OSDDIinux: Operating System for Drug

Discovery

Bioinformatics

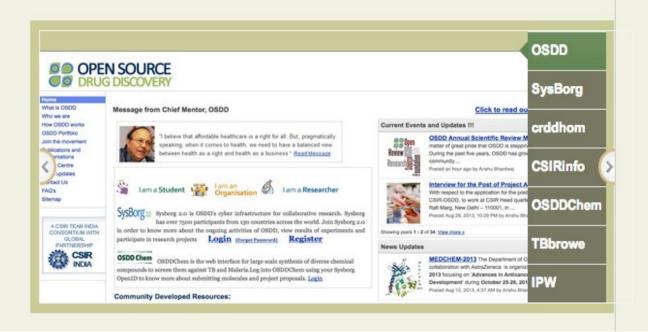
Drug Informatics

Vaccine Informatics

Email: raghava@imtech.res.in

http://osddlinux.osdd.net/

http://ww.imtech.res.in/raghava/


OSDDlinux: A Customized Operating System for Drug Discovery

Welcome to OSDDlinux

Open Source Drug Discovery (OSDD), a mission to provide affordable drugs for poors, is in the process of creating an *in silico* plateform for designing, discovering and simulating drugs. OSDD have initiate number of projects to support *in silico* drug discovery, including OSDDlinux and computational resources for drug discovery (CRDD).

OSDDLINUX

Customized operating environment for drug discovery pipeline

Live Server

BIOINFORMATI

CS

CCINE INFORMATI

Live CD

Pkg Repository

HEMINFORMATICS

Standalone

Galaxy

Installation

All in ONE

Computer-Aided Drug Discovery Searching Drug Targets:

Genome Annotation

FTGpred: Prediction of Prokaryotic genes **EGpred:** Prediction of eukaryotic genes **GeneBench:** Benchmarking of gene finders

SRF: Spectral Repeat finder

Comparative genomics

GWFASTA: Genome-Wide FASTA Search **GWBLAST:** Genome wide BLAST search **COPID:** Composition based similarity search

LGEpred: Gene from protein sequence

Subcellular Localization Methods

PSLpred: localization of prokaryotic proteins

ESLpred: localization of Eukaryotic proteins

HSLpred: localization of Human proteins

Il Tpred: Prediction of Mitochndrial protein Glchan: Voltage gated ion channel

pred: Localization of mycobacterial proteins RNA interacting residues in proteins

Prediction of drugable proteins

Nrpred: Classification of nuclear receptors

GPCRpred: Prediction of G-protein-coupled receptors

GPCRsclass: Amine type of GPCR

GSTpred: Glutathione S-transferases proteins

Protein Structure Prediction

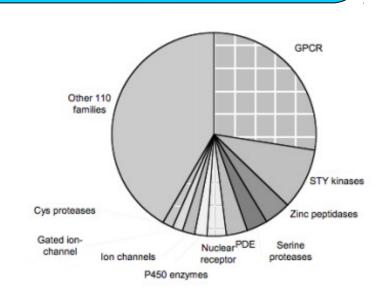
APSSP2: protein secondary structure prediction

Betatpred: Consensus method for β-turns prediction

Bteval: Benchmarking of β-turns prediction

BetaTurns: Prediction of -turn types in proteins

Turn Predictions: Prediction of $\alpha/\beta/\gamma$ -turns in proteins


GammaPred: Prediction of-turns in proteins

BhairPred: Prediction of Beta Hairpins

TBBpred: Prediction of trans membrane beta barrel proteins

SARpred: Prediction of surface accessibility (real accessibility)

PepStr: Prediction of tertiary structure of Bioactive peptides

Modelling of Immune System for Designing Epitope-based Vaccines

Adaptive Immunity (Cellular Response) : T_{helper} Epitopes

Propred: for promiscuous MHC II binders

MMBpred:for high affinity mutated binders

MHC2pred: SVM based method

MHCBN: A database of MHC/TAP binders

and non-binders

Adaptive Immunity (Cellular Response) : CTL Epitopes

Pcleavage: for proteome cleavage sites

TAPpred: for predicting TAP binders

Propred1: for promiscuous MHC I binders

CTLpred: Prediction of CTL epitopes

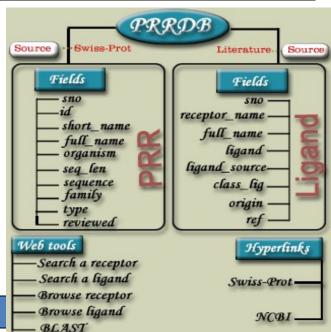
Data in MHCBN Entries (25857) 20717 4022 1053 MHC TAP Non-Binders Binders peptides T cell epitopes (6722) Antigenic sequences (3754) ►MHC alleles sequence (1420) Antigenic structure (841) MHC structure (119) References (1519) MHC linked diseases (20)

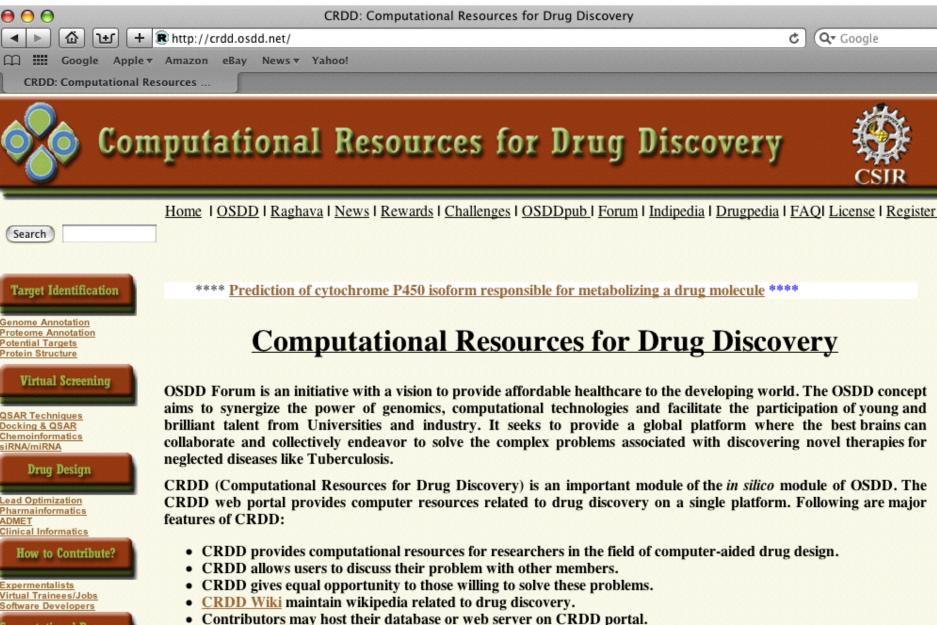
Adaptive Immunity (Humoral Response) :B-cell Epitopes

Innate Immunity:
Pathogen Recognizing
Receptors and ligands

BCIpep: A database of B-cell eptioes;

ABCpred: for predicting B-cell epitopes **ALGpred:** for allergens and IgE eptopes

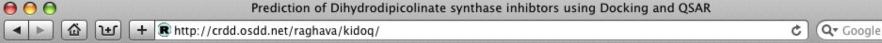

HaptenDB: A datbase of haptens


PRRDB: A database of PRRs & ligands

Antibp: for anti-bacterial peptides

Signal transduction in Immune System

Cytopred: for classification of Cytokines



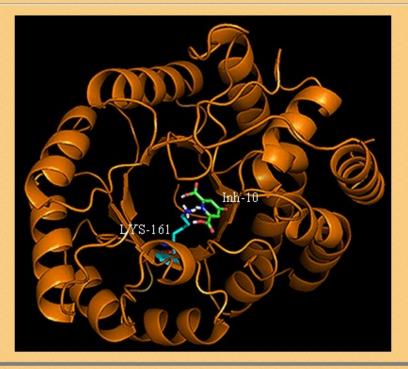
Q- Google

Computational Resources

Library Interfaces Meta Servers Publishing Document Data on M.tb.

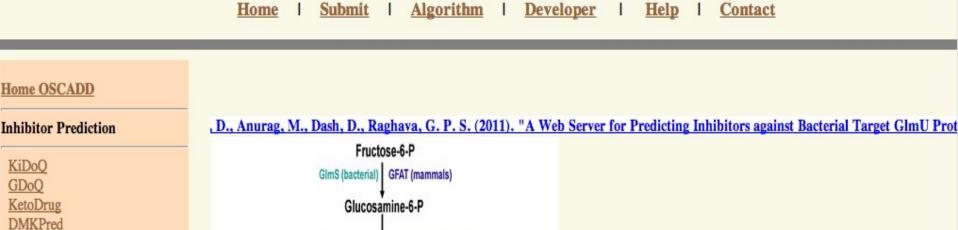
Thus, CRDD provides a platform for researchers having limited resources.

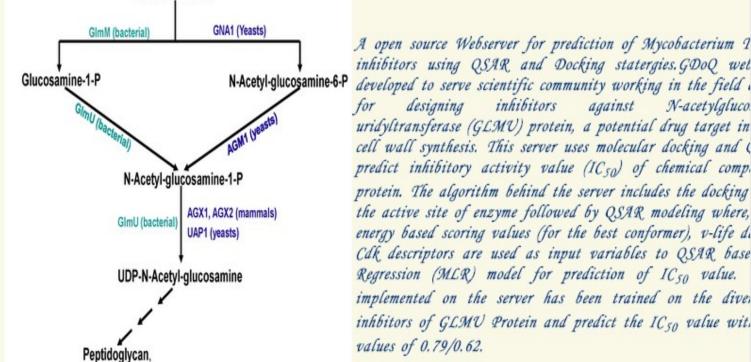
Google Apple ▼ Amazon eBay News ▼ Yahoo!


Prediction of Dihydrodipicolinate ...

Prediction of inhibition constant using docking and qsar

| Home | Submit | Dataset | References | Team | Contact | CRDD |


2010) KiDoO: using docking based energy scores to develop ligand based model for predicting antibacterials. BMC Bioinformatics 2010, 11:125 ===



community working in the field of designing inhibitors against Dihydrodipicolinate synthase (DHDPS), a potential drug target enzyme of a unique bacterial DAP/Lysine pathway. The server has employed the molecular docking and ligand based QSAR strategies to predict inhibitory activity value (Ki) of small compounds for DHDPS enzyme. The algorithm behind the server includes the docking of compounds to the active binding site of enzyme followed by QSAR modeling where, docking generated energy based scoring values (for the best conformer) are cascaded as input variables to QSAR based SVM model for prediction of Ki value. The QSAR model implemented on the server has been trained on the dataset of 23 inhbitors of DHDPS and predict the Ki value with correlation R/q2 values of 0.93/0.80 and MAE of 1.89.

KiDoQ, a web server has been developed to serve scientific

Prediction of GLMU inhibitors using QSAR and AutoDock

cell wall synthesis. This server uses molecular docking and (predict inhibitory activity value (IC50) of chemical comp. protein. The algorithm behind the server includes the docking the active site of enzyme followed by QSAR modeling where, energy based scoring values (for the best conformer), v-life di Cdk descriptors are used as input variables to QSAR base Regression (MLR) model for prediction of IC50 value. implemented on the server has been trained on the diver inhbitors of GLMU Protein and predict the IC50 value with

inhibitors using QSAR and Docking statergies. GDoQ wet

developed to serve scientific community working in the field i

uridyltransferase (GLMU) protein, a potential drug target in

against

N-acetylgluco.

inhibitors

designing

values of 0.79/0.62.

Lipopolysaccharide Figure shows the importance of Glmu protein in cell Descriptors

GDoO

TLR4HI

ABMpred

eBooster

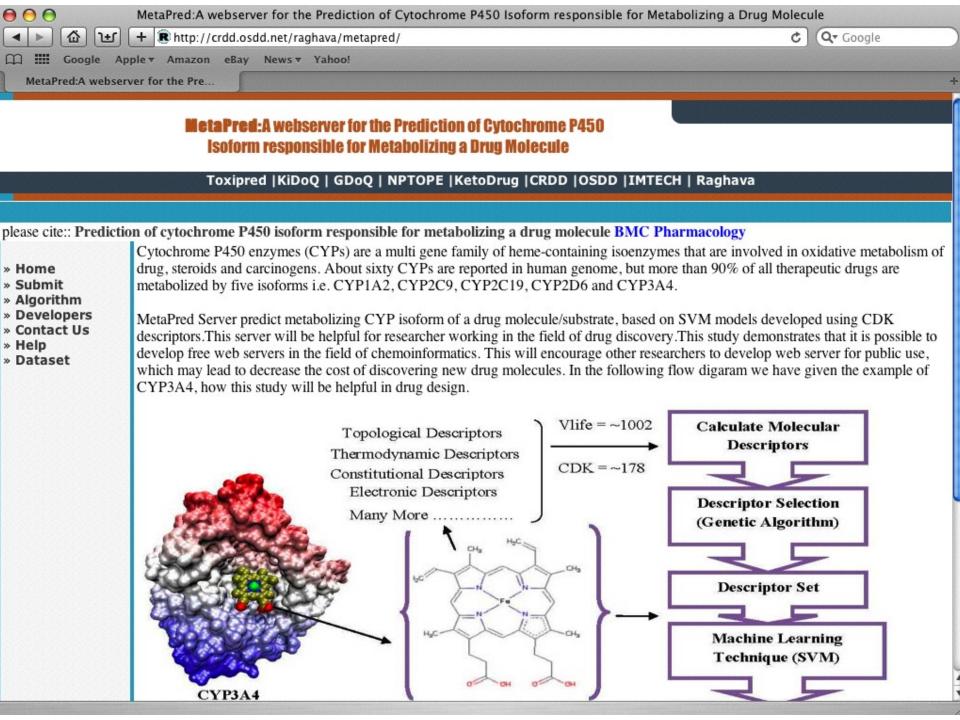
HIVFin

MDRIpred

Carbotope

MetaPred

ToxiPred DrugMint

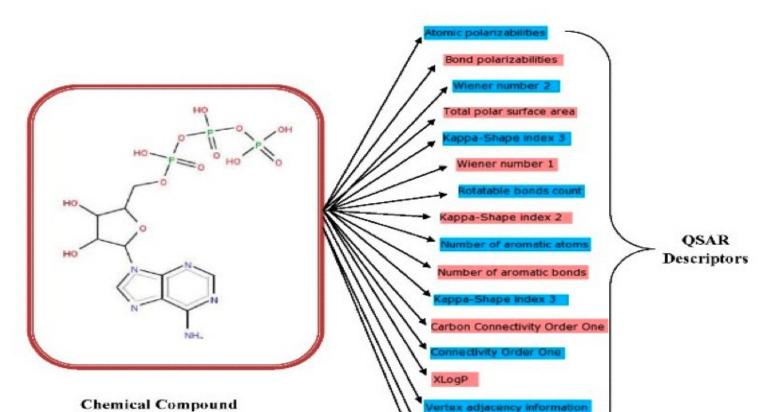

QED

MetaServer (Comming Soon)

MetaServer (Comming Soon)

Antigenic Properties

ADMET Properties



ToxiPred: A server for prediction of aqueous toxicity of small chemical molecules in T. pyriformis

<u>HOME | SUBMIT | ALGORITHM | DEVELOPERS | CONTACT | HELP | DATASET</u>

Identification of non-toxic drug design is a major challenge in the field of drug design, most of the drug failure due to toxicity being found in late development or even in clinical trials. Thus the use of predictive toxicology is called for. Keeping this problem in view, several QSAR methods have been employed previously but we have started this study with latest dataset and apply different machine learning classifiers including non-linear method (Support Vector machine (SVM)) and linear method (Multiple linear regressions (MLR)).

Toxipred is a server where user can submit chemical molecules in the commonly used format (mol/SMILE/sdf) and after descriptors calculation our server would predict the pIGC50 value of the molecule. We hope that present model will aid in the area of drug designing.

DrugMint

A SERVER FOR IDENTIFICATION OF DRUG-LIKE MOLECULE

Home

Draw Structure

Virtual Screening

Design Analogs

Search Database

Algorithr

Dataset

Heli

Developer

Contact Us

Home OSCADD

Inhibitor Prediction

KiDoQ GDoQ KetoDrug DMKPred TLR4HI ABMpred eBooster MDRIpred HIVFin MetaServer (Comming Soon)

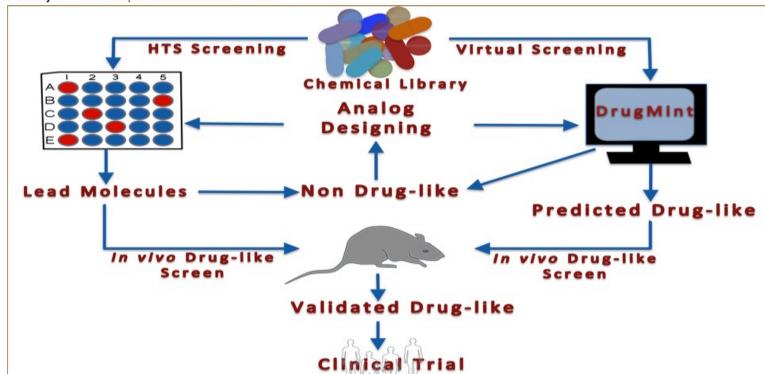
Antigenic Properties

Carbotope

ADMET Properties

MetaPred ToxiPred DrugMint QED MetaServer (Comming Soon)

Descriptors


Format Conversion WebCDK MetaServer

Welcome to DrugMint server

DrugMint is a web server developed for predicting drug-likelihood of a compound. All models were trained, tested and evaluated on a dataset contain 1347 approved drugs obtained from DrugBank 2.5 and 3206 experimental drugs. All QSAR models were developed using open source software packages like PaDEL, WEKA, SVM_Light. Overall objective of this server is to provide service to drug development community in predicting, screening and designing drug-like molecules.

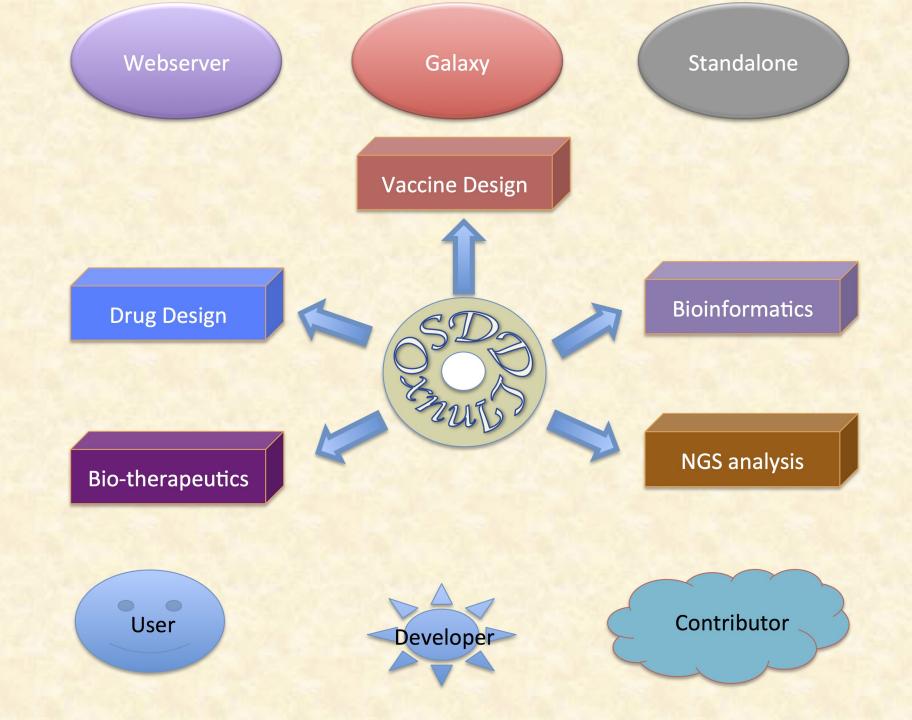
DrugMint is also available in following platform:

- 1. Mirror Site at http://osddlinux.osdd.net/oscadd/drugmint
- 2. Standalone version at http://osddlinux.osdd.net>
- 3. Galaxy version at http://osddlinux.osdd.net:8001

MDRIpred: A webserver for predicting inhibitor against drug tolrent M. Tuberculosis

Home MDRIpred Submit Molecule Algorithm DataSets Help Page Developers Contact Home OSCADD Inhibitor Prediction Submission Form KiDoQ This server allows users to predict inhibitor against different phase of drug tolerant M.tuberculosis. You may submit molecules using any GD₀Q Sketch using JME editor. KetoDrug Paste molecules in the box. **DMKPred** 3. Upload file containing moleclues in standard format. TLR4HI Option 2 and 3 allow users to submit more than one molecule (upto 10). **ABMpred** Job Name (Optional) Email Address (Optional): eBooster **MDRIpred** (Please enter your email address if you want to re HIVFin email) MetaServer (Comming Soon) Method 1. Sketch Structure using JME editor Method 2. Paste structure in Mol/SMILE/SI Antigenic Properties U CLR DEL D-R UDC use an example (Example Test.sdf Test.mol Test.smi) Carbotope ADMET Properties MetaPred ToxiPred **DrugMint** OED MetaServer (Comming Soon)

Limitations of existing web services


- Uploading or downloading large data
- Serving too many user from single source
- Difficult to provide computer intensive job
- Depend on internet and its bandwidth
- Security of data in transition
- Maintain confidentiality of data
- Difficult to analyze graphical data

GPSR: A Resource for Genomics Proteomics and Systems Biology

- A journey from simple computer programs to drug/vaccine informatics
- Limitations of existing web services
 - History repeats (Web to Standalone)
 - Graphics vs command mode
- General purpose programs
 - Small programs as building unit
- Integration of methods in GPSR

Program	Purpose
❖ fasta2sfasta	Convert fasta format to single fasta format
❖ pro2aac	To calculate amino acid composition of protein
pro2aac_nt	To calculate amino acid composition of N-terminal (nt) residues of a protein
❖ pro2aac_ct	To calculate amino acid composition
	of C-terminal (ct) residues of a protein
pro2aac_rest.pl	To calculate amino acid composition of a
	protein after removing N-, and C-terminal residues
❖ pro2aac_split	To calculate split amino acid composition (SSAC) of a protein
❖ pro2dpc	To calculate dipeptide composition of protein
pro2dpc_nt	To calculate dipeptide composition of N-terminal (nt) residues of a protein
pro2dpc_ct	To calculate dipeptide composition of C-terminal (ct)
	residues of a protein
❖ pro2tpc	To calculate tripeptide composition of protein
❖ add_cols	To add columns of two files
❖ col2svm	To generating SVM_light input format
❖ col_mult	To multiplying each column of input file with a number
col_mult_sel	To multiplying selective columns with a number
❖ perl col_rem	To remove selective columns from a file
❖ col_ext	To extract selective columns from a file
❖ col_corr	To compute correlation co-efficient between two column
❖ col_avg	To calculate average column of two files
❖ seq2pssm_imp	To calculate PSSM matrix in column format without any normalization
❖ pssm_nl	To normalize pssm profile based on 1/(1+e-x) formula

Title	Description	
	pro2aac (To calculate amino acid composition of protein) The amino acid composition in a protein is simply the percentage of the different amino acids represented in a particular protein. The aim of calculating the composition of proteins is to transform the variable length of protein sequences to fixed length feature vectors. In addition the conversion of a protein sequence to a vector of 20 dimensions using amino acid composition will encapsulate the properties of the protein into the vector. [The composition of all 20 natural amino acids were calculated by using the following equation	
Usage	pro2aac -i seq.sfa -o seq.out	
-i	Input file name contains single fasta format	
-o	Output file name gives amino acid composition	
seq.sfa	>seq_1##MRNRGFGRRELLVAMAMLVSVTGCARHASGARPASTTLPAGADLADRFAEL ERRYDARLGVYVPATGTTAAIE >seq_2##ACGRGFGVKLACNMNNACRTYFSDVAMAMLVSVTGCARHASGARPASTTL PAGADLADIEYRADERFAFCSTF	
seq.out	# Amino Acid Composition of proteins # A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, 19.18, 1.37, 4.11, 5.48, 2.74, 9.59, 1.37, 1.37, 0.00, 9.59, 4.11, 1.37, 4.11, 0.00,13.70, 4.11, 8.22, 6.85, 0.00, 2.74, 19.18, 6.85, 5.48, 2.74, 6.85, 8.22, 1.37, 1.37, 1.37, 5.48, 4.11, 4.11, 2.74, 0.00, 8.22, 6.85, 6.85, 5.48, 0.00, 2.74,	
Vector	20 dimension (i.e 20 types of amino acid composition is generated)	

Major Features of OSDDlinux

Service for Scientific Community

Online for Occasional Users

LiveDVD/USB on local computer with Data Security

Platform for Developers

Developers with no infrastructure

Infrastructure on existing linux setup

Linux for Students

Bootable LivedDVD for occasional learning

OSDDlinux on Windows/MAC Users

Online hand-on experience on Linux & PERL programming

Major Features of OSDDlinux

Infrastructure for Developing World

- Infrastructure for Bioinformatics
- Assembling & Annotation of Genomes
- Computer-aided drug design
- Platform for launching services

Promoting Crowdsourcing

- Example-based learning of Web servers
- Galaxy-based platform for sharing

Network-Based Collobration

Installation of OSDDlinux

LiveDVD/USB

Download ISO image from web site

Create bootable DVD/USB from ISO image or send request

Boot your system from bootable DVD/USB

Select Install option for setting OSDDlinux on your system

Install on Existing System

Download base system set account and permission Copy models, blastadata, webserver, galaxy from site Set Vmbox on existing machine and install OSDDlinux

Download Options

Web-based download from web sites

RSYNC for sync your data

Introduction

OSDD-Linux integrates open libraries source softwares workflows //and for creating environment drua discovery. First attempt made to customize linux to provide services to community of drug discovery OSDD-Linux may bring down cost

discovery. **Features**

>A single platform for bioinformatics and cheminformatics

Webserver

A separate apache runs all web-servers as local host in the DD-Linux CD.

OSDDLin

Standalone

Command line tools have been integrated for analysing large scale data.

Softwares

GPSR packages

versions of tools

standalone, galaxy

Dr.Rahghava's lab

along with third party

ymoraic integrated

webservers,

developed in

▶User can customize according to > Easy install and free of cost. ≽lt can be launched using LiveCD, Liive server, USB and virttualldesk top like virtualbox.

> Provides

source codes

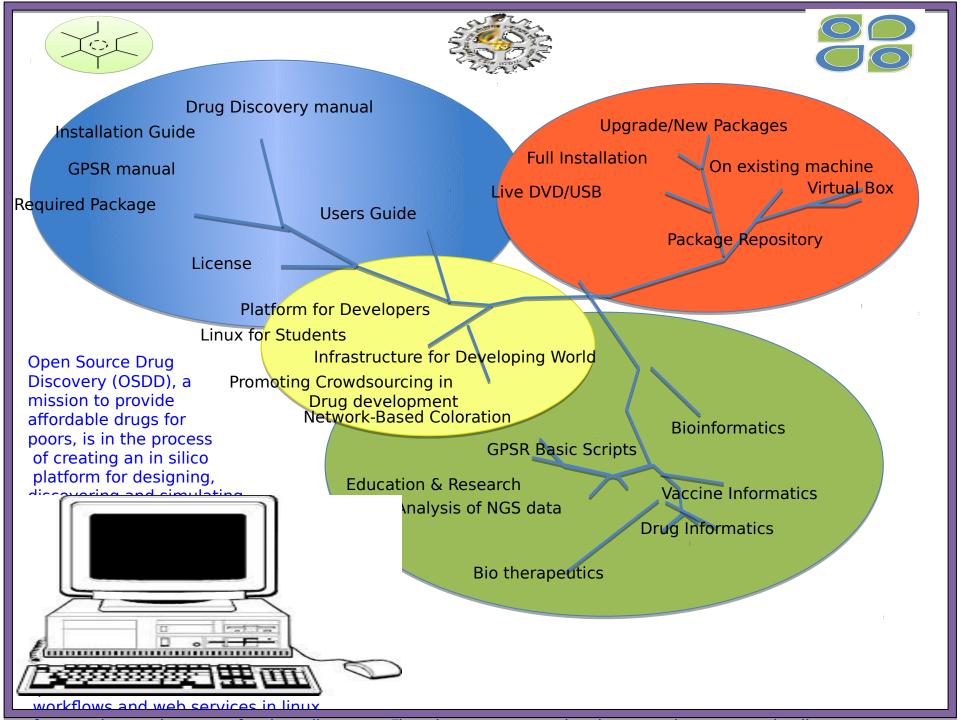
OSDDLinux : A Platform for Open Source Drug Discovery

Tools available in ird party softwares three formats e.g.
webservers,
standalone and galaxy.

Open source
softwares used in

Open source softwares used in bioinformatics and cheminformatics have been

System Requirements integrated.


The user may use OSDDLinux from portable devices like CD/DVD, USB drive etc or install on local machine or virtual machine depending upon requirement.

All softwares are integrated in galaxy servers for making the workflows.

Future tools. directions

More webservices, modules, debian packages will be updated on regular basis.

