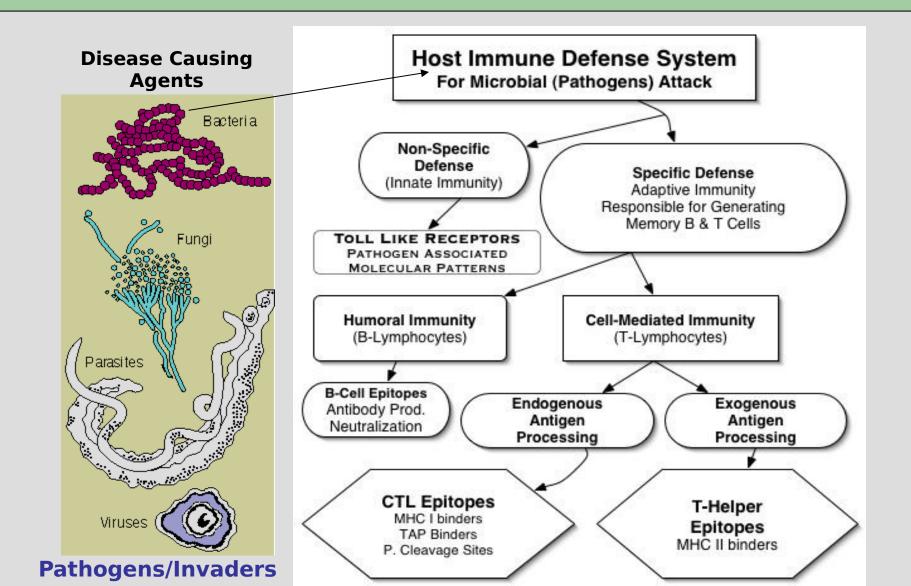
Computer-aided Vaccine and Drug Discovery

G.P.S. Raghava, Scientist and Head Bioinformatics Centre Institute of Microbial Technology, Chandigarh


Vaccine Informatics

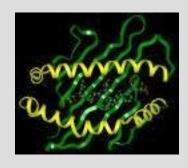
- Understanding immune system
- > Breaking complex problem
- Adaptive immunity
- > Innate Immunity
- Vaccine delivery system
- > ADMET of peptides

Drug Informatics

- > Annotation of genomes
- > Searching drug targets
- > Properties of drug molecules
- > Protein-chemical interaction
- Prediction of drug-like molecules

Web Site: http://www.imtech.res.in/raghava/

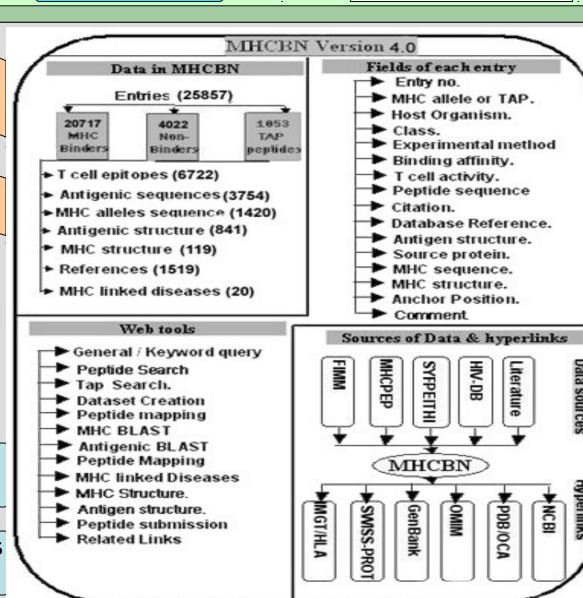
Innate Immunity

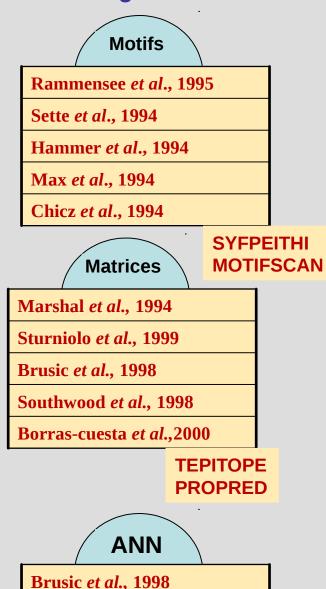

Bioinformatics Cent

Protective Antigens

Vaccine Delivery

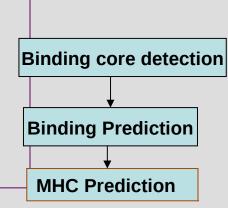
MHCBN: A database of MHC/TAP binders and T-cell epitopes


Distributed by EBI, UK


Reference database in T-cell epitopes Highly Cited (~70 citations)

Bhasin et al. (2003) Bioinformatics 19: 665

Bhasin et al. (2004) NAR (Online)



Available algorithms

Difficulties with MHC prediction

- >Quality and quantity of data.
- ➤ Variable length of reported binders. So, a method is required additionally for detecting binding core.
- >Poorly defined anchor residues.

Our approach:

Development of method for HLA-DRB1*0401

- § Large dataset
- **S** Computational approaches (ANN, SVM)
- Evaluation: 5-fold cross-validation
- § Performance measures: sensitivity, specificity NPV, PPV, accuracy.
- **Testing on independent dataset**
- § Extension of best approach to large number of alleles

4

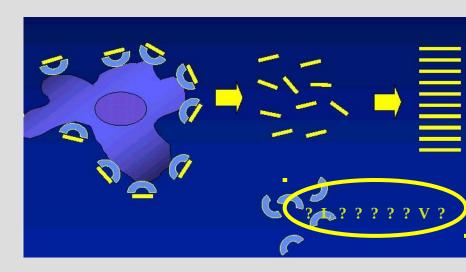
Prediction of MHC class I binders

Existing methods:

Motifs: consider occurrence of few residues.

Low accuracy (Only 35% have motifs)

Quantitative matrices: Consider independent contribution of each residue.

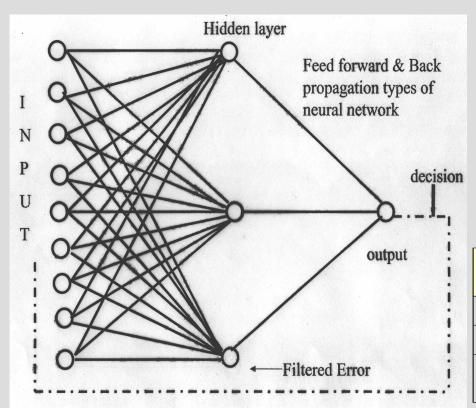

Non-adaptive, non-linear.

- Machine learning techniques: ANN Available for 1 or 2 alleles, require large data.
- MHC-peptide structure: available for 1 or two alleles.

Very Slow, less amount of 3-D data.

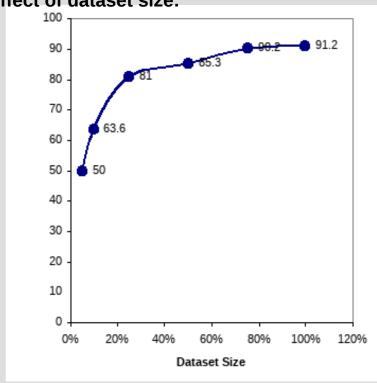
Our Approach:

- Large & high quality dataset
- Computational techniques (ANN & QM).
- Combination of ANN & QM.
- Filtering of Potential CTL epitopes.
- Display favorable for locating promiscuous T cell epitopes.



Amino acid/Position	P1	P2	P3	P4	P5	P6	P7	P8	P9
A	0.69	-0.99	0.52	-0.27	0.29	0.31	0.62	0.27	-0.09
位 但									
C	-0.62	-1.47	0.08	0.71	-0.75	0.32	0.22	0.61	-0.40
D	-1.05	-1.75	0.18	0.19	-0.14	-0.53	-1.05	-1.06	-1.54
E	-1.52	-1.73	-1.14	0.56	-0.72	-0.86	-0.84	0.00	-1.79
F	1.08	-1.80	-0.15	-0.47	0.70	0.32	0.92	0.36	-1.67
G	-0.51	-1.74	-0.26	-0.22	-0.26	-0.91	-1.19	-0.58	-1.86
H	0.38	-1.80	-0.24	-0.40	0.00	-0.34	0.40	0.27	-2.00
I	0.00	0.12	-0.47	-0.47	-0.21	0.14	0.20	-0.18	0.38
K	0.14	-1.75	-1.14	-0.01	-1.17	-1.12	-1.69	-0.65	-1.94
L	0.09	6.31	0.54	-0.06	0.26	0.45	0.50	0.62	6.03
M	0.31	6.22	0.63	-0.86	0.08	0.33	-0.29	-0.43	-0.37
И	-0.67	-2.00	0.75	-0.04	-0.04	-0.20	0.10	-0.35	-2.00
P	-0.93	-1.88	-0.29	0.76	0.57	0.87	0.42	0.28	-2.00
Q	-0.69	-1.33	-0.61	-0.02	-0.38	-0.58	-0.76	-0.47	-1.50
R	0.31	-2.00	-0.67	0.20	0.00	-0.70	-0.31	-0.14	-1.82
S	0.72	-1.87	0.60	0.33	0.04	0.45	0.24	0.92	-1.62
T	-0.48	-0.16	-0.73	-0.35	-0.03	0.00	-0.11	0.27	-0.29
V	-0.22	-0.07	0.09	-0.26	0.49	0.58	0.43	-0.39	6.28
W	-0.67	-2.00	0.80	-0.74	0.50	-0.80	-0.40	-0.40	-2.00
X	0.00	2.00	2.00	0.00	2.00	2.00	2.00	2.00	2.00
Y	1.25	-1.58	0.88	-0.67	0.67	-0.34	0.22	-0.29	-2.00

ANN implementation: For 30 alleles out of total 48 alleles having more than >15 binders


Implementation

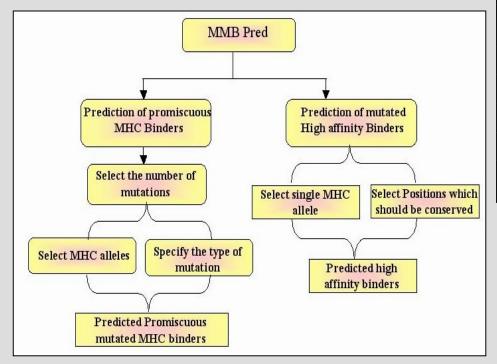
Amino acid	Binary Encoding		
Alanine (A)	100000000000000000000000		
Cysteine (C)	01000000000000000000000		
Aspartate (D)	0010000000000000000000		
Glutamate (E)	0001000000000000000000		
Phenylalanine (F)	00001000000000000000		

Results

Effect of dataset size:

MHC Allele	Sensitivity	Specificit y	PPV	Accuracy
HLA-A1	95.4	95.4	95.4	95.4
HLA-A2	83.0	88.5	64.9	87.5
Mean ±STDEV	87.3±5.8	87.3±6.0	86.6±6.66	87.3±5.9

Role of mutations:


Can increase the MHC binding affinity (Mucha *et al.*, 2002 .) Enhance the promiscuousity of binders (Berzofsky *et al.*, 1993) .

Available method

No

Our appraoch:

- Quantitative matrices (nHLAPred).
- Testing on independent data.
- Random or position specific mutations.
- Allows up to three mutations.

Results: high affinity binders from peptides "ITDQVPFSV" and "YLEPGPVTA"

Peptide sequence	Positions Of mutations	Experimentally proven ^a	Similarity ^b
ITDQVPFSV	1	2(F,Y)	2 (2)
ITDQVPFSV	2	3(L,M,I)	3 (3)
ITDQVPFSV	3	5(W,F,Y,A,M)	4 (7)
ITDQVPFSV	2 and 3	6(L&W, L&F, L&Y, L&A, L&M, L&S)	5 (12)
ITDQVPFSV	1 and 2	3(W&L,F&L,Y&L)	2 (2)
YLEPGPVTA	1	2(F, W)	-
YLEPGPVTA	3	6(Y, W, F, M, S, A)	6(11)
YLEPGPVTA	9	3(V, L, I)	3(3)
YLEPGPVTA	3 and 9	6(M&V, S&V, A&V, Y&V, F&V, W&V)	6 (17)

The method has been implemented online as MMBPred.

Adaptive Immunity

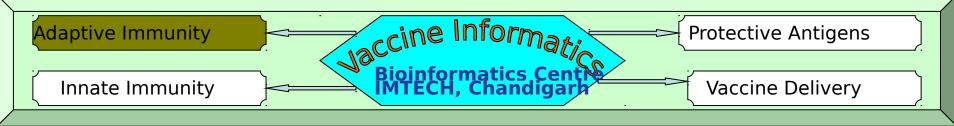
Innate Immunity

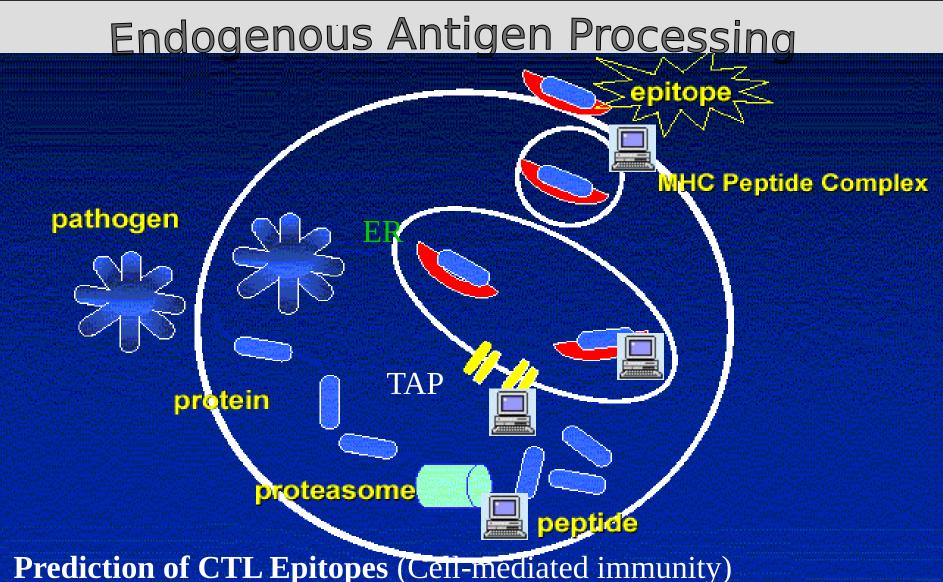
Adaptive Immunity

Innate Immunity

In

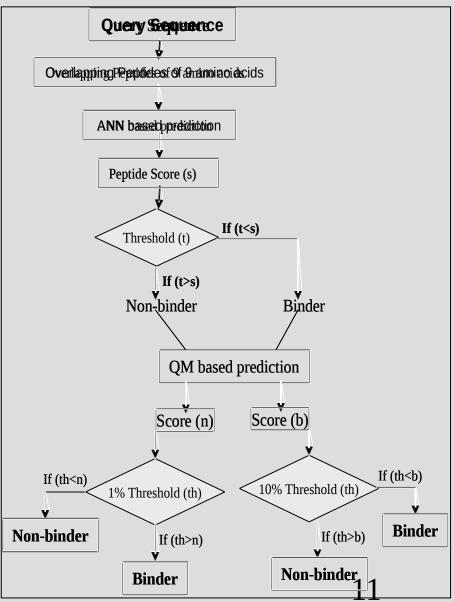
Protective Antigens


Vaccine Delivery


----10-------50-------60--DRB1 0101: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0102: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0301: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0305: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0306: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0307: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0308: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0309: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0311: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0401: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0402: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0404: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0405: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0408: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0410: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0421: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0423: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0426: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0701: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0703: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0801: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0802: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0804: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0806: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 0813: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI DRB1 0817: MKVKYALLSAGALQLLVVGCGSSHHETHYGYATLSYADYWAGELGQSRDVLLAGNAEADRAGI MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI DRB1 1101: DRB1 1102: MKVKYALLSAGALOLLVVGCGSSHHETHYGYATLSYADYWAGELGOSRDVLLAGNAEADRAGI

Prediction of MHC II Epitopes (Thelper Epitopes)

- Propred: Promiscuous of binders for 51 MHC Class II binders
 - Virtual matrices
 - Singh and Raghava (2001) Bioinformatics 17:1236
- HLADR4pred: Prediction of HLA-DRB1*0401 binding peptides
 - Dominating MHC class II allele
 - ANN and SVM techniques
 - Bhasin and Raghava (2004) <u>Bioinformatics 12:421.</u>
- MHC2Pred: Prediction of MHC class II binders for 41 alleles
 - Human and mouse
 - Support vector machine (SVM) technique
 - Extension of HLADR4pred
- MMBpred: Prediction pf Mutated MHC Binder
 - Mutations required to increase affinity
 - Mutation required for make a binder promiscuous
 - Bhasin and Raghava (2003) <u>Hybrid Hybridomics</u>, 22:229
- MOT: Matrix optimization technique for binding core
- MHCBench: Benchmarting of methods for MHC binders



Prediction of MHC class I binders

Hybrid approach: to further improve the accuracy

Result

ANN + QM 91.8±5.4 94.9±3.4 94.0±4.9 93.2±4.1 93.6±2.9

Prediction of proteasome Cleavages

Proteasome cleavage specificity

Proteasome is a multienzyme complex whose cleavage specificity is not only effected by residues at cleavage site but also by the neighboring residues.

Existing methods:

Based on cleavage motifs and time dependent degradation of peptides.

PAProC: Human and Yeast Proteasome

Cleavage is determined using stochastic hillclimbing algorithm.

NetChop: For Proteasome and immunoproteasome.

Based on MHC class I ligand data using ANN

Recently, these three methods has been evaluated on independent dataset. The results showed that NetChop (MCC=0.32) is better then rest of methods. (Saxova et al., 2003). Low accuracy of all methods motivated

Proteasome Complex Pm - P4 P3 P2 1 '- P2' P3' P4' - Pn' Substrate Cleavage Site

Our approach:

- •Generation of *in vitro* and *in vivo* data (MHC class I ligands).
- Application of machine learning techniques.

Support Vector Machine

Parallel Exemplar Based Learning

(PEBLS)

Waikato Environment for Knowledge analysis (Weka)

Evaluation

Leave One out cross validation and calculating Matthews Correlation Coefficient (MCC)

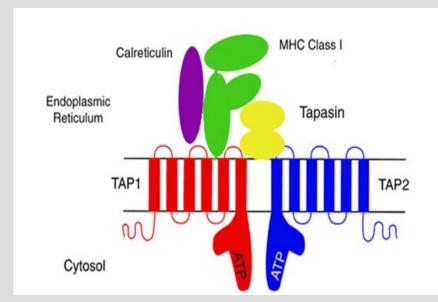
12

Analysis & prediction of TAP binders

General about TAP:

- **❖**The binding of the peptides to TAP is crucial for its translocation from cytoplasm to ER.
- ❖Three N terminal residues and C terminal residue is important for TAP selectivity
- ❖ Charged amino acids are preferred whereas aromatics, acidic (in P1) and proline residue (in P2, P3) are disfavored.
- ❖ Hydrophobic residues at C terminal

Available methods:


webtool.

Daniel *et al.*, 1998 has developed an ANN Based Methods & achieved an correlation of 0.73.

Brusic *et al.,* 1999 has developed another ANN based method to predict TAP binders with fair accuracy.

Limitations: Low correlation.

Not available as software or

Our approach:

High quality dataset

Analysis of TAP binding peptides.

Prediction using QM Prediction using SVM:

- I. Binary sequence.
- I. Sequence features.
- III. Combination of both.

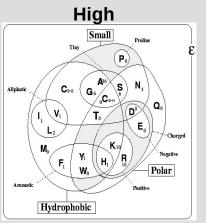
Evaluation: Leave One Out Cross-validation (LOOCV) using Correlation

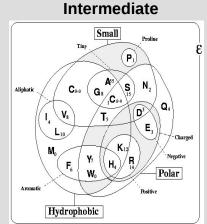
13

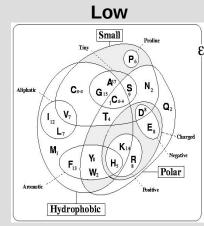
Analysis of TAP binders

Analysis of TAP binders:

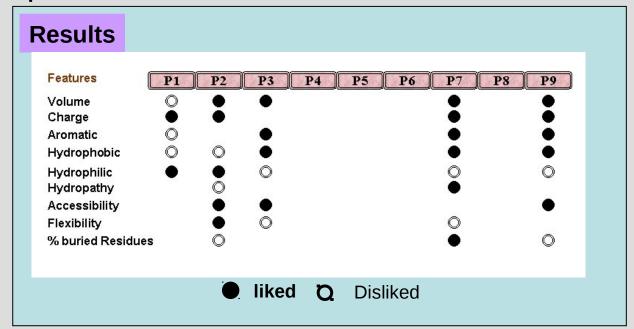
Dataset:

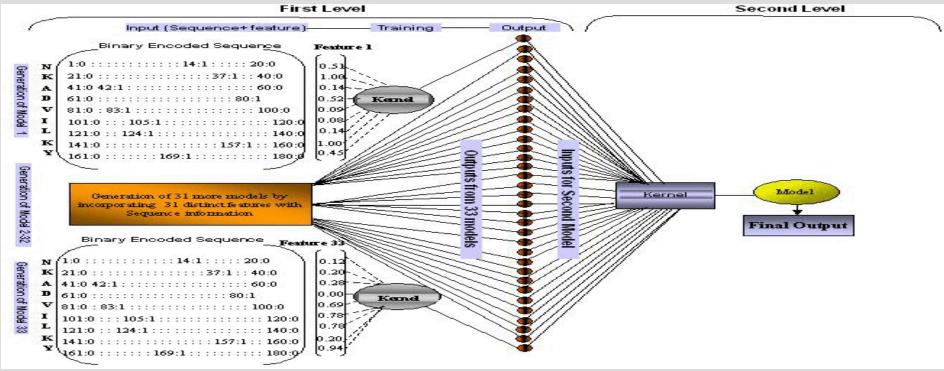

Dataset of 431 peptides of 9 aa whose TAP binding affinity is experimentally known


Binding affinity of peptides were normalized to 0-10.


409 22

Binder Negligible binder


Analysis by generating venn diagrams



Correlation between features & position

Prediction of TAP binders

Prediction approaches: cascade SVM (a novel approach)

Results:

Method	Correlation
Quantitative matrix	0.65
SVM (Binary) ¹	0.81
SVM (Feature based) ²	0.80
SVM(1+2)	0.82
Cascade SVM (1st model)	0.80
Cascade SVM (2 nd model)	0.88

Cascade SVM is able to outperform the other SVMs and existing methods.

The method based on cascade SVM has been implemented online as TAPPred

Direct prediction of CTL epitope

Why direct CTL epitope prediction methods required?

1. MHC binder prediction methods are not able to discriminate between T cell epitopes and non-epitopes (MHC binders).

Available algorithms:

AMPHI: T cell epitope form amphipathic helix.

SOHHA: Strip of Helix Hydrophobicity.

X-ray crystallography proved that T cell epitopes have extended conformation.

Optimer: Based on T cell epitope conformation & motif density.

Limitations:

Based only on T cell epitopes.

Based on small dataset.

No one is available online.

Performance is nearly random (Deavin et

al., 1996)

Our Approach:

•Larger & high quality dataset.

Computational techniques

- •QM
- •ANN
- •SVM

Consensus & Combined prediction

- Evaluation 5-fold cross-validation
- Testing on independent dataset

Dataset: From MHCBN database. 1,137 CTL epitopes 1,134 non-epitopes

Prediction of MHC I binders and CTL Epitopes

Propred1: Promiscuous binders for 47 MHC class I alleles

- Cleavage site at C-terminal
- Singh and Raghava (2003) Bioinformatics 19:1109

nHLApred: Promiscuous binders for 67 alleles using ANN and QM

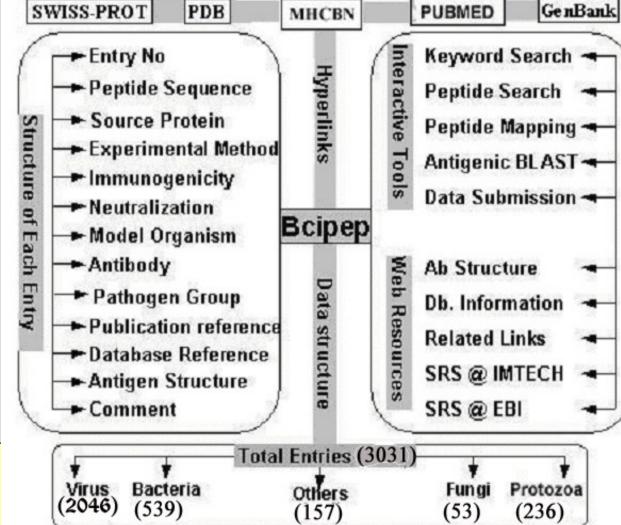
Bhasin and Raghava (2007) J. Biosci. 32:31-42

TAPpred: Analysis and prediction of TAP binders

- Bhasin and Raghava (2004) Protein Science 13:596

Pcleavage: Proteasome and Immuno-proteasome cleavage site.

- Trained and test on in vitro and in vivo data
- Bhasin and Raghava (2005) Nucleic Acids Research 33: W202-7


CTLpred: Direct method for Predicting CTL Epitopes

- Bhasin and Raghava (2004) Vaccine 22:3195

BCIPEP: A database of B-cell epitopes.

Saha et al. (2005) BMC Genomics 6:79. Saha et al. (2006) NAR (Online)

BCEpred: Benchmarking of physico-cemical properties used in existing B-cell epitope prediction methods

In 2003, we evaluate parmeters on 1029 non-redudant B-cell epitopes obtained from BCIpep and 1029 random peptide

Saha and Raghava (2004) ICARIS 197-204.

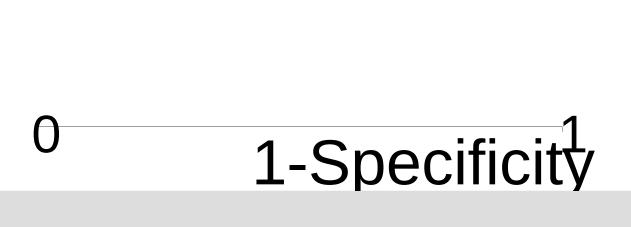
Physico-chemical Properties	Threshold	Sensitivity	Specificity	Accuracy% (Max)
Hydrophilicity [1]##	2.00	33	76	54.47
(Parker et al., 1986)**				
Accessibility[2]	2.00	65	46	55.49
(Emini et al., 1985)				
Flexibility [3]	1.90	47	68	57.53
(Karplus and Schulz, 1985)				
Surface [4]	2.40	37	74	55.73
(Janin and Wodak, 1978)				
Polarity [5]	2.30	2.8	81	54.08
(Ponnuswamy et al., 1980)				
Turns [6]	1.90	17	89	52.92
(Pellequer et al., 199)				
Antigenic Scale [7]	1.80	59	52	55.59
(Kolaskar and Tongaonkar,				
1990)				
[3]+[1]+[5]+[4]	2.38	56	61	58.70 19

ABCpred: ANN based method for B-cell epitope prediction

Challenge in Developing Method

- 1. Machine learnning technique needs fixed length pattern where epitope have variable length
- 2. Classification methods need positive and negative dataset
- 3. There are experimentally proved B-cell epitopes (positive) dataset but not Non-epitopes (negative)

Assumptions to fix the Problem

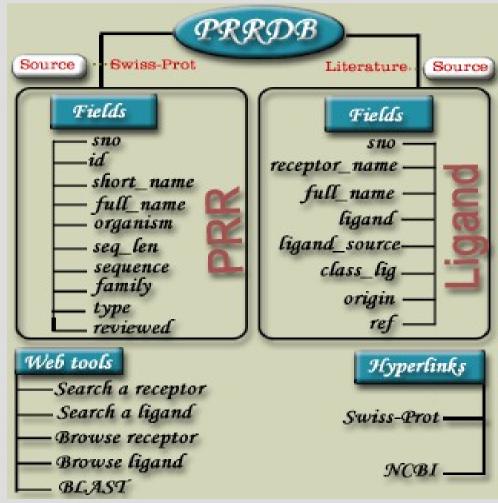

- 1. More than 90% epitope have less than 20 residue so we fix maximum length 20
- 2. We added residues at both end of small epitopes from source protein to make length of epitope 20
- 3. We generate random peptides from proteins and used them as non-epitopes

Creation of fixed pattern of 20 from epitopes

Window	<u>AEFPLDIT</u>	ACVPTDPNPQEVVLVNVTEN
Length/		(20 amino acid length)
Peptide		
20	PKGYVG AEFPLDIT AGTEAA	ACVPTDPNPQEVVLVNVTEN
18	KGYVG <u>AEFPLDIT</u> AGTEA	CVPTDPNPQEVVLVNVTE
16	GYVG <u>AEFPLDIT</u> AGTE	<u>VPTDPNPQEVVLVNVT</u>
14	YVG <u>AEFPLDIT</u> AGT	PTDPNPQEVVLVNV
12	VG AEFPLDIT AG	TDPNPQEVVLVN
10	G AEFPLDIT A	DPNPQEVVLV

ABCpred: ANN based method for B-cell epitope prediction

Results


Prediction of B-Cell Epitopes

- BCEpred: Prediction of Continuous B-cell epitopes
 - Benchmarking of existing methods
 - Evaluation of Physico-chemical properties
 - Poor performance slightly better than random
 - Combine all properties and achieve accuracy around 58%
 - Saha and Raghava (2004) ICARIS 197-204.
- ABCpred: ANN based method for B-cell epitope prediction
 - Extract all epitopes from BCIPEP (around 2400)
 - 700 non-redundant epitopes used for testing and training
 - Recurrent neural network
 - Accuracy 66% achieved
 - Saha and Raghava (2006) Proteins,65:40-48
- ALGpred: Mapping and Prediction of Allergenic Epitopes
 - Allergenic proteins
 - IgE epitope and mapping
 - Saha and Raghava (2006) Nucleic Acids Research 34:W202-W209

PRRDB is a database of pattern recognition receptors and their ligands

-500 Pattern-recognition Receptors/
228 ligands (PAMPs)
77 distinct organisms
720 entries

Major Challenges in Vaccine Design

- ADMET of peptides and proteins
- Activate innate and adaptive immunity
- Prediction of carrier molecules
- Avoid cross reactivity (autoimmunity)
- Prediction of allergic epitopes
- Solubility and degradability
- Absorption and distribution
- Glycocylated epitopes