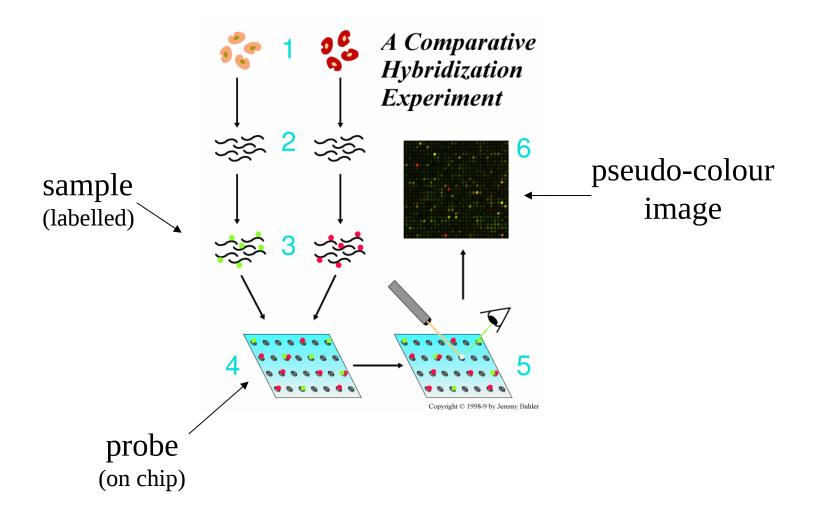
Analysis of Microarray Data

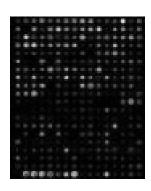
- Analysis of images
- Preprocessing of gene expression data
- Normalization of data
 - Subtraction of Background Noise
 - Global/local Normalization
 - House keeping genes (or same gene)
 - Expression in ratio (test/references) in log
- Differential Gene expression
 - Repeats and calculate significance (t-test)
 - Significance of fold used statistical method
- Clustering
 - Supervised/Unsupervised (Hierarchical, K-means, SOM)
- Prediction or Supervised Machine Learnning (SVM)

Technical



Images from scanner

- Resolution
 - standard 10μm [currently, max 5μm]
 - $-100\mu m$ spot on chip = 10 pixels in diameter

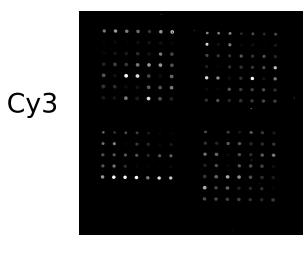


- Image format
 - TIFF (tagged image file format) 16 bit (65'536 levels of grey)
 - 1cm x 1cm image at 16 bit = 2Mb (uncompressed)
 - other formats exist e.g.. SCN (used at Stanford University)
- Separate image for each fluorescent sample
 - channel 1, channel 2, etc.

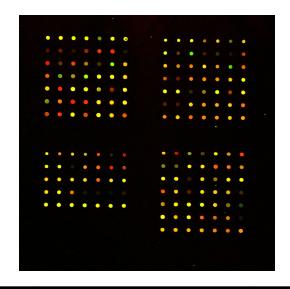
Images in analysis software

- The two 16-bit images (Cy3, Cy5) are compressed into 8-bit images
- Display fluorescence intensities for both wavelengths using a 24-bit RGB overlay image
- RGB image :
 - Blue values (B) are set to 0
 - Red values (R) are used for Cy5 intensities
 - Green values (G) are used for Cy3 intensities
- Qualitative representation of results

Images: examples



Pseudo-colour overlay



Cy5

Spot colour Signal strength Gene expression yellow Control = perturbed unchanged Control < perturbed induced red Control > perturbed repressed green

Processing of images

- Addressing or gridding
 - Assigning coordinates to each of the spots
- Segmentation
 - Classification of pixels either as foreground or as background
- Intensity determination for each spot
 - Foreground fluorescence intensity pairs (R, G)
 - Background intensities
 - Quality measures

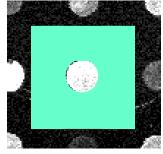
Background intensity

- Spot's measured intensity includes a contribution of non-specific hybridization and other chemicals on the glass
- Fluorescence from regions not occupied by DNA should by different from regions occupied by DNA
 - -> one solution is to use local negative controls (spotted DNA that should not hybridize)
- Different background methods :
 - Local background
 - Morphological opening
 - Constant background
 - No adjustment

Local background

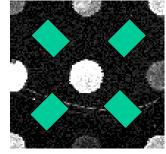
- Focusing on small regions surrounding the spot mask.
- Median of pixel values in this region

Most software package implement such an approach



ScanAlyze

ImaGene

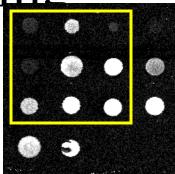


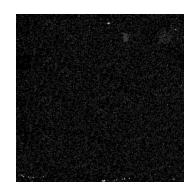
Spot, GenePix

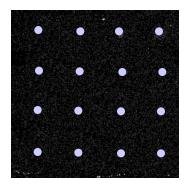
• By not considering the pixels immediately surrounding the spots, the background estimate is less sensitive to the performance of the segmentation procedure

Morphological opening

- Non-linear filtering, used in Spot
- Use a square structuring element with side length at least twice as large as the spot separation distance
- Compute local minimum filter, then compute local maximum filter
 - This removes all the spots and generates an image that is an estimate of the background for the entire slide
- For individual spots, the background is estimated by sampling this background image at the nominal center of the spot
- Lower background estimate and less variable







Constant background

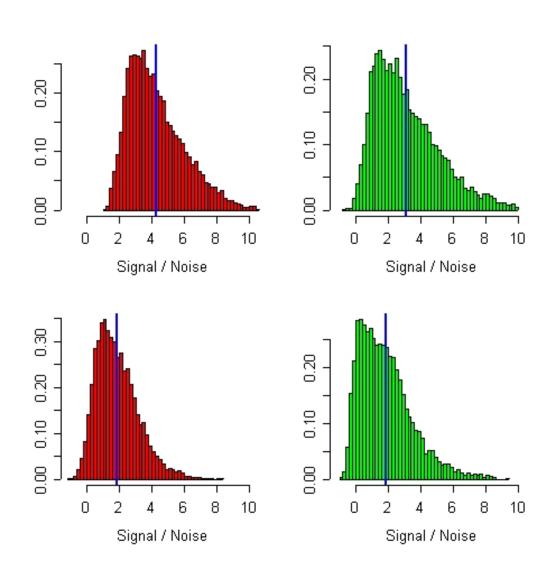
- Global method which subtracts a constant background for all spots
- Some evidence that the binding of fluorescent dyes to 'negative control spots' is lower than the binding to the glass slide
- -> More meaningful to estimate background based on a set of negative control spots
 - If no negative control spots:approximation of the average background =third percentile of all the spot foreground values

No background adjustment

Do not consider the background

 Probably not accurate, but may be better than some forms of local background determination!

Histograms



Signal/Noise = log₂(spot intensity/background intensity)

Preprocessing of Gene expression Data

- Scale transformation
 - CY3/CY5
 - -LOG(CY3/CY5)
- Replicates handling
 - Inconsistent replicate removal
 - Replicate merging
- Missing value handling
 - Removal of patterns having excess of missing values
 - Value of missing points
- Flat pattern filtering
- Unknown Gene Removing

Preprocessing: Normalization

Why?

To correct for systematic differences between samples on the same slide, or between slides, which do not represent true biological variation between samples.

How do we know it is necessary?

By examining self-self hybridizations, where no true differential expression is occurring.

We find dye biases which vary with overall spot intensity, location on the array, plate origin, pins, scanning parameters,....

Normalization Techniques

- Global normalization
 - Divide channel value by means
- Control spots
 - Common spots in both channels
 - House keeping genes
 - Ratio of intensity of same gene in two channel is used for correction
- Iterative linear regression
- Parametric nonlinear nomalization
 - $-\log(CY3/CY5)$ vs $\log(CY5)$)
 - Fitted log ratio observed log ratio
- General Non Linear Normalization
 - LOESS
 - curve between log(R/G) vs log(sqrt(R.G))

Pre-processed cDNA Gene Expression Data

On p genes for n slides: p is O(10,000), n is O(10-100), but growing,

			Silues				
		slide 1	slide 2	slide 3	slide 4	slide 5	
	1	0.46	0.30	0.80	1.51	0.90	
	2	-0.10	0.49	0.24	0.06	0.46	
Genes	3	0.15	0.74	0.04	0.10	0.20	
	4	-0.45	-1.03	-0.79	-0.56	-0.32	
	5	-0.06	1.06	1.35	1.09	-1.09	

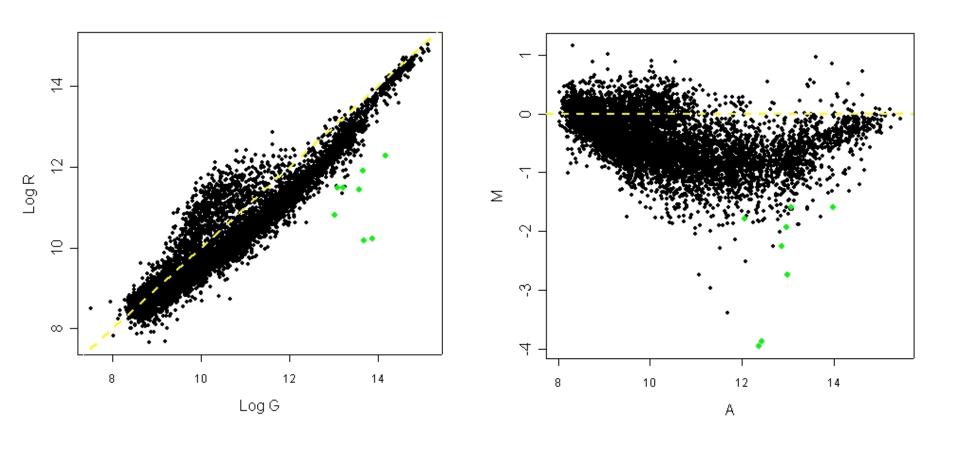
Clidac

Gene expression level of gene 5 in slide 4

= Log₂(Red intensity / Green intensity)

These values are conventionally displayed on a red (>0) yellow (0) green (<0) scale.

Scatterplots: always log, always rotate



log₂R vs log₂G

M=log₂R/G vs A=log₂√RG

Classification

- Task: assign objects to classes (groups) on the basis of measurements made on the objects
- Unsupervised: classes unknown, want to discover them from the data (cluster analysis)
- Supervised: classes are predefined, want to use a (training or learning) set of labeled objects to form a classifier for classification of future observations

Cluster analysis

- Used to find groups of objects when not already known
- "Unsupervised learning"
- Associated with each object is a set of measurements (the feature vector)
- Aim is to identify groups of similar objects on the basis of the observed measurements

Example: Tumor Classification

- Reliable and precise classification essential for successful cancer treatment
- Current methods for classifying human malignancies rely on a variety of morphological, clinical and molecular variables
- Uncertainties in diagnosis remain; likely that existing classes are heterogeneous
- Characterize molecular variations among tumors by monitoring gene expression (microarray)
- Hope: that microarrays will lead to more reliable tumor classification (and therefore more appropriate treatments and better outcomes)

Nearest Neighbor Classification

- Based on a measure of distance between observations (e.g. Euclidean distance or one minus correlation)
- k-nearest neighbor rule (Fix and Hodges (1951)) classifies an observation **X** as follows:
 - find the k observations in the learning set closest to X
 - predict the class of X by majority vote, i.e., choose the class that is most common among those k observations.
- The number of neighbors k can be chosen by cross-validation

Hierarchical Clustering

- Produce a dendrogram
- Avoid prespecification of the number of clusters K
- The tree can be built in two distinct ways:
 - Bottom-up: agglomerative clustering
 - Top-down: divisive clustering

Partitioning vs. Hierarchical

Partitioning

- Advantage: Provides clusters that satisfy some optimality criterion (approximately)
- Disadvantages: Need initial K, long computation time

Hierarchical

- Advantage: Fast computation (agglomerative)
- Disadvantages: Rigid, cannot correct later for erroneous decisions made earlier

Issues in Clustering

- Pre-processing (Image analysis and Normalization)
- Which genes (variables) are used
- Which samples are used
- Which distance measure is used
- Which algorithm is applied
- How to decide the number of clusters *K*

Filtering Genes

- All genes (i.e. don't filter any)
- At least k (or a proportion p) of the samples must have expression values larger than some specified amount, A
- Genes showing "sufficient" variation
 - a gap of size A in the central portion of the data
 - a interquartile range of at least B
- Filter based on statistical comparison
 - t-test
 - ANOVA
 - Cox model, etc.

Average linkage hierarchical clustering, melanoma only

