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Abstract

One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen
that can stimulate B-cell’s response, also called B-cell epitopes. In the past, several methods have been developed for the
prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear
B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for
predicting linear B-cell epitopes. We have retrieved experimentally validated B-cell epitopes as well as non B-cell epitopes
from Immune Epitope Database and derived two types of datasets called Lbtope_Variable and Lbtope_Fixed length
datasets. The Lbtope_Variable dataset contains 14876 B-cell epitope and 23321 non-epitopes of variable length where as
Lbtope_Fixed length dataset contains 12063 B-cell epitopes and 20589 non-epitopes of fixed length. We also evaluated the
performance of models on above datasets after removing highly identical peptides from the datasets. In addition, we have
derived third dataset Lbtope_Confirm having 1042 epitopes and 1795 non-epitopes where each epitope or non-epitope has
been experimentally validated in at least two studies. A number of models have been developed to discriminate epitopes
and non-epitopes using different machine-learning techniques like Support Vector Machine, and K-Nearest Neighbor. We
achieved accuracy from ,54% to 86% using diverse s features like binary profile, dipeptide composition, AAP (amino acid
pair) profile. In this study, for the first time experimentally validated non B-cell epitopes have been used for developing
method for predicting linear B-cell epitopes. In previous studies, random peptides have been used as non B-cell epitopes. In
order to provide service to scientific community, a web server LBtope has been developed for predicting and designing B-
cell epitopes (http://crdd.osdd.net/raghava/lbtope/).
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Introduction

Identification of smallest regions in an antigen also called an

antigenic region that can activate immune system is one of the

major challenges in designing of a subunit or peptide-based

vaccine. These antigenic regions, which stimulate B-cell response,

are known as B-cell epitopes. Prediction of B-cell epitope is

difficult but important for designing a peptide-based vaccine [1].

B-cell epitopes can be divided in two categories (i) continuous and

(ii) discontinuous. The continuous or linear epitopes are made up

of consecutive amino acids whereas the discontinuous or

conformational epitopes constitute the spatially folded amino

acids, which lie far away in the primary sequence. Linear B-cell

epitope has vast application in the area of antibody production,

immunodiagnostics; epitope-based vaccine design, selective de-

immunization of therapeutic proteins and in autoimmunity

[2,3,4]. Experimental methods for identification of B-cell epitopes

are costly and time consuming.

In order to overcome limitations of experimental techniques, in

the past several algorithms have been developed to predict linear

B-cell epitopes [5,6]. Due to variability in epitope length from 3–

85 amino acids, the prediction of B-cell epitopes is much more

complex than the prediction of T-cell epitopes. Recently,

Kringelum et al, have analyzed conformational B-cell epitopes

from antigen-antibody complexes and reported average length of

conformation epitope as 15 residues [7]. Though the average

length is 15, it does not mean that B-cell epitope core has 15

residues. To the best of author’s knowledge it is not known that

what, is the minimum length of a conformational or continuous B-

cell epitope. All methods developed so far have two major

limitations, (i) they are based on a very limited number of epitopes

(,1000 epitopes and non-epitopes) and second (ii) these methods

use random peptides as non B-cell epitope [8,9,10,11,12] (Table

S1).

In this study, for the first time, we have exploited the availability

of several thousands of experimentally verified epitopes and non-

epitopes. We have derived five datasets from Immune Epitope

Database (IEDB) called Lbtope_Fixed, Lbtope_Fixed_non_redun-

dant, Lbtope_Variable, Lbtope_Variable_non_redundant and

Lbtope_Confirm dataset. We developed various models on these

datasets for discriminating B-cell epitopes from non-epitopes. A
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web server has been developed for predicting B-cell epitopes using

best models developed on these datasets.

Materials and Methods

We have obtained experimentally validated 49694 B-cell epitopes

and 50324 non B-cell epitopes from Immune Epitope Database

(IEDB) in Jan 2012 [13]. These epitopes have 2 to 85 amino acids

and belong to 3689 antigen sequences. We created five different

datasets namely Lbtope_Fixed, Lbtope_Fixed_non_redundant,

Lbtope_Variable, Lbtope_Variable_non_redundant, Lbtope_Vari-

able and Lbtope_Confirm from this main dataset. The description

of each dataset is as follows:

Lbtope_Fixed Dataset. Most of the machine learning

techniques commonly used for developing prediction or class

discrimination need definite length patterns. Since B-cell epitopes

have variable length, we used truncation and extension technique

used in previous studies to generate definite length peptides

(epitopes & non-epitopes) of 20 residues [8–11]. Following

procedure has been adopted to generate fixed length epitopes; (i)

all epitopes having less than five residues were removed, (ii)

epitopes having more than 20 residues were trimmed from both

ends to generate epitope of 20 residues from middle, (iii) epitopes

containing less than 20 residues have been extended to 20 by

adding an equal number of residues at both ends of the epitope,

and (iv) finally, identical epitopes were removed. In order to

extend an epitope, we mapped it on source antigen from where it

has been derived and then we extended its length. In summary,

Lbtope_Fixed dataset contains unique 19803 positive patterns or

B-cell epitopes and 28329 negative patterns or non B-cell epitopes,

where each pattern contains 20-residues. We also removed

patterns common in both types of patterns. Our final Lbtope_fixed

dataset contains 12063 B-cell epitopes and 20589 non-epitopes

(Figure S3).

Lbtope_Fixed_non_redundant. Using Lbtope_Fixed data-

set, we have created an 80% non-redundant dataset using CD-

HIT [14,15]. The redundant dataset contains 7824 B-cell epitopes

and 7853 non-epitopes.

Lbtope_Variable. First, we removed all epitopes or non-

epitopes having less than five residues or more than fifty residues.

All epitopes common in B-cell epitopes and non B-cell epitopes

were also removed. We found that majority of common epitopes

are related to autoimmunity. Our final dataset Lbtope_Variable

contains 14876 unique B-cell epitopes and 23321 unique non B-

cell epitopes.

Lbtope_Variable_non_redundant. We again created an

80% non-redundant Lbtope_Variable dataset using CD-HIT.

We obtained 8011 B-cell epitopes and 10868 non-epitopes.

Lbtope_Confirm. One of the challenges in creating dataset is

its validity, though all epitopes, which we have extracted from

IEDB, are experimentally tested. In order to improve the quality

of epitopes/non-epitopes, we used only those epitopes/non-

epitopes which reported in at least two studies. The final dataset

Lbtope_Confirm contains 1042 unique B-cell epitopes and 1795

non B-cell epitopes.

Input Features
In this study, we generated and used various types of features of

peptides that include binary profile or sparse matrix [16], physico-

chemical profile (here only four properties tested) [17], dipeptide

composition, Chen’s amino acid pair (AAP) propensities [18] and

Composition-Transition-Distribution (CTD) profile [14]. All these

features were already used in earlier methods (Text S1). Besides

these features, we created modified AAP profile, termed as AAP*

where instead of multiplication, each dipeptide value was assigned

values to each dipeptide from a matrix, making a vector of 19 in

place of 400 (Figure S1).

SVM and Weka Classifiers
In this study, we used SVM_light (http://svmlight.joachims.

org/) package for implementing SVM technique. SVM has been

used in several biological problems, including functional

Figure 1. Length-wise distribution of peptides (B-cell epitopes
and non-epitopes), we divided peptides in different bins like
peptides having a length less than five residues, having
residues between 5 to 10 residues.
doi:10.1371/journal.pone.0062216.g001

Figure 2. Two-sample logo showing dominance of surface accessible residues in B-cell epitopes. Yellow and black color residues indicate
to surface accessible and non-accessible residues respectively.
doi:10.1371/journal.pone.0062216.g002

B-Cell Epitope Prediction
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characterization of proteins [16,19,20]. Weka is a tool in which a

number of algorithms like Baysian Network, SVMLib, Artificial

Neural Network (ANN), Nearest Neighbor (IBk), Random Forest,

etc. have been integrated with a user friendly, graphical front end.

In weka, performance of all the methods can be compared on the

single data set.

Cross Validation and Performance Measures
Although leave-one out or jackknife test is the best among cross-

validation techniques, due to its time-consuming and heavy CPU

requirements, n-fold cross validation is the optimum choice [21].

In this study, we have used five-fold cross validation on 90% data

and remaining 10% data is used as independent dataset. We

calculated sensitivity (Sen), Specificity (Spe), accuracy (Acc) and

Matthew’s correlation coefficient (MCC) on an independent

dataset. For detail description of these parameters see Ansari et al

[20].

Results

Analysis of B-cell Epitopes
We analyzed B-cell epitopes to understand their charters tics.

First, length wise distribution of B-cell epitopes was computed. As

shown in Figure 1, most of the epitopes are in the range of 5–22

amino acid length. In order to understand the preference of

residues in B-cell epitopes, we generated two-sample logo plot [22]

using 20 mer epitope (upper panel) and non-epitope (lower panel).

As shown in Figure 2, there is indeed elevated occurrence of

surface accessible and flexible residue in the epitope region as

compared to the non-epitope region. In addition, we observed

high propensity of Proline and Glycine residue in the epitope

region, which might be responsible for the creation of bends or

flexibility in the epitope region.

Performance of Binary Profile Based Models
We developed models for discriminating B-cell epitopes from

non B-cell epitopes on Lbtope_Fixed dataset. SVM-based models

have been developed using binary profile or sparse profile of

patterns, which is represented by a vector length of Wx21 (W is

Table 1. The performance of SVM models developed on Lbtope_Fixed dataset using various features.

Features/Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

Binary 20.3 67.92 53.10 58.48 0.20 0.65

Physico-chemical property 20.2 58.17 52.81 54.76 0.11 0.58

Amino acid composition 20.3 74.08 79.71 77.67 0.53 0.85

Composition Transition 20.4 67.67 67.33 67.45 0.34 0.72

Amino Acid Pairs (AAP) 20.2 81.75 77.62 79.12 0.58 0.86

AAP* 0 66.67 53.48 58.27 0.19 0.64

Dipeptide composition 20.3 80.5 81.67 81.24 0.61 0.88

These models were developed using 5-fold cross-validation on 90% data and tested on remaining 10% data.
AAP*: Modified AAP where in place of multiplication, simple matrix assignment is used.
doi:10.1371/journal.pone.0062216.t001

Table 2. The performance of IBk models developed on Lbtope_Fixed dataset using various features.

Features/Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

Amino acid composition 0.3 78.5 74.05 75.67 0.51 0.83

Composition Transition 0.4 68.17 69.95 69.3 0.37 0.73

Amino Acid Pairs 0.4 78.25 81.76 80.48 0.59 0.83

Dipeptide composition 0.3 80.33 81.67 81.18 0.61 0.86

These models were developed using 5-fold cross-validation on 90% data and tested on remaining 10% data.
doi:10.1371/journal.pone.0062216.t002

Table 3. The performance of SVM models developed on Lbtope_Variable dataset using various features.

Features/Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

Amino acid composition 20.4 68.06 66.31 66.99 0.34 0.73

Composition Transition 20.1 67.72 64.42 65.71 0.31 0.77

Amino Acid Pairs 0 76.06 63.87 68.61 0.39 0.72

Dipeptide composition 20.2 75.18 76.34 75.89 0.51 0.83

These models were developed using 5-fold cross-validation on 90% data and tested on remaining 10% data.
doi:10.1371/journal.pone.0062216.t003
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window length, 20 in this study). Sparse matrix contains

information for each position and each type of amino acids in

the pattern. We achieved accuracy range from 37–67% with

MCC of 0.03–0.22 and AUC of 0.65, which is better than random

prediction (Table 1; Table S3).

Performance of Models Based on Physico-chemical
Properties

It is already known that physico-chemical properties of amino

acids are responsible for structural and functional behavior of

peptides and proteins. In our study, we have tested few topological

properties (Table S2), which were shown to be a good index for B-

cell epitope prediction such as relative connectivity, clustering

coefficient, closeness and betweenness [23]. We developed SVM

models using physico-chemical properties and achieved accuracy

in the range of 43–64% with MCC of 0.06–0.13 and AUC of 0.58,

which is poorer than models based on binary profile (Table 1;

Table S4).

Performance of Composition Based Models
Besides understanding the positional effect of amino acids, we

also computed and compared the overall composition of epitopes

and non-epitopes (Figure S2). Similar to two-sample logo analysis,

composition analysis revealed that it can be used to discriminate

between epitopes and non-epitopes. Therefore, we have applied

several distinctive types of models such as simple amino acid and

dipeptide composition with different vector size. These models

were trained and tested using SVM and IBk. While using SVM,

simple amino acid composition performed best among binary and

physico-chemical profiles with accuracy of 78%, MCC 0.53 and

AUC 0.85. Dipeptide composition model performed better than

Chen’s AAP with maximum accuracy of 81%, MCC 0.61 and

AUC of 0.88, the highest among single feature models (Table S5,

S6, S7, S8, S9). We tested different features of other algorithms

implemented in Weka and found that IBk model performed best

(results of other algorithms not shown). Dipeptide composition

model performed better than AAP profile with accuracy of 81%,

MCC 0.61 and AUC 0.86 (Table 2; Table S9).

Since only composition-based method can be applied to

variable data, we applied amino acid composition, CTD, AAP

and dipeptide composition methods on Lbtope_Variable and

Lbtope_Confirm datasets. It was observed that dipeptide-based

method performed best among other methods with accuracy

75.89, 82.33 and MCC 0.51, 0.64 on Lbtope_Variable,

Table 4. The performance of IBk models developed on Lbtope_Variable dataset using various features.

Features/Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

Amino acid composition 0.4 70.41 72.82 71.88 0.42 0.77

Composition Transition 0.4 66.38 61.12 63.17 0.27 0.68

Amino Acid Pairs 0.3 77.67 76.68 77.07 0.53 0.81

Dipeptide composition 0.2 80.90 77.50 78.82 0.57 0.84

These models were developed using 5-fold cross-validation on 90% data and tested on remaining 10% data.
doi:10.1371/journal.pone.0062216.t004

Table 5. The performance of SVM models developed on Lbtope_Confirm (epitope tested by at least two studies) dataset using
various features.

Features/Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

Amino acid composition 0 81.73 73.18 76.33 0.53 0.84

Composition Transition 20.1 76.92 74.86 75.62 0.50 0.82

Amino Acid Pairs 0 81.73 73.74 76.68 0.54 0.83

Dipeptide composition 20.3 84.62 81.01 82.33 0.64 0.91

These models were developed using 5-fold cross-validation on 90% data and tested on remaining 10% data.
doi:10.1371/journal.pone.0062216.t005

Table 6. The performance of IBk models developed on Lbtope_Confirm (epitope tested by at least two studies) dataset using
various features.

Features/Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

Amino acid composition 0.3 80.77 77.09 78.45 0.56 0.90

Composition Transition 0.3 73.08 73.18 73.14 0.45 0.79

Amino Acid Pairs 0.4 87.5 81.56 83.75 0.67 0.85

Dipeptide composition 0.4 82.69 87.71 85.87 0.70 0.92

These models were developed using 5-fold cross-validation on 90% data and tested on remaining 10% data.
doi:10.1371/journal.pone.0062216.t006
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Lbtope_Confirm dataset respectively (Table 3, 4, 5, 6; Table S10,

S11, S12, S13, S14, S15, S16, S17). Performance of models was

better in case of Lbtope_Confirm data as compare to Lbtope_-

Variable.

Performance on Non-redundant Peptide Dataset
Although we have considered unique epitopes, the redundancy

could be expected among them similar to protein sequences.

However, it is known that properties of peptide could change with

a single amino acid variation. Nevertheless, to have an idea of

redundancy and model performance, we created non-redundant

dataset corresponding to both Lbtope_Fixed and Lbtope_Variable

databases. We found that the number of peptides decreased as

expected, but the performance remained significant.

We observed AUC of 0.61, 0.66 and 0.69 for simple amino acid,

AAP and dipeptide composition respectively on Lbtope_

Fixed_non_redundant dataset (Table S18, S19, S20, S21). We

achieved better performance for Lbtope_Variable_non-redundant

dataset. The AUC obtained was 0.60, 0.68 and 0.73 for simple

amino acid, AAP and dipeptide composition respectively (Table

S22, S23, S24, S25). In case of Lbtope_Fixed_non_redundant

dataset, AUC sharply decreased from 0.88 to 0.69 and for

Lbtope_Variable_non_redundant dataset AUC decreased from

0.83 to 0.73. Again, dipeptide based model performed better than

other methods (Table 7–8; Table S18, S19, S20, S21, S22, S23,

S24, S25).

Benchmarking with Existing Methods
It is important to compare the newly developed algorithm with

existing algorithms, which requires testing of all methods on same

dataset. Unfortunately, our dataset is different than datasets used

in previous studies. Thus one to one comparison is not feasible. In

order to understand differences and similarities in our and existing

models, we tested our models on datasets used in earlier methods.

Similarly, we tested previously developed methods on our datasets.

It was observed that earlier models failed on datasets used in this

study, and our models failed on existing datasets (Table S26, S27,

S28, S29, S30, S31, S32). Authors of ABCpred achieved sensitivity

57.14 and specificity 71.57 at the default threshold on their

ABCpred dataset (Table 9). We assessed the performance of

ABCpred at the default threshold on dataset Lbtope_Fixed used in

this study and achieved sensitivity 54.55 and specificity 49.54 [11].

It was observed that sensitivity of ABCpred decreased slightly from

57.14 to 54.55 but specificity decreased drastically from 71.57 to

49.54 (Table 9). It suggested that ABCpred performance on B-cell

epitopes decreased slightly but failed on non B-cell epitopes used in

this study. We also evaluated models developed in this study on

ABCpred and observed similar results. Models developed in this

study failed on non B-cell epitopes (random peptides generated

from proteins) used in ABCpred dataset (Table 9; Table S30, S31).

Similarly, we evaluated existing methods (BCPred and Chen’s

method) on datasets used in this study. It was observed that these

methods performed reasonably well on B-cell epitopes but failed

on non B-cell epitopes (Table 10; Table S26, S27, S28, S29)

[9,10]. We also evaluated the performance of our dipeptide-based

models on datasets used in previous studies (Table 10; Table S32)

[14]. We observed similar trend, our models failed on negative

patterns/example (random peptides used as non B-cell epitopes).

It can be suggested that existing models/methods perform

reasonably fine on our B-cell epitopes, but failed on non B-cell

epitopes. Similarly, our models failed on random peptides used in

previous studies as non B-cell epitopes. This could be due to fact

that our negative dataset comprised of experimentally verified non

B-cell epitopes where as negative datasets of existing methods

consist of random peptides generated from proteins.

To know the effect of using experimental proved non B-cell

epitope instead of random peptides from Swiss-Prot in develop-

ment of model. We created another dataset Lbtope-positive-

fbcpred-negative, in which instead of experimental non B-cell

epitopes, we used random peptides from FBCPred dataset as non

B-cell epitopes. Next, we performed a five-fold cross validation on

the above- dataset and obtained 85% sensitivity with 0.71 MCC.

On the other hand, Lbtope_Confirm has achieved 81% sensitivity

with 0.65 MCC, a bit poorer than Lbtope-positive-fbcpred-

negative (Table 10; Table S33–S34). Taken together all this

results, it can be concluded that using experimental B-cell

Table 7. The performance of SVM models developed on Lbtope_Fixed_non_redundant dataset using various features.

Features/Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

Amino acid composition 0.0 59.35 57.31 58.33 0.17 0.61

Composition Transition 0.0 54.38 57.31 55.85 0.12 0.57

Amino Acid Pairs 0.0 65.88 60.57 63.23 0.26 0.66

Dipeptide composition 0.0 65.75 63.97 64.86 0.30 0.69

These models were developed using 5-fold cross-validation on 90% data and tested on remaining 10% data.
doi:10.1371/journal.pone.0062216.t007

Table 8. The performance of SVM models developed on Lbtope_Variable_non_redundant dataset using various features.

Features/Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

Amino acid composition 20.3 56.41 59.9 58.39 0.16 0.60

Composition Transition 20.6 58.41 66.86 63.19 0.25 0.66

Amino Acid Pairs 20.3 63.51 62.95 63.19 0.26 0.68

Dipeptide composition 20.1 66 67.24 66.7 0.33 0.73

These models were developed using 5-fold cross-validation on 90% data and tested on remaining 10% data.
doi:10.1371/journal.pone.0062216.t008
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epitopes, the method can perform as good as using random

peptides. In summary, performance of models depends upon the

dataset used for training.

Implementation
In order to provide prediction service to scientific community,

we have developed a user-friendly web server based on the model

developed in this study. The server is developed using PHP 5.2.9,

HTML and JavaScript as the front end and installed on a Red Hat

Enterprise Linux 6 server environment. The server takes antigen

primary amino acid sequence (s) in ‘FASTA’ format, generates 20

amino acids overlapping peptides for Lbtope_Fixed dataset model,

5–30 amino acids overlapping peptides for variable datasets model

and predicts the linear epitopes. The non-redundant model is also

implemented in case of very high specificity. The output is antigen

sequence (s) mapped with B-cell epitopes with a probability scale of

20–80%. A higher score implies higher probability of peptide to be

B-cell epitope. We have developed separate dedicated pages for

antigen and peptide submission to avoid any complexity. In

addition, we have developed a peptide mutation tool, which

creates all possible single point mutations in given peptide and

calculates the probability score based on the algorithm and also

predicts the other properties. Using the mutation tool, user can

design better epitopes or even choose fewer epitopic peptides for

the de-immunization of therapeutic proteins. The web server is

freely available at http://crdd.osdd.net/raghava/lbtope/.

Discussion

Epitope mapping is no doubt a very useful procedure, which has

vast applications in the area of therapy and diagnostics.

Experimental methods do exist, but they require time, resources

and cannot handle the pace with which biological data is

generated. Therefore, computer algorithms have been developed

over the decades to predict the B- and T-cell epitopes from antigen

sequence or structure if available. It’s observed that linear B-cell

epitope prediction is more challenging than other epitope types

like conformational B-cell or T-cell epitopes. This might be due to

the reason that linear B-cell epitope posse’s variable length from

2–85 amino acids as compared to the almost fixed length core of

the T-cell epitopes. This variability imposes several obstacles for

algorithm developers. Besides variability, all the methods to date

have been developed on very small data set with negatives

examples obtained from randomly chosen UniProt peptides or

same antigens, which are not experimentally validated. In the

present study, for the first time we have used experimentally

verified B-cell and non B-cell epitopes from IEDB database, which

are much more in the number and rationally, created to previous

methods. We created the 20 mer epitopes using corresponding

‘truncation-extension’ methodology and similar length, which

were used in earlier methods. By using simple composition

technique in combination with SVM and Weka implemented IBk;

we came up with an algorithm, which is as good as existing tools.

Performance of LBtope models decreased on non-redundant

datasets, still performance remained as good as existing methods.

It is also observed that model developed on Lbtope_Confirm

dataset performed better than the models developed on

Lbtope_Variable dataset. We have compared the performance

of LBtope models on Lbtope and existing datasets. LBtope

performs poor on negative dataset of existing methods, and they

also performed poor on our negative dataset. It is because our

negative dataset is experimentally verified B-cell epitope, whereas

existing method, negative dataset were randomly generated from

UniProt. We have implemented the algorithm in the form of a

user-friendly web server: LBtope. The user can create the mutants

of each peptide and test its epitopic or other desired probability

Table 9. The performance of our method LBtope on ABCpred dataset and performance of ABCpred on dataset Lbtope_Fixed
(fixed length patterns used in this study).

Performance on Datasets/Parameters Sensitivity Specificity Accuracy MCC

Performance of ABCpred on Lbtope_Fixed dataset 54.55 49.54 51.39 0.04

ABCpred performance on ABCpred dataset 57.14 71.57 64.36 0.29

Performance of LBtope model trained on Lbtope_Fixed on ABCpred dataset 70 33.71 57.9 0.04

doi:10.1371/journal.pone.0062216.t009

Table 10. The performance of BCPred, Chen on Lbtope_fixed and, Lbtope_variable dataset and performance of LBtope models on
datasets used in previous studies.

Performance of models/Parameters Sensitivity Specificity Accuracy MCC

BCPred on Lbtope_Fixed dataset 58.87 50.47 53.57 0.09

LBtope model on BCPred dataset (trained on Lbtope_Fixed dataset) 69.33 33.81 51.57 0.03

Chen’s AAP model on Lbtope_Fixed dataset 62.1 43.26 50.22 0.05

LBtope model on Chen’s dataset (trained on Lbtope_Fixed dataset) 70.76 35.89 53.33 0.07

LBtope model on BCPred dataset (trained on Lbtope_Variable dataset) 74.49 40.64 57.56 0.16

LBtope model on BCPred flexible dataset (trained on Lbtope_Confirm dataset) 78.09 27.23 52.66 0.06

Five-fold cross validation Lbtope_confirm dataset 84.86 81.37 82.65 0.65

Five-fold cross validation Lbtope_positive_fbcpred_negative dataset 85.82 85.65 85.74 0.71

Performance of LBtope models on Lbtope_Confirm and Lbtope_positive_fbcpred_negative datasets.
doi:10.1371/journal.pone.0062216.t010

B-Cell Epitope Prediction
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using our server’s mutant tool. We hope that present model will

aid the researchers in the field of linear B-cell epitope prediction.
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