Data intensive Research in the field of Biological Sciences

Bioinformatics Drug Informatics

Vaccine Informatics

Chamainformatics

Email: raghava@imtech.res.in http://www.imtech.res.in/raghava/

http://crdd.osdd.net/

ponential Growth of Data: Source of Knowled

	7	
Database	Brief Description with URL	
PubChem	A comprehensive database of bioassays, compounds and	
	substances (http://pubchem.ncbi.nlm.nih.gov/)	
ChEMBL	Database of drug like molecules	
CHEMIDE	(https://www.ebi.ac.uk/chembldb)	
Zinc	Maintain commercially-available compounds for virtual	
ZIIK	screening (http://zinc.docking.org/)	
ChemDB	Collection of small-molecules (http://cdb.ics.uci.edu/)	
ChemSpider	A chemical database (http://www.chemspider.com/)	
MMdNC	Commercial compounds	
MIMBING	(http://mms.dsfarm.unipd.it/MMsINC/)	
KEGG	Maintain comprehensive information	
KEGG	(http://www.genome.jp/kegg/)	
SMPDB	Small molecule Pathway database (http://www.smpdb.ca)	
HMDB	Human Metabolites (http://www.hmdb.ca/)	
PDBeChem PDBeChem	Dictionary of chemical components refered in PDB entries	
PDDechan	(http://www.ebi.ac.uk/pdbe-srv/pdbechem/)	
PDB-Bind	Binding affinity information for PDB Ligands	
PDB-BING	(http://sw16.im.med.umich.edu/databases/pdbbind/index.jsp)	
BindingDB	Binding affinity of PDB Ligands (http://www.bindingdb.org/)	
NCI	Small molecules related to cancer	
NCI	(http://cactus.nci.nih.gov/ncidb2.1/)	

Home

Reviews

News

FAQ

Media

About

Submit tools

Search

Browse by omic applications

Sequencing (2277)

Microarray (507)

Mass spectrometry (349)

NMR spectroscopy (98)

<u>PCR</u> (113)

nCounter System (4)

Bioimaging (101)

Cytometry (68)

Common omic tools (290)

Browse by functional analysis

Drug discovery (419)

Functional analysis (1368)

Epigenomics (35)

Genome editing (38)

Transcriptomics (354)

Proteomics (369)

Gene prioritization (16)

Fluxomics (49)

Metabolic engineering (25)

Biomolecular structure (391)

Health & Diseases (205)

Immunology (80)

Educational resources (198)

Computer Related (83) Education (75)

Human Genome (238) Model Organisms (378)

Protein (1009) Expression (395)

DNA (604) Other Molecules (378)

Literature (86) RNA (203)

Sequence Comparison (271)

Computational Resources for Drug Discovery



Home | OSDD | New | Rewards | Challenges | OSDDpub | News | Forum | Indipedia | Drugpedia | FAQ | Licens

Search

Genome Annotation Proteome Annotation Potential Targets Protein Structure

QSAR Techniques Docking & QSAR Chemoinformatics siRNA/miRNA

Lead Optimization
Pharmainformatics
ADMET
Clinical Informatics

How to Contribute?

Expermentalists Virtual Trainees/Jobs Software Developers

Computational Resources

Library Interfaces
Meta Servers
Publishing Document
Data on M.tb.

Who Are We??

Core Team Contact Address History of CRDD al Conference on Open Source for Computer Aided Drug Discovery (March 22-26, 2009)

Computational Resources for Drug Discovery

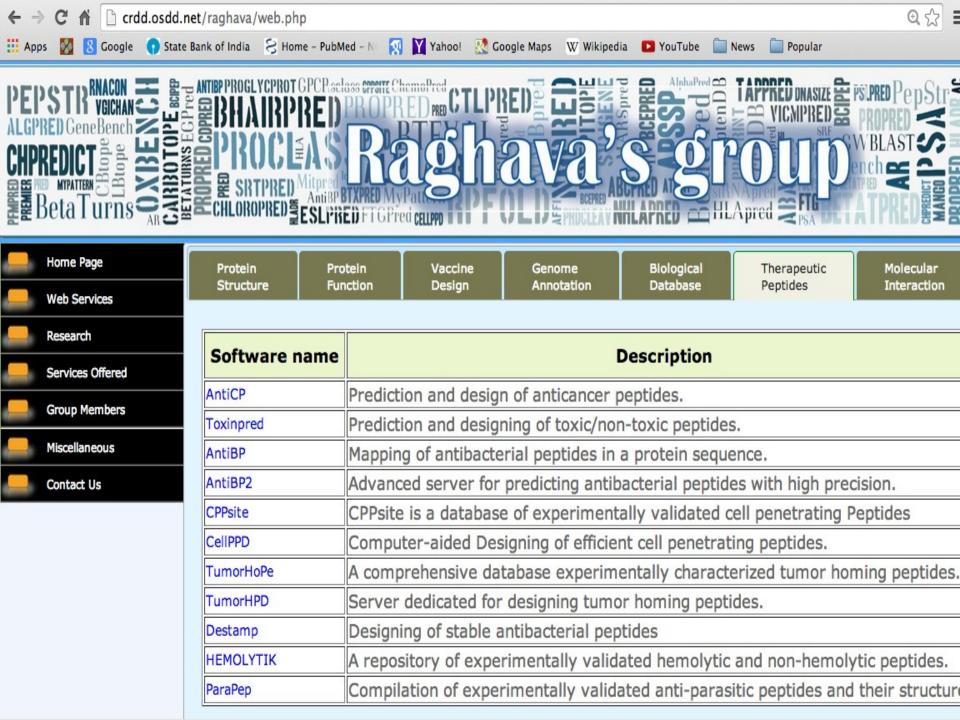
OSDD Forum is an initiative with a vision to provide affordable healthcare to the developing world. The OSDD concept aims to synergize the power of genomics, computational technologies and facilitate the participation of young and brilliant talent from Universities and industry. It seeks to provide a global platform where the best brains can collaborate and collectively endeavor to solve the complex problems associated with discovering novel therapies for neglected diseases like Tuberculosis.

CRDD (Computational Resources for Drug Discovery) is an important module of the *in silico* module of OSDD. The CRDD web portal provides computer resources related to drug discovery on a single platform. Following are major features of CRDD:

- · CRDD provides computational resources for researchers in the field of computer-aided drug design.
- CRDD allows users to discuss their problem with other members.
- CRDD gives equal opportunity to those willing to solve these problems.
- · CRDD Wiki maintain wikipedia related to drug discovery.
- · Contributors may host their database or web server on CRDD portal.

Thus, CRDD provides a platform for researchers having limited resources.

CSIR-Informatics Portal


Web services & software developed and maintained by CSIR, India

Home BioInformatics Therapeutics Resources Sites Contact

India specific Genomes Sequenced, Assembled and Annotated

Genomes sequence/assemble/annotate at CSIR Institutes

Organism	Discription	Institute	Publication
Acinetobacter baumannii MSP4-16	Isolated from mangrove soil sample from Parangipettai (11°30 N,79° 47'E), Tamil Nadu, India.	CSIR-IMTECH	<u>23558533</u>
Streptomyces gancidicus Strain BKS 13-15	Isolated from mangrove sediment samples collected from the Bhitar Kanika Mangrove Reserve Forest, Odissha, India.	CSIR-IMTECH	23599292
Serratia fonticola Strain AU-AP2C	Isolated from the Pea Rhizosphere	CSIR-IMTECH	24309742
Pantoea sp. Strain AS- PWVM4	Isolated from the rhizosphere of Punica granatum, exhibits phosphate solubilization	CSIR-IMTECH	<u>24309733</u>

Chemoinformatics and Pharmacoinformatics

Web Server	Description
DrugMint	A Server for Identification of Drug-like Molecules
ABMPred	Prediction of AntiBacterial Compounds against MurA Enzyme
MDRIpred	Prediction of Inhibitor against Drug Resistant M.Tuberculosis
DMKpred	Prediction of Drug molecules for kinase protein
KiDoQ	Prediction of inhibition constant of a molecule against Dihydrodipicolinate synthase enzyme
TOXIpred	Prediction of aqueous toxicity of small chemical molecules in T. pyriformis.
MetaPred	Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule.
GDoQ	Model for prediction of GLMU inhibitors using QSAR and docking apprach.
KetoDrug	Binding affinity prediction of ketoxazole derivatives against fatty acid amide hydrolase.
WebCDK	Web Interface for CDK libraries
TLR4HI	SVM based model for computing inhbitors against human TLR4 (Toll like receptor).
DMKPred	A webserver for the prediction of binding of chemical molecules with specific kinases.
ntEGFR	Predicting and designing imidazothiazoles/pyrazolopyrimidines based inhibitors against wild/mutant EGFR.
CancerIn	Classification and designing of anti-cancer inhibitors.
EGFRpred	Prediction of inhibitor of anti-EGFR molecules of diverse class.
DiPCell	Designing of inhibitors against pancreatic cancer cell lines.
HIVfin	Prediction of fusion protein inhibitors against HIV.

Molecular Interactions

Software name	Description
ADPint	Prediction of ADP interacting residues in a protein.
ATPint	Identification of ATP binding sites in ATP-binding proteins.
DOMprint	SVM based model for predicting domain-domain interaction (DDI).
GlycoEP	Prediction of C-, N- and O-glycosylation site in eukaryotic proteins.
GlycoPP	Prediction of potential N-and O-glycosites in prokaryotic proteins.
GTPbinder	Identification of GTP binding residue in protein sequences.
MYCOprint	A tool fort exploration of the interactome of Mycobacterium tuberculosis.
NADbinder	Prediction of NAD binding proteins and their interacting residues.
Pprint	ANN based method for identification of RNA-interacting residues in a protein.
PreMieR	Identification of mannose interacting residues (MIRs) in protein sequences.
PROprint	Prediction of physical/functional interaction between two protein molecules.
RNApin	A server for the prediction of protein interacting nucleotides in RNA sequences.
tRNAmod	Prediction of post transcriptional modifications in transfer-RNA (tRNA) sequence.
VitaPred	Identification of different class of vitamin interacting residues in a protein.

Biological Databases

Database name	Description	
MHCBN	A curated database of MHC-binding, Non-binding peptides and T-cell epitopes.	
Bcipep	A database of B-cell epitopes.	
HaptenDB	A database of hapten molecules that can not activate immune system.	
PolysacDB	Compilation of antigenic polysaccharides found on surface of microbial organism.	
TumorHope	A database of experimentally characterized tumor homing peptides.	
AntigenDB	Information about a wide range of experimentally-validated antigens.	
OXDBase	Compilation of oxygenases involved in the biodegradation on xenobiotic compounds.	
HMRBase	A manually curated database of hormones and their Receptors.	
CPPsite	Compilation of experimentally validated Cell Penetrating Peptides (10-30 amino acids).	
BIAdb	Information about Benzylisoquinoline Alkaloid molecules	

A manually curated database of anti-HIV siRNAs.

Collection of EGFR inhibitors from literature.

A resource of experimentally tested hemolytic peptides.

A database of epitopes found in protein involved in cancer.

Catalog of genes involved in the different stages of cervical carcinogenesis.

Collection and compilation of experimentally validated anticancer peptides

Repository of experimentally characterized eubacterial and archaeal glycoproteins.

A database of plant derived natural compounds that exhibit anti-cancerous activity.

Compilation of anticancer drugs and their effectiveness against various cancer cell lines.

HIPdb is a manually curated database of experimentally validated antiparasite peptides.

Pancreatic cancer methylation database provides large scale collection of metylated genes.

AHTPDB is an ideal platform for complete & relevant information for large number of antihypertensive

Information about assays performend to test sensitivity/resistance of Herceptin Antibody.

Compilation and creation of datasets from PDB for structural/functional annoation of proteins.

HIVsir

CCDB

NPACT

ccPDB

ParaPep **EGFRindb**

CancerPPD

HerceptinR

HemolytiK

CancerTope

AHTPDB

PCMdb

CancerDR

ProGlycProt

Genome Annotations

Server Name	Description
FTG	Locating probable protein coding region in nucleotide sequence using FFT based algorithm.
GWBLAST	Genome wide similarity search using BLAST
GWFASTA	Genome Wise Sequence Similarity Search using FASTA.
EGPred	Prediction of gene (protein coding regions) in eukaryote genomes that includes introns/exons.
SVMgene	SVM based approach to identify the protein coding regions in human genomic DNA.
SRF	Find repeats through an analysis of the power spectrum of a given DNA sequence.
MyPattern	A program for detection of a 'motif' in DNA sequence using an exact search method.
GeneBench	A suite of datasets and tools for evaluating gene prediction methods.
FTGPred	A web server for predicting genes in a DNAsequence.
PHDcleav	Prediction of Human Dicer cleavage sites.
PolyApred	Prediction of polyadenylation signal (PAS) in human DNA sequence.
siRNAPred	Predicting actual efficacy of both 21mer and 19mer siRNAs with high accuracy.
ECGPred	Analsis of expresion data and correlation between gene expression and nucleotides composition of genes.
desiRam	Designing of highly efficient siRNA with minimum mutation approach
MARSpred	Discriminating between Mitochondrial and Cytosolic Aminoacyl tRNA Synthetases
Icaars	Identification & Classification of Aminoacyl tRNA Synthetases.
LGEpred	Prediction of correlation between amino acid residue and gene expression level.

Immunoinformatics or Vaccine Informatics

Software name	Description		
	T-Helper Epitopes or MHC/HLA Class II binders (Adaptive Immunity, Exogenous Antigen)		
MHCBN	A database of MHC-Binding, Non-binding peptides and T-cell epitopes.		
ProPred	Identification of promiscuous MHC Class-II binding regions in an antigen sequence		
HLA-DR4Pred	Identification of HLA-DRB1*0401(MHC class II alleles) binding peptides.		
МНС	Matrix Optimization Technique for identification of binding core in MHC II binding peptides		
MHC2pred	The MHC2Pred is an SVM based method for prediction of promiscuous MHC class II binding peptides.		
MHCBENCH	Benchmarking of MHC binding peptide prediction algorithms.		
FDR4	Prediction of binding affinity of HLA-DRB*0401 binders in an antigenic sequence.		
IL4pred	In silico platform for designing and disovering of interleukin-4 inducing peptides.		
IFnepitope	Designing of interferon-gamma inducing epitopes.		
	CTL Epitopes or MHC/HLA Class I binders (Adaptive Immunity, Endogenous Antigens)		
PROPRED1	Prediction of promiscuous binders for 47 MHC/HLA class I alleles using quantitative matrices;		
Pcleavage	Identification of protesosomal cleavage sites in a protein sequence.		
TPPred	Prediction of TAP binding peptides for understanding of peptide internalization to endoplasmic reticulum		
CTLPred	A direct method for prediction of CTL epitopes.		
nHLApred	This is a comprehensive method for prediction of MHC binding peptides or CTL epitopes of 67 MHC class alleles.		
MMBPred	Prediction of mutated MHC class I binders in an antigen, having high affinity and promiscuousity.		
HLAPRED	The method can identify and predict HLA (both class I & II) binding regions in an antigen sequence.		
	Linear & Conformational B-cell Epitopes		
BCIPEP	Collection & compilation of B-cell epitopes from literature		
BCEPRED	Prediction of linear B-cell epitopes, using Physico-chemical properties		
ABCPred	Mapping of B-cell epitope(s) in an antigen sequence, using artificial neural network.		

Functional Annotation of Proteins

Specifically trained to predict mitochondrial proteins with high accuracy

SVM-based method for predicting Glutathione S-transferase protein.

Prediction of allergenic proteins and mapping of IgE epitopes in antigens.

Classification and prediction of proteins involved in voltage gated ion channels.

Compute length of DNA or protein fragments from gel using a graphical method.

Calculate correlation coefficient between amino acid residue and gene expression level.

Identification of neurotoxins their source and function from primary amino acid sequence.

Prediction of proteins secreted by Malarial Parasite P. falciparum into infected-erythrocyte.

Server name	Description
NRpred	Prediction and classification of nuclear receptors, SVM models based on composition.
GPCRpred	Prediction of families and superfamilies of G-protein coupled receptors (GPCR)
ESLpred	Subcellular localization of the eukaryotic proteins using dipeptide compostion and PSI-BLAST.
PSLPred	Prediction of subcellular localization of bacterial proteins
BTXPred	It predicts bacterial toxins and their function from primary amino acid sequence.
GPCRsclass	This webserver predicts amine type of G-protein coupled receptors

Classification and prediction of oxygen binding proteins.

A server for predicting functional class of a protein.

Subcellular localization of human proteins with high accuracy

Classification of bacterila proteins particularly virulent proteins

SVM based method for subcellular localization of rice proteins.

Composition based identification and classification of proteins.

Identification of Inteins hiding in their protein sequences.

Advanced method for subcellular localization of eukaryotic proteins.

CyclinPred is a SVM based prediction method to identify novel cyclins.

Mitpred

Oxypred

VGIchan

HSLpred

DNAsize

GSTpred

LGEpred

NTXpred

VICMpred

ALGpred

PseaPred

RSLPred

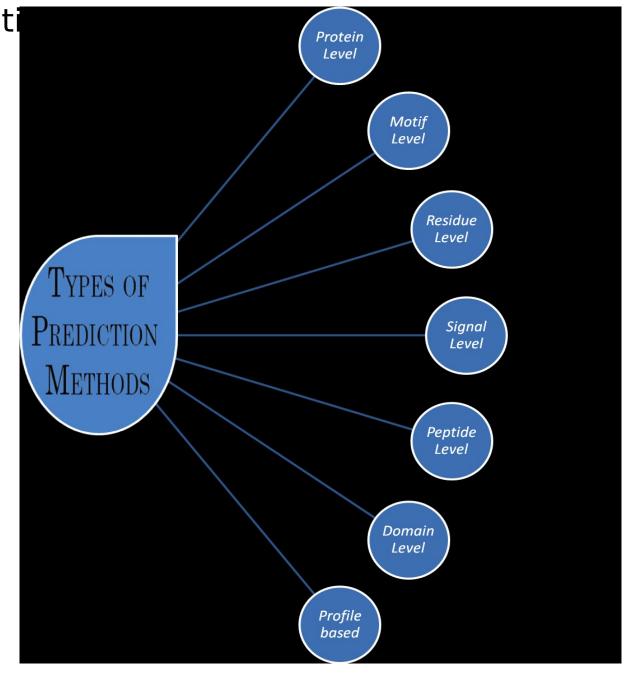
ESLPred2

ISSpred

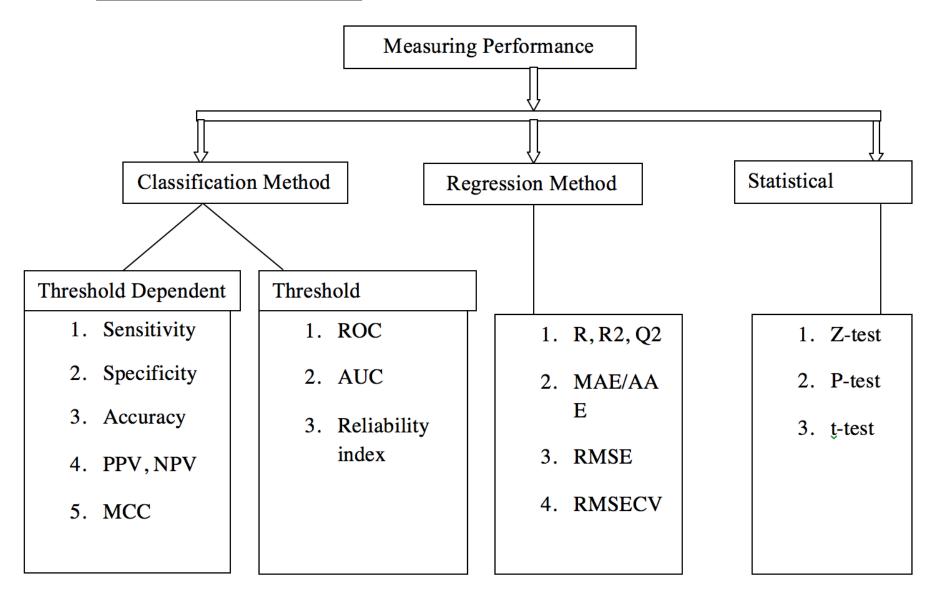
CyclinPred

COPid

Mango


Proteins Structure Prediction

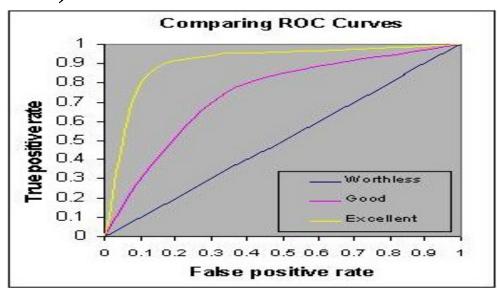
Web Server	Description
AlphaPred	A neural network based method for predicting alpha-turn in a protein.
APSSP2	Prediction of secondary structure of proteins from their amino acid sequence.
AR_NHPred	Identification of aromatic-backbone NH interaction in protein residues.
BetatPred	Statistical-based method for predicting Beta Turns in a protein.
Betatpred2	Prediction of Beta-turns with high accuracy using multiple sequence alignment.
BetaTurns	It predict different types of beta-turns (e.g., Types I/II/IV/VIII) in a protein.
BhairPred	Prediction of beta hairpins in proteins using ANN and SVM techniques.
CHpredicts	Prediction of CH-O, CH-PI interactions in backbone residues of a protein
GammaPred	Identification of gamma-turn containing residues in a given protein sequence.
PEPstr	Prediction of tertiary structure of small peptides (7 to 25 residues).
Proclass	Classification of proteins based on secondary structure contents.
PSA	Analyze the amino acid sequence and multiple sequence alignment of proteins.
RPFOLD	A fold recognition server for searching protein fold in PDB.
SARpred	ANN-model for redicting real-value of surface acessibility of protein residues.
TBBpred	This server predict Transmembrane Beta Barrel regions in a protein.
PEP2D	This server allows you to predict secondary structure of peptides.


GPSR: A Resource for Genomics Proteomics and Systems Biology

- A journey from simple computer programs to drug/vaccine informatics
- Limitations of existing web services
 - History repeats (Web to Standalone)
 - Graphics vs command mode
- General purpose programs
 - Small programs as building unit
- Integration of methods in GPSR

Types of Predict

Measuring Performance


Senstivity=
$$\frac{TP}{TP+FN} \times 100$$

Specifity=
$$\frac{TN}{TN+FP} \times 100$$

		Actu	al	
þ		Positive	Negative	
Predicted	Positive	TP	FP	PPV
Pr	Negative	FN	TN	NPV
		Sensitivity	Specificity	

Accuracy=
$$\frac{TP + TN}{TP + TN+FP + FN} \times 100$$

$$MCC=\frac{(TP\times TN) - (FP\times FN)}{\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}} \times 100$$

Title	Description		
	pro2aac (To calculate amino acid composition of protein) The amino acid composition in a protein is simply the percentage of the different amino acids represented in a particular protein. The aim of calculating the composition of proteins is to transform the variable length of protein sequences to fixed length feature vectors. In addition the conversion of a protein sequence to a vector of 20 dimensions using amino acid composition will encapsulate the properties of the protein into the vector. [The composition of all 20 natural amino acids were calculated by using the following equation		
Usage	pro2aac -i seq.sfa -o seq.out		
-i	Input file name contains single fasta format		
-o	Output file name gives amino acid composition		
seq.sfa	>seq_1##MRNRGFGRRELLVAMAMLVSVTGCARHASGARPASTTLPAGADLADRFAEL ERRYDARLGVYVPATGTTAAIE >seq_2##ACGRGFGVKLACNMNNACRTYFSDVAMAMLVSVTGCARHASGARPASTTL PAGADLADIEYRADERFAFCSTF		
seq.out	# Amino Acid Composition of proteins # A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, 19.18, 1.37, 4.11, 5.48, 2.74, 9.59, 1.37, 1.37, 0.00, 9.59, 4.11, 1.37, 4.11, 0.00,13.70, 4.11, 8.22, 6.85, 0.00, 2.74, 19.18, 6.85, 5.48, 2.74, 6.85, 8.22, 1.37, 1.37, 1.37, 5.48, 4.11, 4.11, 2.74, 0.00, 8.22, 6.85, 6.85, 5.48, 0.00, 2.74,		
Vector	20 dimension (i.e 20 types of amino acid composition is generated)		

OSDDLINUX

Customized operating environment for drug discovery pipeline

<u>Live</u> Server

Pkg Repository

Webserver

Live CD

Installation

Standalon

Galaxy

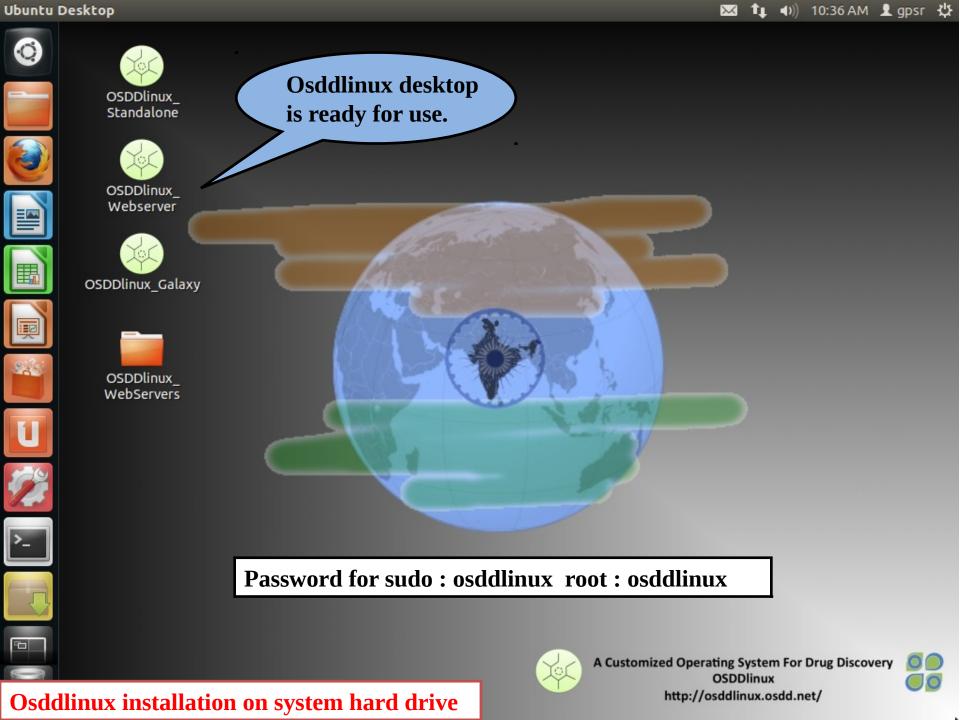
All in ONE

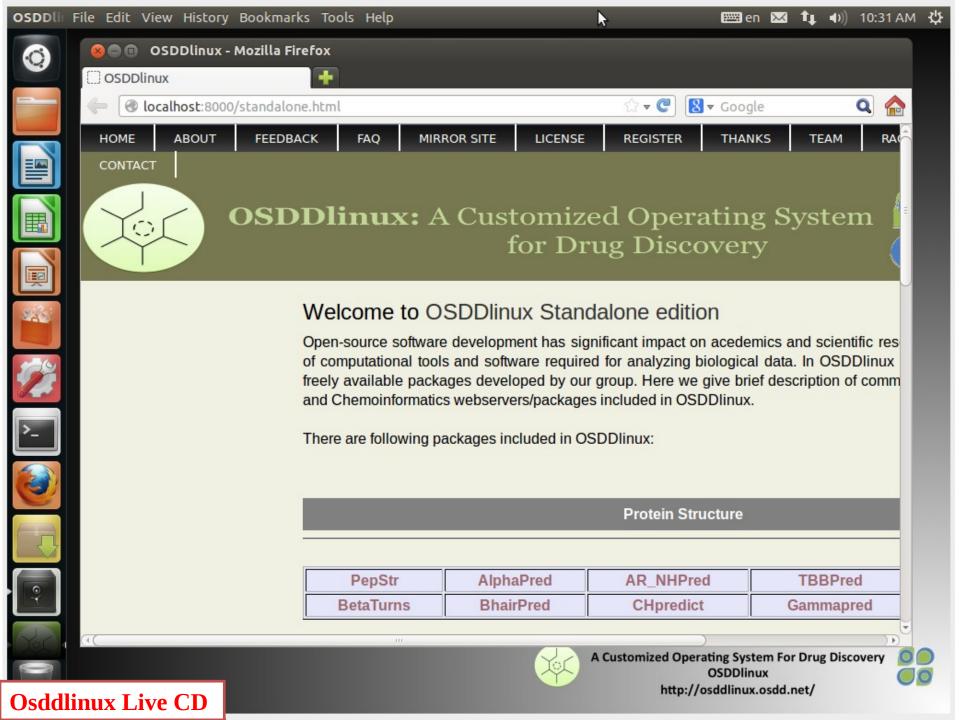
Major Features of OSDDlinux

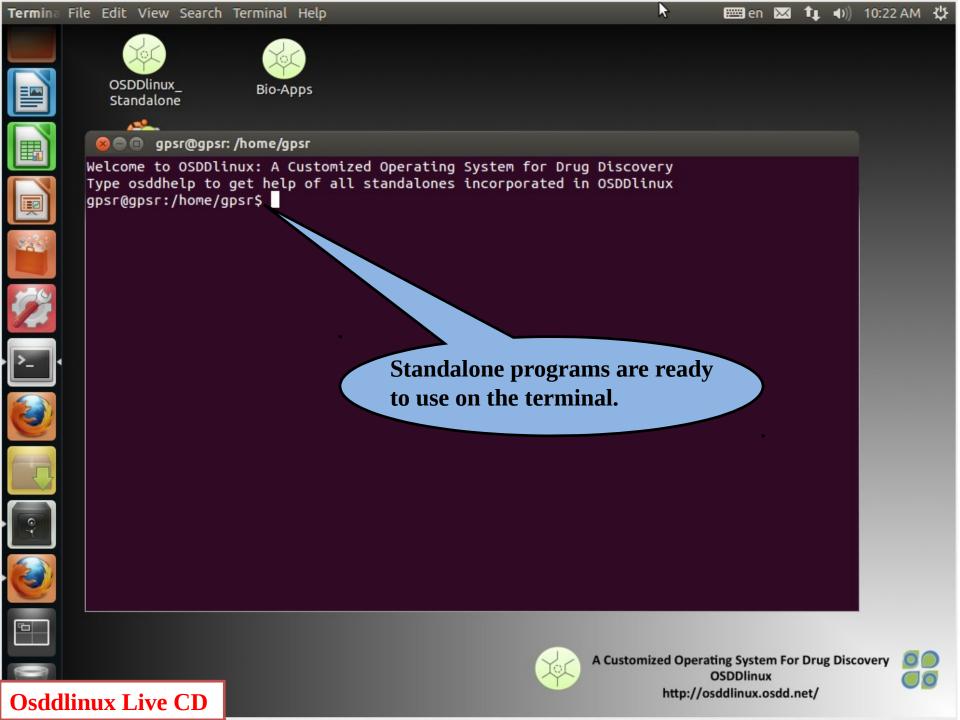
Service for Scientific Community

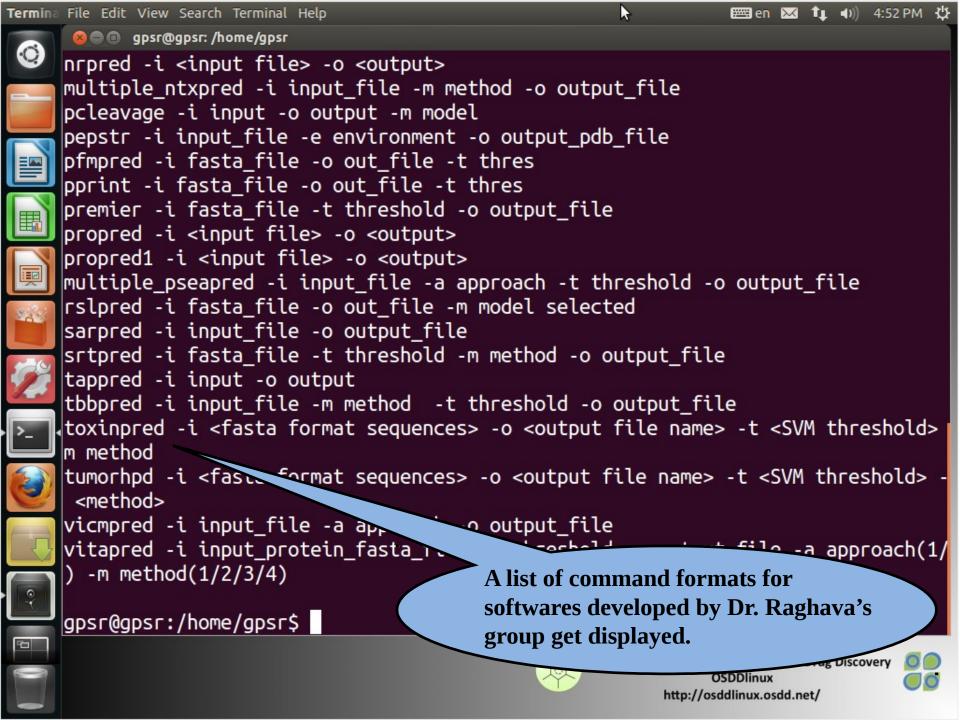
Online for Occasional Users
LiveDVD/USB on local computer with Data Security

Platform for Developers


Developers with no infrastructure Infrastructure on existing linux setup


Linux for Students


Bootable LivedDVD for occasional learning
OSDDlinux on Windows/MAC Users
Online hand-on experience on Linux & PERL programming


Installation of ODDlinux

- 1. Live CD/DVD/USB no need to boot
- 2. Install on a new machine
- 3. Install via Virtual Box (Windows/MAC/Unix)
- 4. Install on existing Unix/MAC machine

OSDDLINUX

Customized operating environment for drug discovery pipeline

<u>Live</u> Server

Pkg Repository

Webserver

Live CD

Installation

Standalon

Galaxy

All in ONE

Thanks