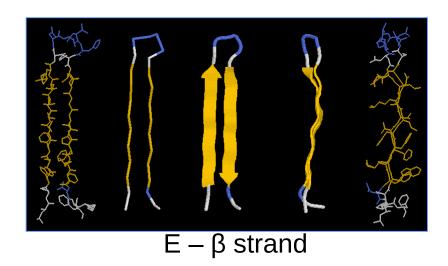
Secondary Structure Prediction

- What to predict?
 - All 8 types or pool types into groups

```
*
        H = \alpha \text{ helix}
        B = residue in isolated β-bridge
        E = extended strand, participates in <math>\beta ladder
        G = 3-helix (3/10 helix)
         I = 5 \text{ helix } (\pi \text{ helix})
        T = hydrogen bonded turn
*
        S = bend
        C/.= random coil
                       Str@AGS1R
```

Type of Secondary Structure Prediction


- Information based classification
 - Property based methods (Manual / Subjective)
 - Residue based methods
 - Segment or peptide based approaches
 - Application of Multiple Sequence Alignment
- Technical classification
 - Statistical Methods
 - Chou & fashman (1974)
 - GOR
 - Artificial Itellegence Based Methods
 - Neural Network Based Methods (1988)
 - Nearest Neighbour Methods (1992)
 - Hidden Markove model (1993)
 - Support Vector Machine based methods



בראשית יא א

Comparing methods requires same terms and tests.

Secondary structure types:

 $L\C$ – other.

seq pred

How to evaluate a prediction? The Q₃ test:

$$Q_3 = \frac{\text{correctly predicted residues}}{\text{number of residues}}$$

Of course, all methods would be tested on the same proteins.

Lim

J. Molecular Biology (1974) 88, 873.

Predicts: alpha helix, beta strand, irregular.

Accuracy: 80-85 %.

Based on: short-range and long-range interactions to stabilize

the secondary structures. Takes into account packing

issues.

Data (training) set: 25 proteins (structures known to date)

Test set: 25 proteins

Method:

- predict secondary structure based on RULES developed from known structures
- 2. plot schemes on primary protein sequence
- following known rules (1-6), locate helical regions
- 4. following known rules (1-8), locate beta regions

Chou Fasman

Biochemistry (1974) 13:2, 222.

Predicts: alpha helix, beta strand, beta (reverse) turn, none.

Accuracy: 77 %.

Based on: short-range and medium-range interactions play a

predominant role in determining secondary structure.

Data (training) set: 19 proteins (structures known to date)

Test set: 19 proteins

Method:

- assign each residue helix potential, beta potential, turn potential
- locate clusters of helix formers, helix breakers, etc. H(a), h(a), I(a), i(a), b(a), B(a)
- 3. search for helical regions (4 out of 6 H or h)
- search for beta regions
- search for turns

CHOU- FASMAN ALGORITHM

Conformatal parameter: P_{α} , P_{β} and P_{t} for each amino acid i

$$P_{i,x} = f_{i,x} / < f_x > = (n_{i,x} / n_i) / (n_x / N)$$

Nucleation sites and extension

Clusters of four helical formers out of six propagated by four residues

if
$$< P_{\alpha} > = \sum_{1}^{4} P_{\alpha} / 4 \ge 1.00$$

Clusters of three β -formers out of five propagated by four residues

if
$$< P_{\beta} > = \sum_{1}^{4} P_{\beta} / 4 \ge 1.00$$

Clusters of four turn residues

if
$$P_t = f_i \times f_{i+1} \times f_{i+2} \times f_{i+3} > 0.75 \times 10^{-4}$$

Specifics thresholds for < P α > , < P $_{\beta}$ > and < P $_{t}$ > and their relatives

Chou-Fasman Rules (Mathews, Van Holde, Ahern)

A	<u> mino Acid</u>	α -Helix	<u>β-Sheet</u>	<u>Turn</u>	,
	Ala	1.29	0.90	0.78	
	Cys	1.11	0.74	0.80	
	Leu	1.30	1.02	0.59	Голгоно
	Met	1.47	0.97	0.39	Favors
	Glu	1.44	0.75	1.00	α-Helix
	Gln	1.27	0.80	0.97	
	His	1.22	1.08	0.69	
	Lys	1.23	0.77	0.96	
	Val	0.91	1.49	0.47	
	Ile	0.97	1.45	0.51	-
	Phe	1.07	1.32	0.58	Favors
	Tyr	0.72	1.25	1.05	β-Sheet
	Trp	0.99	1.14	0.75	•
	Thr	0.82	1.21	1.03	
	Gly	0.56	0.92	1.64	
	Ser	0.82	0.95	1.33	Favors
	Asp	1.04	0.72	1.41	
	Asn	0.90	0.76	1.23	Turns
	Pro	0.52	0.64	1.91	
	Arg	0.96	0.99	0.88	

Assignment of Amino Acids

Helical Residues ^b	P_{α}	β -Sheet Residues a	P_{β}
Glu ⁽⁻⁾	1.53	Met	1.67
Ala	1.45∤ H _α	Val	1.65 H _B
Leu	1.34)	T le	1.60
His(+)	1.24)	Cys	1.30
Met	1.20	Tyr	1.29
Gln	1.17	Phe	1.28
Trp	1.14 h _a	Gln	1.23 h _s
Val	1.14	Leu	1.22
Phe	1.12	Thr	1.20
Lys(+)	1.07 _T	Trp	1.19
Ile	1.00 I_{α}	Ala	$0.97\}I_{\beta}$
Asp ⁽⁻⁾	0.98]	Arg ⁽⁺⁾	0.90
Thr	0.82	Gly	0.81∤i _β
Ser	0.79} i _∝	A sp ⁽⁻⁾	0.80
Arg ⁽⁺⁾	0.79	Lys ⁽⁺⁾	0.74]
Cys	0.77	Ser	0.72
Asn	$\begin{bmatrix} 0.73 \\ 0.61 \end{bmatrix} b_{\alpha}$	His(+)	0.71 b _{β}
Tyr	0.61	Asn	0.65
Pro	$0.59 B_{\alpha}$	Pro	0.62
Gly	0.53∫ ^{Dα}	Glu ⁽⁻⁾	0.26 } \mathbf{B}_{β}

^a Chou and Fasman (1974). ^b Helical assignments: H_{α} , strong α former; h_{α} , α former; I_{α} , weak α former; i_{α} , α indifferent; b_{α} , α breaker; B_{α} , strong α breaker. I_{α} assignments are also given to Pro and Asp (near the N-terminal helix) as well as Arg (near the C-terminal helix). ^c β-sheet assignments: H_{β} , strong β former; h_{β} , β former; I_{β} , weak β former; i_{β} , β indifferent; b_{β} , β breaker; B_{β} , strong β breaker. b_{β} assignment is also given to Trp (near the C-terminal β region).

Chou-Fasman

- First widely used procedure
- If propensity in a window of six residues (for a helix) is above a certain threshold the helix is chosen as secondary structure.
- If propensity in a window of five residues (for a beta strand) is above a certain threshold then beta strand is chosen.
- The segment is extended until the average propensity in a 4 residue window falls below a value.
- Output-helix, strand or turn.

GOR method

- Garnier, Osguthorpe & Robson
- Assumes amino acids up to 8 residues on each side influence the ss of the central residue.
- Frequency of amino acids at the central position in the window, and at -1, -8 and +1,....+8 is determined for α , β and turns (later other or coils) to give three 17 x 20 scoring matrices.
- Calculate the score that the central residue is one type of ss and not another.
- Correctly predicts ~64%.

Scoring matrix

$$S_{ss}^{ij} = \log \frac{P(ss_i | aa_{i+j})}{p(ss_i)}, j = -8, K, 8$$

i-4 i-3 i-2 i-1 i i+1 i+2 i+3 i+4....

TRGQLIREAYEDYRHFSSECPFIP

	- 4	-3	-2	-1	0	1	2	3	4	• • •
A	• •	• •	••	• •	••	••	••	• •	• •	
В	••	• •	• •	• •	• •	••	••	• •	• •	

GOR: Information function

• Information function $I(S \cdot D)$. $I(S_j; R_j) = \log \frac{P(S_j | R_j)}{p(S_j)}$

 S_j = one of three secondary structure (H, E,C) at position j R_j = one of the 20 amino acids at position j $p(S_j|R_j)$ = conditional probability for observing S_j having R_j $p(S_j)$ = prior probability of having S_j

- Information that sequence R_j contains about structure S_j
 - I = 0 : no information
 - I > 0 : R_i favors S_i
 - I < 0 : R_j dislikes S_j

GOR: Formulation(1)

- Secondary structure should depend on the whole sequence, R
- Simplification (1): only local sequences (window size = 17) are considered $I = (S_j; \mathbf{R}) \approx I(S_i; R_{j-8}, \mathsf{K}, R_j, \mathsf{K}, R_{j+8})$

Simplification (2): each residue position is statistically independent

> For independent event, just add up the information

$$I(S_i; R_{j-8}, K, R_j, K, R_{j+8}); \sum_{m=-8}^{8} I(S_j; R_{j+m})$$

$$I(S_j;R_1,R_2,...R_{last}) \approx \sum_{m=-8}^{m=+8} I(S_j;R_{j+m})$$

Directional information measure for the $\alpha\text{-helical conformation}\dot{\uparrow}$

Amino acid									due posi entinats)								
residue	j — 8		j-6		j-4		j-2	Table !	j		j+2		j+4	1793	j+6		j+8
Gly	-5	-10	-15	-20	-30	-40	-50	-60	-86	-60	-50	-40	-30	-20	-15	-10	-5
Ala	5	10	15	20	30	40	50	60	65	60	50	40	30	20	15	10	5
Val	0	0	0	0	0	0	5	10	14	10	5	0	0	0	0	0	0
Leu	0	5	10	15	20	25	28	30	32	30	28	25	20	15	10	5	0
Ile	5	10	15	20	25	20	15	10	6	0	-10	-15	-20	-25	-20	-10	-5
Ser	0	-5	-10	-15	-20	-25	-30	-35	-39	-35	-30	-25	-20	-15	-10	-5	0
Thr	0	0	0	-5	-10	-15	-20	-25	-26	-25	-20	-15	-10	-5	0	0	0
Asp	0	-5	-10	-15	-20	-15	-10	0	5	10	15	20	20	20	15	10	5
Glu	0	0	0	0	10	20	60	70	78	78	78	78	78	70	60	40	20
Asn	0	0	0	0	-10	-20	-30	-40	-51	-40	-30	-20	-10	0	0	0	0
Gln	0	0	0	0	5	10	20	20	10	-10	-20	-20	-10	-5	0	0	0
Lys	20	40	50	55	60	60	50	30	23	10	5	0	0	0	0	0	0
His	10	20	30	40	50	50	50	30	12	-20	-10	0	0	0	0	0	0
Arg	0	0	0	0	0	0	. 0	0	-9	-15	-20	-30	-40	-50	-50	-30	-10
Phe	0	0	0	.0	0	5	10	15	16	15	10	5	0	.0	0	0	0
Tyr	-5	-10	-15	-20	-25	-30.	35	-40	-45	-40	-35	-30	-25	-20	-15	-10	-5
Trp	-10	-20	-40	-50	-50	-10	0	10	12	10	0	-10	-50	-50	-40	-20	-10
Cys	0	0	0	0	0	0	-5	-10	-13	-10	-5	0	0	0	0	0	0
Met	10	20	25	30	35	40	45	50	53	50	45	40	35	30	25	20	. 10
Pro	-10	-20	-40	-60	-80	-100	-120	-140	-77		-30	-20	-10	0	0	0	0

Garnier, Osguthorpe, Robson

J. Molecular Biology (1978) 120, 97.

Predicts: alpha helix, beta strand, beta (reverse) turn, coil.

Accuracy: 60 %.

Based on: Based on single residue determination vs.

neighboring interactions determination.

Optimized for predicted protein to include expected

percentage secondary structure.

Data (training) set: 25 proteins (structures known to date)

Test set: 25 proteins

Method:

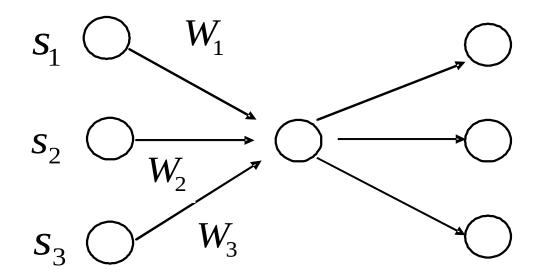
evaluation of information state for each residue, each conformational state

$$I(S_j; R_1 R_2 ... R_{last}) \sim \sum_{m=-8}^{m=+8} I(S_j; R_{j+m})$$

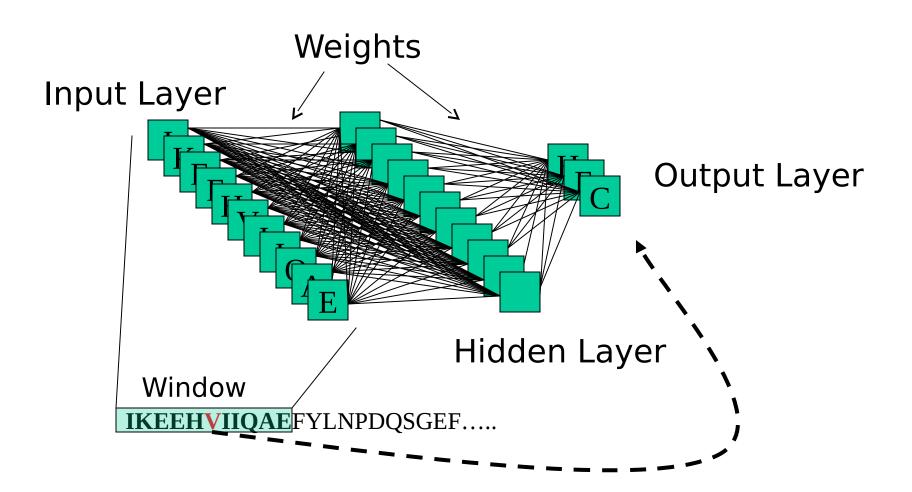
locate conformation with highest content

 variables: decision constant (optimized to experimental CD) run constant (includes neighboring effects)

optional: homologous sequences


information content from each homolog is added

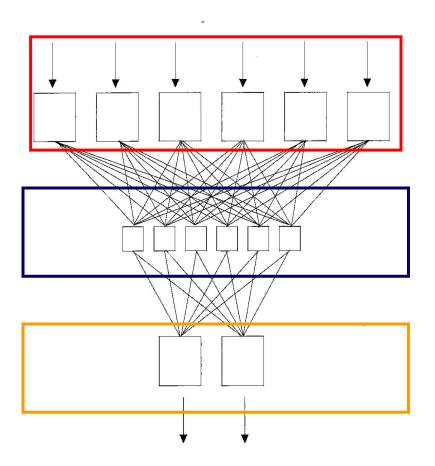
and divided by # homologs


Artificial Neural Network

What does a neuron do?

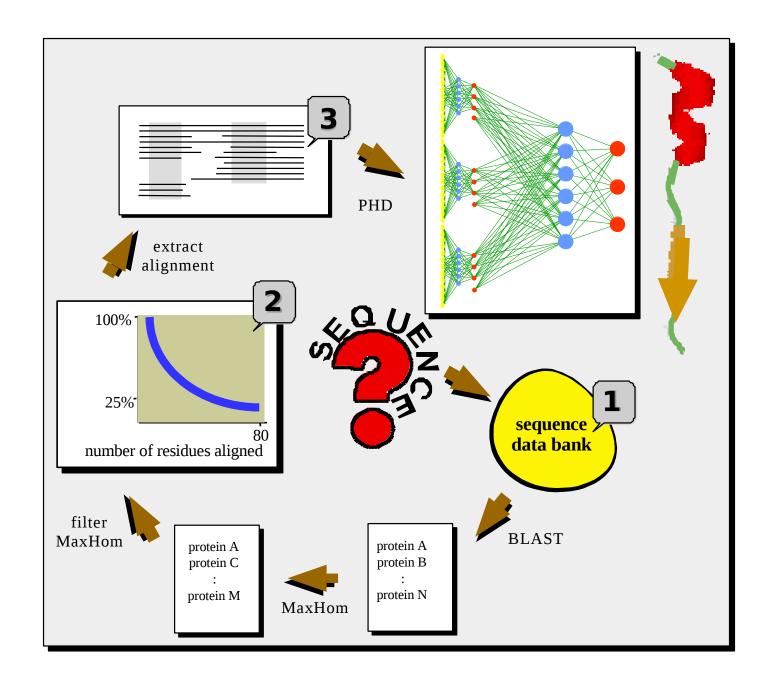
- Gets "signals" from its neighbours.
- Each signal has different weight.
- When achieving certain threshold sends signals.

Architecture



General structure of ANN al Network

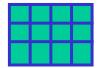
• One input layer.


Some hidden layers.

One output layer.

Our ANN have one-direction flow!

Protein	Alignments	profile table	
: G Y I Y	: : : : G G G G Y Y Y Y I I E E Y Y Y Y	5	
D P E D G D P D G V N P	DDDD PPPPP AEAA VVEE GGGG DDDD PPPP DTDD NQNN GNGG VIVV EPKK PPPP	5	H > pick maximal unit => current prediction
G T D F	G G G G T T T T E K S A F F F F : : : :	55	
C	orresponds to t	he the 21*3 bits coding for the profile of one resid	ue $ \begin{array}{ccccccccccccccccccccccccccccccccccc$


Secondary Structure Prediction

- Application of Multiple sequence alignment
 - Segment based (+8 to -8 residue)
 - Input Multiple alignment instead of single sequence
 - Application of PSIBLAST
- Current methods (combination of)
 - Segment based
 - Neural network
 - Multiple sequence alignment (PSIBLAST)
 - Combination of Neural Network + Nearest Neighbour Method

Structure of 3rd generation methods

Find homologues using large data bases.

Create a profile representing the entire protein family.

Give sequence and profile to ANN.

Output of the ANN: 2nd structure prediction.

Reliability numbers:

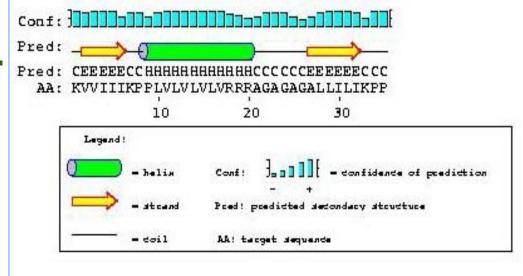
• The way the ANN tells us how much it is sure about the assignment.

Used by many methods.

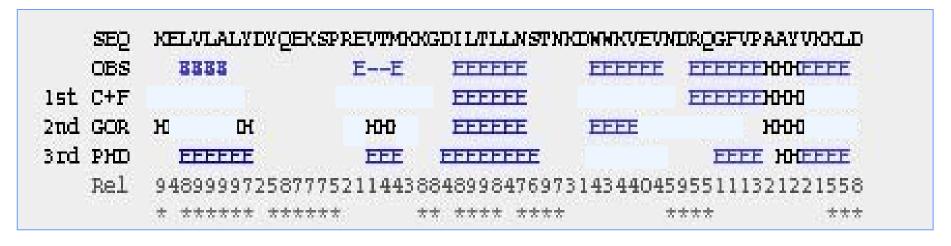
Correlates with accuracy.

Rey

Conf: Confidence (0=low, 9=high)


Pred: Predicted secondary structure (H=helix, E=strand, C=coil)

AA: Target sequence


Conf: 97898377188899998530367741489987089

Pred: CEEEEECCHHHHHHHHHHHHHCCCCCCCEEEEEECCC

AA: KVVIIIKPPLVLVLVLVRRRAGAGAGALLILIKPP

• Through Bert general Chet Ret Robb late that jumped ~10%.

Many 3rd generation methods exist today.

Which method is the best one? How to recognize "over-optimism"?

PSIPRED

- Uses multiple aligned sequences for prediction.
- Uses training set of folds with known structure.
- Uses a two-stage neural network to predict structure based on position specific scoring matrices generated by PSI-BLAST (Jones, 1999)
 - First network converts a window of 15 aa's into a raw score of h,e (sheet), c (coil) or terminus
 - Second network filters the first output. For example, an output of hhhhehhhh might be converted to hhhhhhhhh.
- Can obtain a Q₃ value of 70-78% (may be the highest achievable)