1. Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000; 40:502-511.
[Abstract]
2. Manesh HN, Sadeghi M, Arab S, Movahedi AM. Prediction of protein surface accessibility with information theory. Proteins 2001;42:452-459.
[Abstract]
3. Ahmad S, Gromiha MM. NETASA: Neural network based prediction of solvent accessibility. Bioinformatics 2002; 18:819-824.
[Abstract]
4. Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen bond and geometrical features. Biopolymer 1983; 22:2577-2637.
[Abstract]
5. Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins 1994; 20:216-226.
[Abstract]
6. Chan HS and Dill KA. Origins of structure in globular proteins. Proc Natl. Acad. Sci 1990; 87:6388-6392.
[Abstract]
7. Li X, and Pan XM. New methods for accurate prediction of solvent accessibility from protein sequence. Proteins 2001; 42:1-5.
[Abstract]
8. Thompson MJ, Goldstein RA. Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes. Proteins 1996; 25:38-47.
[Abstract]
9. Yuan Z, Burrage K, Mattick J. Prediction of protein solvent accessibility using support vector machines. Proteins 2002; 48:566-570.
[Abstract]
10.Chou KC and Zhang CT. Prediction of protein structural classes. Crit.Rev.Biochem.Mol.Bio.1995;30:275-349.
[Abstract]
11. Zell A and Mamier G. Stuttgart neural netwok simulator, version 4.2. University of Stuttgart, Stuttgart, Germany.
12. Romelhart DE, Hinton GE, and Williams RJ. Learning representations by back-propagation errors. Nature 1986;323:533-536.
13. Jones DT. Protein secondary structure prediction based on position- specific scoring matrices. J.Mol.Biol 1999; 292:195-202.[
Abstract]
14.Giorgi MHM, Hazout S, and Tuffery P. PredAcc: prediction of solvent accessibility.Bioinformatics 1990;15:176-172.
[Abstract]
15. Ahmad S, Gromiha MM and Sarai A. Real value prediction of solvent accessibility from amino acid sequence. Proteins 2003; 50:629-635.
[Abstract]
16. Kaur H and Raghava GPS. Prediction of Beta-turns in proteins from multiple alignment using neural network.Protein Science 2003;12:627-634.
[Abstract]
17. Kaur H and Raghava GPS. A neural network based method for the prediction of Gamma-turns in proteins using multiple alignment. Protein Science 2003;12:923.
[Abstract]
18. Gromiha MM. Importance of native state topology for determining the folding rate of two state proteins. J.Chem.Inf.Comput.Sci. 2003; 43:1481-1485.[
Abstract]
19. Rost B, Schneider R Sander C. Protein folding recognition by prediction based threading. J.Mol.Biol. 1997; 270:1-60.
[Abstract]
20. Macdonald JR, and Johnson WC JR. Environmental features are important in determining protein secondary structure. Protein Science 2001;10:1172-1177.
[Abstract]
21. Altschul Sp, Madden TL, Alejandro AS, Zhang J, Miller W, and Lipman DJ. Gapped blast and psi-blast:Anew generation of protein databases and search programs.Nucleic Acids Res. 1997;49:120-144.
[Abstract]