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ABSTRACT 

________________________________________________________________________ 

Background: Malaria parasite secretes various proteins in infected RBC for its growth 

and survival. Thus identification of these secretory proteins is important for developing 

vaccine/drug against malaria. The existing motif-based methods have got limited success 

due to lack of universal motif in all secretory proteins of malaria parasite. 

 

Results: In this study a systematic attempt has been made to develop a general method 

for predicting secretory proteins of malaria parasite. All models were trained and tested 

on a non-redundant dataset of 252 secretory and 252 non-secretory proteins. We 

developed SVM models and achieved maximum MCC 0.72 with 85.65% accuracy and 

MCC 0.74 with 86.45% accuracy using amino acid and dipeptide composition 

respectively. SVM models were developed using split-amino acid and split-dipeptide 

composition and achieved maximum MCC 0.74 with 86.40% accuracy and MCC 0.77 

with accuracy 88.22% respectively. In this study, for the first time PSSM profiles 

obtained from PSI-BLAST, have been used for predicting secretory proteins. We 

achieved maximum MCC 0.86 with 92.66% accuracy using PSSM based SVM model. 

All models developed in this study were evaluated using 5-fold cross-validation 

technique.   

Conclusion: This study demonstrates that secretory proteins have different residue 

composition than non-secretory proteins. Thus, it is possible to predict secretory proteins 

from its residue composition-using machine learning technique.  The multiple sequence 

alignment provides more information than sequence itself. Thus performance of method 

based on PSSM profile is more accurate than method based on sequence composition. A 

web server PSEApred has been developed for predicting secretory proteins of malaria 

parasites (http://www.imtech.res.in/raghava/pseapred/). 

________________________________________________________________________ 

 



Background: The human malaria caused by Plasmodium falciparum has been one of the 

major infectious diseases in the world causing illness in 300 to 600 million people 

leading to 2 to 3 million deaths annually [1]. In addition, it is putting huge economic 

burden on affected countries particularly in Asian and African subcontinents. In order to 

develop effective drugs and vaccines against this parasite it is important to identify novel 

potential drug/vaccine targets.  Parasite secretes an array of proteins within the host 

erythrocyte and beyond to facilitate its own survival within the host cell and for 

immunomodulation. These proteins secreted by parasite can serve as potential 

drug/vaccine targets. The identification of secretory proteins of Plasmodium falciparum 

has got limited success, since experimental identification of these proteins is rather 

difficult due to complex nature of parasite.  

 

In silico prediction of secretory proteins is need of time in the era of genomics where 

thousands of genomes have been completely sequenced including those of P. falciparum 

(size 22.8 MB; 14 chromosomes and 5300 proteins) [2]. It has been shown in past that 

secretory proteins of eukaryotes have signal sequence at N-terminus, which can be used 

to predict its secretory nature. One of the commonly used programs for predicting 

secretory proteins of eukaryotes is TargetP [3]. Though TargetP is successful for 

eukaryotic protein but fails to predict known P. falicparum secretory proteins like 

PfEMP1. The reason of failure of TargetP for P. falciparum is due to its complex life-

cycle that alternate between vertebrate and invertebrate. Thus it is not possible to use 

subcellular localization methods developed either for eukaryotes [4] or prokaryote [5] for 

localization of P. falciparum proteins. There is a need to develop organism specific 

methods [6]. Recently, two groups independently identified the signal (PEXEL) or motif 

(VTS) in secretory proteins of P. falciparum partly responsible for proteins export from 

parasite to erythrocyte [7, 8]. However, a number of well known and experimentally 

documented secretory/erythrocyte membrane associated proteins lack these motifs, thus 

emphasizing the existence of multiple pathways that operate in parallel [9]. With the 

completion of Plasmodium genome sequence, the challenge is to combine experimental 

and bioinformatics tools in order to develop algorithm with high predictive value for 

secretory proteins of malaria parasite. 



 In general, two important reasons for failure of these motif based methods are; i) 

all secretory proteins do not necessarily have signal peptide particularly those secreted by 

non-classical pathways and ii) location of signal is not conserved in protein, since it may 

be  found on either N-terminal or C-terminal or in middle of proteins [10]. In order to 

overcome these limitations several groups have developed methods based on amino acid 

composition or dipeptide composition of proteins [6,11,12]. Recently two web servers 

(Signal-CF and Signal-3L) have been developed, which provides key steps important for 

predicting secretory proteins [13,14]. Though composition based methods have been 

developed for eukaryotic or prokrayotic proteins but till date no method has been 

developed for P. falciparum specific proteins. It has been demonstrated in past that 

organism specific methods perform better than general methods [6]. Thus there is need to 

develop method especially for predicting secretory proteins of P. falciparum. 

 

In this paper, we describe a method developed for predicting secretory proteins of malaria 

parasite. First, amino acid sequence of a protein has been converted into fixed length 

patterns by computing various type of composition like amino acid, dipeptides. Then 

machine-learning technique Support Vector Machine (SVM) has been used to 

discriminate secretory and non-secretory protein. For the first time in this study, 

evolutionary information has been used for predicting secretory proteins. The 

evolutionary information in form of PSSM profile was obtained from PSI-BLAST search 

against “nr” databases.   A web server has also been developed for predicting secretory 

proteins of malaria parasite. 

 

 

Results:  

Analysis of amino acid composition: We analyzed the amino acid composition of both 

secretory and non-secretory proteins. As shown in figure 1, the frequency of occurrence 

of amino acid alanine, cysteine, isoleucine, lysine, glutamine and threonine are higher in 

secretory proteins than non-secretory proteins, while composition of aspartic acid, 

phenylalanine, glycine are higher in non-secretory proteins than secretory proteins. There 

is a major difference of composition of asparagines in non-secretory protein (very high) 

than secretory protein. This means secretory proteins can be discriminated from non-



secretory proteins based on their amino acid composition. It has been shown in previous 

studies that secretory proteins have signal sequence at N-termini). Thus it is important to 

compare composition of various parts of secretory and non-secretory proteins separately. 

As shown in Figure 2,  N-terminal composition of two type of protein is quite different; 

magnitude of biasness is much higher than compositional biasness of whole protein. 

Similarly, composition of C-termini of secretory and non-secretory proteins is quite 

different (Figure 3). In comparison to it, difference in composition of central region of 

secretory and non secretory proteins was low (Figure 4). 

 

Composition based SVM models: It was observed that amino acid composition of 

secretory proteins was somewhat different from that of non-secretory proteins.  Thus a 

SVM based classifier was developed using amino acid composition where amino acid 

composition was used as input vector of dimension 20. Different kernels and parameters 

of SVM were tried. The performance of our method on different thresholds is shown in 

Table 1. We got accuracy of around 84% with MCC 0.67 with nearly equal sensitivity 

and specificity. This model correctly predicts 76% secretory proteins at 96% specificity 

using RBF kernel. It has been observed that localization methods based on dipeptide 

composition perform better than amino acid composition based methods [4].  This is 

because dipeptides also provides information about local order of residues in addition to 

amino acid composition. For present study we developed SVM based method using 

dipeptide composition where dipeptide composition was used as input vector or 

dimension 400.  As shown in Table 1, we obtained maximum accuracy of 86.45% with 

MCC 0.74 using dipeptides based SVM model. The SVM model based on dipeptides 

composition performed better than SVM model based on amino acid composition.   

 

Split Amino Acid Composition: It has been observed that secretory proteins have 

signals either at N or C terminus. In order to utilize the compositional biasness in 

terminus of secretory and non-secretory proteins, we developed SVM models using split 

amino acid and dipeptides composition.  As shown in Table 2, we got maximum accuracy 

86.20% and 88.22% using split amino acid and dipeptides composition respectively. This 

is slightly better than accuracy achieved using whole composition. We found best 

performance with 25 N-terminal, 25 C-terminal and remaining protein. 

 

PSSM based SVM models: In past, multiple sequence alignment information in form of 

position specific scoring matrix (PSSM) has been used for developing methods [15-17]. 



In this study, PSSM has been used for predicting secretory proteins. First we created 

PSSM profile for each protein using PSI-BLAST search against nr database with three 

iterations, at cut-off 0.01.  Secondly, we computed a vector of dimension of 400 from 

PSSM matrix. Finally a SVM model was developed using PSSM and we achieved 

maximum accuracy of 92.66% with MCC 0.86. In addition this model was able to 

correctly predict 73% secretory proteins at specificity 100%. This clearly demonstrates 

that PSSM provide more information than single sequence and is useful for predicting 

secretory proteins. 

 

Pseudo amino acid composition (PseAAC): In past PseAAC has been widely used for 

classifying the proteins and subcellular localization methods. Thus we also tried to 

develop SVM models using simple PseAAC.  In this study we have computed pseudo 

amino acid composition using PseAAC [18,19]. We found that the performance of 

PseAAC based model is better than model based on amino acids or dipeptides 

composition. However, performance is poor than our PSSM based model (Table 3). We 

tried two characters Hydrophobicity and PI and performance of which  was nearly same. 

 

 

Benchmarking 

In order to compare performance of our method with existing methods, we predicted 

proteins used in this study using existing methods. Firstly, we applied PlasmoHT that is 

based on motif and specially developed for predicting secretory proteins in Plasmodium 

[8]. In order to use PlasmoHT one need to provide PlasmoDB ID, as all proteins in our 

dataset are not from PlasmoDB database so it could not be applied on all the proteins 

[20]. This method correctly predicted 146 out of 246 secretory proteins (six proteins do 

not have Plasmodb ID). PlasmoHT fails to predict 100 secretory proteins since all 

secretory proteins do not have conserved signal motif. It also correctly predicted 54 out 

of 55 non-secretory proteins obtained from PlasmoDB. It was not possible to apply 

PlasmoHT directly on 197 non-secretory proteins obtained from Swiss-Prot as PlasmoHT 

need PlasmoDB ID. Thus, we manually examined the Swiss-Prot entries and found 53 

entries have  ORFname (matches with PlasmoDB ID) in field Gene name. Six Swiss-Prot 

entries out of 53 have two or more than two ORF names (it not necessary that every 

protein will have one ORF). We examined 47 proteins for which single PlasmoDB ID 

was available and found that two proteins had PlasmoHT motif. It means PlasmoHT 

correctly predicted 45 out of 47 non-secretory proteins. In total PlasmoHT correctly 



predicted 99 out 102 non-secretory proteins.  We were not able to locate PlasmoDB ID 

for all proteins extracted from Swiss-Prot, which may be due to number of reasons i.e. 

modified form of protein; mutated proteins  or protein fragments. Secondly we applied 

commonly used method for predicting secretory proteins TargetP on our dataset, it 

correctly predicted 163 out of 251 secretory proteins (unable to predict one protein due to 

its large size) [3]. It also correctly predicted 160 out of 252 non-secretory proteins. In 

summary, we achieved sensitivity 64.94%, specificity 63.49% and accuracy 64.21% 

using TargetP on our dataset. Thirdly, we evaluated performance of two commonly used 

subcellular localization methods PA-SUB and WoLF PSORT on our dataset [21,22]. PA-

SUB first extract the features of similar sequences to query sequence from Swiss-Prot 

then it uses machine learning model for predicting subcellular location of query protein 

[21]. WoLF PSORT converts protein
 
amino acid sequences into numerical localization 

features; based
 
on sorting signals, amino acid composition and functional motifs

 
such as 

DNA-binding motifs. After conversion, a simple k-nearest
 
neighbor classifier is used for 

prediction [22]. Performance of both methods is shown in Table 4,  both methods fail to 

predict secretory proteins of P. Falciparum.    

   

   

Discussion: 

Plasmodium falciparum during its asexual stage within the host erythrocyte remodels the 

host cell displaying several dramatic changes, which affects membrane rigidity surface 

antigenicity and permeability. These changes aid in the pathogenesis and also help the 

parasite survival within null host cell by nutrient acquisition [23].  It has been estimated 

that an array of parasite derived antigens are expressed on infected cell membrane [24, 

25]. However, only a few protein such as PfEMP-1, rifin and stevor family proteins have 

been conclusively proven to be on the surface of infected erythrocyte membrane. The 

search of parasite derived proteins within the host cell and infected membrane surface 

remains one of the most warranted areas in malaria research for understanding the 

pathogenesis of disease, and to find out potent vaccine candidate molecule. Recently, two 

independent groups [7,8] have done in silico prediction of proteins exported into the host 

erythrocyte (a ‘secretome’) based on the Plasmodium export element (PEXEL) [7] and 

the vacuolar transport signal (VTS) [8] motifs. These motifs were identified by 

bioinformatic analysis of aligned N-terminal sequences from proteins known to be 



exported from the parasitophorous vacuole (PV) into the erythrocyte. Whereas Hiller et 

al. [8] used reiterative alignments to search for motif while Marti et al.[7] used a search 

protocol based on the presence of signal sequence (SS) on exon I. Both reported motifs 

contains a short stretch of alternating charged and hydrophobic amino acids separated by 

uncharged amino acids located a short distance downstream of the SS. Functional role of 

PEXEL/VTS motif has been demonstrated by GFP fusion with SS followed by live 

fluorescence imaging and mutational analysis of PEXELl/VTS motif. However, 

PEXEL/VTS dependent protein trafficking cannot be typified due to over and possible 

incorrect timed expression of chimeric GFP fusion protein [9]. Moreover RESA-GFP 

chimera containing PEXEL/VTS was reported to be mistargeted to lumen of 

parasitovorous vacuole [26].  Besides well known exported proteins the predicted protein 

also includes several proteins for which export into the erythrocyte had not previously 

been shown, including several heat-shock proteins, kinases, phosphatases and putative 

transporters [8]. But one of the major limitation of the prediction based on PEXEL/VTS 

motif is that it could not predict proteins lacking PEXEL/VTS motif but experimentally 

demonstrated to be exported into the erythrocyte, such as P. falciparum skeleton-binding 

protein (PfSBP), membrane-associated histidine-rich protein (MAHRP) and coat protein 

(COP)II, all of which seem to be associated with vesicles and/or Maurer's clefts [27]. 

Moreover, the above-mentioned motif based methods gets setback in case of members of 

the vir supergene family (homologues vir/bir/gir), proteins predicted to be expressed on 

the erythrocyte surface [28] since none of these have SS or PEXEL/VTS motifs. Unlike 

many parasite-encoded proteins exported into the erythrocyte, PfEMP1 lacks an SS. 

Although both groups were able to identify a conserved sequence with biophysical 

characteristics similar to those of the more classical PEXEL/VTS, by creating mini-

PfEMP1 reporter constructs consisting of their respective PfEMP1 PEXEL/VTS motif, 

GFP or YFP and the conserved C terminus of PfEMP1 (including the TM). But the 

location of PEXEL/VTS in PfEMP1 is contradicting. Marti et al. [7] described the motif 

to be located 16–32 amino acids in from the N terminus, whereas Hiller et al. [8] 

reported the motif to be 300 amino acids further downstream, within a semi-conserved 

Duffy-binding-like (DBL) domain. This discrepancy in the location of PEXEL/VTS 

motifs points to an ambiguity for the existence of identical and universal motif for 



exported proteins  predicted to be exported into erythrocyte.   Although Florens et al. [29] 

have predicted about 36 hypothetical proteins of the parasite to be located on infected 

erythrocyte surface using multidimensional protein technology (MudPIT), but their 

groups have not proposed any universal method for prediction. Nevertheless, the 

literature strongly advocates the existence of multiple pathways that are cumulatively 

responsible for the export of parasite proteins in erythrocytes [9]. 

 

Conclusions: 

The bioinformatics approach used in this study is standard approach, which is commonly 

used for predicting subcellular localization of proteins. In addition evolutionary 

information in form of PSSM has been used first time for predicting secretory proteins in 

malaria parasite. Our model is equally applicable to wide range of secretory proteins 

where most of method fails. One of the major advantage of method describes in this study 

is that it is based on complete sequence rather than on small region/motif. The server 

developed for predicting secretory proteins will be very useful for researchers working in 

the field of malaria.  

 

Methods: 

 

Datasets 

Secretory or positive dataset: From the literature we collected total 267 secretory 

proteins  consisting of 208 secretory proteins (119 Rifins, 22 Stevors, 67 PfEMP1); 6 

experimentally proven proteins (PF10_0159, PFE0040c, PFB0100c, PFB0095c, 

AAD31511, AAC47454) [7]. Another set of 3 experimentally proved secretory proteins 

(PFD1175w, PFD1170c, PFB0100c) [8]; more 7 proteins (PFI1755c, PFE0055c, 

PFI1780w, PFE0360c, PF10_0321, PF14_0607, PFE0355c); 4 REX proteins (PFI1740c, 

PFI1755c, PFI1760w,PFI1735c); 2 PIESPs  (PFC0435c,PFE0060w); clag9 (PFI1730w); 

Sbp1 (PFE0065w) and 35 maurer’s cleft associated proteins [30-32]. These all sum up to 

267 secretory protein. We got 252 non-redundant secretory proteins after removing 

redundant proteins using program PROSET [33].  

 



Non-secretory or Negative dataset: Selection of negative dataset is always a challenge.  

We normally prefer to get negative dataset from manually annotated database Swiss-Prot. 

In this study, we extracted non-secretary protein from Swiss-Prot using SRS with query 

“Plasmodium Falciparum (Organism) but not Secreted (comment)”. This way we got 197 

non-secretory proteins and we required 252 non-secretory proteins in order to make both 

secretory and non-secretory proteins equal. Thus we used another database PlasmoDB to 

extract remaining 55 non-secretory proteins. We extracted nuclear proteins from 

PlasmoDB and randomly picked up 55 proteins from ~300 nuclear proteins. This way we 

got 252 non-secretory proteins from two sources (197 Swiss-Prot and 55 PlasmoDB). We 

extracted equal number of negative examples in order to evaluate performance from 

single parameter like accuracy and MCC. 

  

Composition: The aim of calculating composition of proteins is to transform the variable 

length of protein sequence to fixed length feature vectors. This is important to classify 

proteins using machine-learning techniques because they required fixed length pattern. 

The information of proteins can be encapsulated to a vector of 20 dimensions using 

amino acid composition of the protein [4,5]. In addition to amino acid composition, 

dipeptide composition was also calculated which present protein by a vector of 400 

dimensions. The advantage of dipeptide composition over amino acid composition is that 

it encapsulates information about the fraction of amino acids as well as their local order. 

 

 Split Amino Acid Composition (SAAC): We split protein in three parts and compute 

composition of each part of protein separately. This way we created a vector of a 

dimension 60 (3 × 20) instead of 20 in case of amino acid composition [34].  In SAAC 

each protein was divided into three parts: (i) 25 amino acids of the N terminus, (ii) 25 

amino acids of the C terminus, and (iii) remaining protein length after removing 25 

amino acids from N- and C-terminus. The
 
rationale behind using SAAC is that difference 

in composition of secretory and non-secretory proteins is more prominent if terminal 

residues are compared separately instead with whole protein.  It is known that most of 

secretory proteins have signals at N-terminal. The advantage of SAAC over standard 



amino acid
 
composition is that it provides greater weight to proteins that

 
have a signal at 

either the N or C.   

 

Multiple sequence alignment in form of PSSM profiles:  In the present study multiple 

sequence alignment in the form of PSSM has been used for predicting secretory proteins. 

Recently number of study used PSSM profile composition for developing prediction 

methods; for example MemType-2L, EzyPred, Tbpred, DNAbinder, SRTpred used for 

predicting membrane, enzyme class, subcellular localization of M. Tuberculosis, DNA 

binding and secretory proteins respectively [34-38]. The PSSM for each sequence was 

generated by performing PSI-BLAST search against ‘nr’ database using three iterations 

with cut off e-value 0.001. For a sequence of length N residues, PSSM is represented by 

an N×20 matrix (dummy residue ‘X’ is ignored) [29-30]. Each element of this matrix, 

m[i,j], provides information on evolutionary conservation of residue type j at sequence 

position i. We coverted this matrix in a vector of dimension 400, by computing 

composition of occurrences of each type of amino acid corresponding to each type of 

amino acids in protein sequence. It means for each column we will have 20 values instead 

of one [34,37]. Every element in this input vector was subsequently divided by the length 

of the sequence and then scaled to the range of 0–1 by using the standard sigmoid 

function as described by Rashid et al. [34]. The resultant matrix with 400 elements was 

used as input feature for SVM.   

 

Support Vector Machine: In this study we implemented SVM using SVM_light 

package which allows choosing number of parameters and kernels (e.g. linear, 

polynomial, radial basis function, sigmoid) or any user-defined kernel. The selection of 

kernel is very important in SVM, which is analogous to choosing architecture in ANN. In 

this study, learning was carried out using three kernels linear, polynomial and RBF. 

 

Evaluation: The performance of any prediction algorithm is often checked by jack-knife 

tests or cross-validations. In current study the performance of all the methods and models 

was evaluated using 5-fold cross-validation in which the dataset was randomly divided 

into five equal sets, out of which four sets were used for training and the remaining one 



for testing. This procedure was repeated five times in such a way that each set is tested 

once.  The final performance was calculated by averaging over all five sets.  The 

performance of our method was computed by using following standard parameters . 

(a) Sensitivity or coverage of positive examples: It is percent of secretory proteins 

correctly predicted secretory.   

Sensitivity  (Sn) =  
TP

TP +  FN
×100 

(b) Specificity or coverage of negative examples: It is percent of non-secretory 

proteins correctly predicted  non-secretory.  

Specificity (Sp) =  
TN

TN +  FP
×100 

 

(c) Accuracy: It is percentage of correctly predicted  proteins (secretory and non-

secretory proteins). 

Accuracy (Acc) =  
TP + TN

TP + TN + FP + FN
 × 100 

 

(d) Mathew’s correlation coefficient (MCC): It is considered to be the most robust 

parameter of any class prediction method. MCC equal to 1 is regarded as perfect 

prediction while 0 for completely random prediction.  

 

MCC =  
(TP × TN) - (FP ×FN)

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

  

where TP and TN  are truly or correctly predicted secretory and non-secretory proteins. 

FP and FN are wrongly predicted secretory and non-secretory proteins.  
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Legend of Figures 

 

Figure 1:  Amino acid composition chart of secretory and non-secretory proteins. Red 

and green lines represent the secretory and non-secretory proteins respectively. 

  

Figure 2:  A Graph depicting the 25 amino acid of N-termini Amino acid composition of 

secretory and non-secretory proteins.  

 

Figure 3:  A Graph depicting the 25 amino acid of C-termini amino acid composition of 

secretory and non-secretory proteins. 

 

Figure 4:  A Graph depicting the amino acid composition of middle part of secretory and 

non-secretory proteins.  



 

Table 1: The performance of SVM models using amino acids and dipeptides 

composition. The values in bold shows   

Amino acids composition Dipeptides composition Thr 

Sn Sp Acc MCC Sn Sp Acc MCC 

-1.0 94.84 27.60 61.35 0.30 98.81 0.80 50.00 0.00 

-0.9 93.25 33.20 63.35 0.33 98.02 3.20 50.80 0.04 

-0.8 92.86 37.60 65.34 0.37 96.83 4.00 50.60 0.02 

-0.7 90.48 43.20 66.93 0.38 95.63 7.20 51.59 0.06 

-0.6 89.29 48.00 68.73 0.41 94.44 12.40 53.59 0.12 

-0.5 88.89 58.40 73.71 0.50 92.86 27.20 60.16 0.27 

-0.4 87.70 65.60 76.69 0.55 88.49 49.60 69.12 0.41 

-0.3 86.90 72.00 79.48 0.60 83.33 73.20 78.29 0.57 

-0.2 85.71 78.00 81.87 0.64 82.14 84.00 83.07 0.66 

-0.1 85.32 80.80 83.07 0.66 80.56 88.80 84.66 0.70 

0.0 83.33 84.00 83.67 0.67 80.16  92.00  86.06   0.73 

0.1 81.75 85.20 83.47 0.67 78.57   94.40 86.45 0.74 

0.2 80.56 86.00 83.27 0.67 76.98  96.00 86.45 0.74 

0.3 79.76 89.60 84.66 0.70 74.21  97.20 85.66 0.73 

0.4 78.97 92.40 85.66 0.72 69.84   97.20 83.47 0.70 

0.5 77.78 93.20 85.46 0.72 63.10   97.20 80.08 0.64 

0.6 76.98 94.40 85.66 0.72 57.94   98.00 77.89 0.61 

0.7 76.19 95.60 85.86 0.72 52.72   98.40 75.50 0.57 

0.8 73.02 96.00 84.46 0.71 44.05   98.40 71.12 0.51 

0.9 70.24 96.40 83.27 0.69 33.73   98.80 66.14 0.43 

1.0 65.48 98.80 82.07 0.68 24.21   99.60 61.75 0.36 
*
Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Mathews Correlation Coefficient 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2: The performance of SVM models developed using amino acid and PSSM 

matrix composition.  

 

Split Amino acids composition PSSM Matrix composition Thr 

Sn
*
 Sp Acc MCC Sn Sp Acc MCC 

-1.0 93.25 43.55 68.60 0.42 97.22 44.84 71.03 0.49 

-0.9 93.25 50.00 71.80 0.48 95.63 58.73 77.18 0.58 

-0.8 92.46 56.05 74.40 0.52 95.24 65.08 80.16 0.63 

-0.7 91.27 59.68 75.60 0.54 94.05 70.24 82.14 0.66 

-0.6 90.48 62.10 76.40 0.55 94.05 75.00 84.52 0.70 

-0.5 87.70 64.11 76.00 0.53 92.86 84.13 88.49 0.77 

-0.4 85.71 70.16 78.00 0.57 91.27 90.08 90.67 0.81 

-0.3 84.92 73.39 79.20 0.59 90.08 91.27 90.67 0.81 

-0.2 83.73 78.63 81.20 0.62 90.08 92.86 91.47 0.83 

-0.1 83.33 82.26 82.80 0.66 89.29 94.05 91.67 0.83 

0.0 81.75 87.50 84.60 0.69 89.29 94.84 92.06 0.84 

0.1 79.37 93.55 86.40 0.74 88.89 95.24 92.06 0.84 

0.2 77.38 94.76 86.00 0.73 88.49 96.83 92.66 0.86 

0.3 76.19 96.37 86.20 0.74 87.30 97.22 92.26 0.85 

0.4 73.81 97.98 85.80 0.74 85.71 97.22 91.47 0.83 

0.5 71.43 97.98 84.60 0.72 85.32 98.41 91.87 0.84 

0.6 69.84 97.98 83.80 0.71 84.92 98.81 91.87 0.85 

0.7 68.25 97.98 83.00 0.69 83.73 98.81 91.27 0.83 

0.8 65.87 97.98 81.80 0.67 82.94 99.21 91.07 0.83 

0.9 63.10 98.39 80.60 0.66 80.16 99.21 89.68 0.81 

1.0 58.73 99.60 79.00 0.64 73.41 100.00 86.71 0.76 
*
Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Mathews Correlation Coefficient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: The performance of SVM models developed using pseudo amino acid  

composition (PseAAC). 

 

Pseudo Amino acid composition 

(hydrophobicity) 

Pseudo Amino acid composition       

(pI at 25
0 

 C.) 

Thr 

Sn
*
 Sp Acc MCC Sn Sp Acc MCC 

-1.0 92.86  58.17 75.55    0.54   96.03  44.44 70.24    0.47   

-0.9 92.06  66.14 79.13    0.60   94.44  50.79 72.62    0.50 

-0.8 91.67  72.91 82.31    0.66   93.25  59.13 76.19    0.56   

-0.7 90.08  74.50 82.31    0.65   92.46  61.51 76.98    0.57   

-0.6 89.29  77.29 83.30    0.67   91.67  65.08 78.37    0.59   

-0.5 88.89  82.47 85.69    0.72   91.67  69.44 80.56    0.63   

-0.4 88.10  85.26 86.68    0.73   90.48  75.40 82.94    0.67   

-0.3 86.11  88.45 87.28    0.75   89.29  78.57 83.93   0.68   

-0.2 85.32  90.04 87.67    0.75   89.29  80.16 84.72    0.70   

-0.1 85.32  92.83 89.07    0.78    88.89  84.13 86.51    0.73   

0.0 83.73  94.02 88.87    0.78    87.70  86.90 87.30    0.75   

0.1 82.94  95.22 89.07    0.79    86.90  88.49 87.70    0.75   

0.2 81.75  95.62 88.67    0.78    86.11  90.48 88.29    0.77    

0.3 81.75  96.41 89.07    0.79    84.13  91.67 87.90    0.76    

0.4 81.35  96.81 89.07    0.79    83.33  92.46 87.90    0.76    

0.5 80.56  96.81 88.67    0.78    82.54  94.44 88.49    0.78   

0.6 78.57  98.41 88.47    0.79    81.35  95.24 88.29    0.77    

0.7 76.98  98.41 87.67    0.77    79.76  95.63 87.70    0.76    

0.8 73.02  98.41 85.69    0.74    78.17  97.22   87.70 0.77    

0.9 68.25  98.80 83.50    0.70 73.02  97.22 85.12    0.72    

1.0 62.30  98.80 80.52    0.66    67.06  98.02 82.54    0.68   



  

 

Table 4: The prediction of location of proteins in our datasets using various methods. 

Our dataset have 252 secretory and 252 non-secretory. The values in bracket shows total 

number of proteins on which a method was applied.  

 

PA-SUB WoLF PSORT 

 

TargetP PlasmoHT Subcellular 

Location 

NSec
a
 

(250) 

Sec
b
 

(252) 

NSec 

(250) 

Sec 

(250) 

NSec 

(252) 

Sec 

(251) 

Nsec 

(102) 

Sec 

(246) 

Nuclear 36 11 26 23 -- -- -- -- 

Plasma Membrane 0 1 20 67 -- -- -- -- 

Extracellular 48 12 36 22 92 163 3 146 

Cytosol 89 15 98 48 -- -- -- -- 

Others 42 12 70 82 -- -- -- -- 

NSec -- -- -- -- 160 89 98 100 

No Prediction 45 206 -- -- -- -- -- -- 
a
Nsec: Non-secretory proteins; 

b
Sec: Secretory proteins  
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