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Abstract

AlgPred 2.0 is a web server developed for predicting allergenic proteins and allergenic regions in a protein. It is an updated
version of AlgPred developed in 2006. The dataset used for training, testing and validation consists of 10 075 allergens and
10 075 non-allergens. In addition, 10 451 experimentally validated immunoglobulin E (IgE) epitopes were used to identify
antigenic regions in a protein. All models were trained on 80% of data called training dataset, and the performance of
models was evaluated using 5-fold cross-validation technique. The performance of the final model trained on the training
dataset was evaluated on 20% of data called validation dataset; no two proteins in any two sets have more than 40%
similarity. First, a Basic Local Alignment Search Tool (BLAST) search has been performed against the dataset, and allergens
were predicted based on the level of similarity with known allergens. Second, IgE epitopes obtained from the IEDB database
were searched in the dataset to predict allergens based on their presence in a protein. Third, motif-based approaches like
multiple EM for motif elicitation/motif alignment and search tool have been used to predict allergens. Fourth, allergen
prediction models have been developed using a wide range of machine learning techniques. Finally, the ensemble approach
has been used for predicting allergenic protein by combining prediction scores of different approaches. Our best model
achieved maximum performance in terms of area under receiver operating characteristic curve 0.98 with Matthew’s
correlation coefficient 0.85 on the validation dataset. A web server AlgPred 2.0 has been developed that allows the prediction
of allergens, mapping of IgE epitope, motif search and BLAST search (https://webs.iiitd.edu.in/raghava/algpred2/).
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Introduction
Allergy is the abnormal behavior of the immune system against
foreign substances called allergens. It involves a series of many
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reactions, which triggers various symptoms like allergic asthma,
rhinitis, skin reactions and difficulty in breathing that can lead
to death. The rise in the occurrence of allergic diseases in the
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Figure 1. The mechanism of allergy and step-by-step activation of different

components of the immune system, from the recognition of allergen by antigen-

presenting cells (APCs) to the release of histamine.

last few years has not only enhanced the costs of treatment but
also adversely affected the quality of life of a large population
[1]. Allergens like dust mites, pollens and many others induce
the Type I hypersensitive reactions, which elicit immunoglobulin
E (IgE) antibodies. This allergic reaction results in the release
of inflammatory mediators, such as histamine, cytokines from
mast cells and basophils [2], which affects the population on a
large scale, particularly skin sensitization [3, 4].

The first encounter of allergen develops the hypersensitiv-
ity, whereas the second encounter of the same allergen leads
to the effector response. Type I hypersensitivity is mediated
by immunoglobulin E (IgE), which is produced to act against
allergens. Allergens induce the Type I hypersensitivity reaction,
which sets off the production of allergen-specific IgE epitopes.
These epitopes bind to the mast cell and basophils; this is known
as the sensitization of mast cells and basophils. Reexposure of
the allergens to the sensitized mast cell and basophils (which are
already coated with IgE antibodies) leads to the degranulation
and release of mediators and inflammatory molecules like his-
tamine, leukotriene, etc., which leads to a mild allergic reaction
to sudden death from anaphylactic shock [5].

Overall processing of allergen, activation of IgE antibodies
and release of histamine are shown in Figure 1. There is a wide
range of molecules that can act as allergens; it includes small
chemicals or biological molecules like proteins. In the present
study, we aim to develop a method for predicting allergenic
proteins. It has a wide range of applications, particularly in
biotechnology-derived products, such as genetically modified
foods, therapeutics and vaccines [6–8].

The guideline issued by the Food and Agriculture Organi-
zation (FAO) fails to identify allergens with high precision due
to a large number of false positive predictions [9, 10]. Earlier
methods developed before 2005 can be classified in the fol-
lowing categories: (i) similarity search, (ii) supervised learning-
based models and (iii) motif-based approaches. In 2006, a hybrid
method AlgPred [11] was developed that combines the follow-
ing approaches for predicting allergenic proteins: (i) support
vector machine (SVM)-based model, (ii) mapping of IgE epi-
topes, (iii) multiple EM for motif elicitation (MEME)/motif align-
ment and search tool (MAST) motifs [12, 13] and (iv) Basic Local
Alignment Search Tool (BLAST)-based similarity search [14]. This
method combines the power of different approaches, and it

outperformed all methods developed before 2006. Following is
a brief description of methods developed in the past 14 years.
AllerTool is an SVM-based method developed in 2007; it com-
bines a similarity-based approach for predicting allergenicity
and allergic cross-reactivity in proteins [15]. AllerHunter was
developed in 2009 on 1356 allergenic proteins, where models
were developed using SVM-pairwise sequence similarity [16]. In
2013, AllerTOP was developed on 2210 allergens, and its updated
version AllerTOPv2 has been developed on 2427 allergens [17,
18]. In the case of PREAL, SVM models were developed on the
1176 allergenic proteins using biochemical and physicochemical
properties [19]. In 2014, AllergenFP was developed on a dataset
of 2427 allergens that incorporate descriptor-based fingerprints
for developing prediction models [20]. Recently, AllerCatPro has
been developed on 4180 allergens for predicting the allergenicity
potential of a protein from its sequence and 3D epitope mapping
[21].

These allergen prediction methods are heavily used by the
scientific community, particularly by experimental researchers
in designing proteins with desired allergenicity. These methods
have their limitations that include the following: (i) most of the
methods have been developed on small datasets, (ii) redundant
proteins in the dataset, (iii) no mapping of IgE epitopes and
(iv) motif information not incorporated. In order to complement
existing methods, we made a systematic attempt to improve
our method AlgPred [11]. In this article, we have proposed a
method AlgPred 2.0 to classify the allergenic and non-allergenic
protein sequences, which is an improved version of AlgPred
developed in 2006. Numerous features have been incorporated in
AlgPred 2.0 to improve the performance of the method. Models
developed in AlgPred 2.0 have been trained and evaluated on
the largest possible dataset. In addition, new version uses 10 451
experimentally validated IgE epitopes for mapping.

Materials and Methods
Compilation of dataset

The dataset used in this study was compiled from various
databases and repositories. We extracted 2018 allergens from
COMPARE (https://comparedatabase.org) and 2078 allergens
from Allergen Online [22] repositories. We also obtained datasets
used in previous studies and have used it for developing
prediction models: (i) 570 allergens and 700 non-allergens from
AlgPred [11] and (ii) 2427 allergens and 2427 non-allergens
from AllerTOP [17]. Besides, we extracted 1078 allergens from
Swiss-Prot release 2019_04 (released on 8 May 2019) using
the keyword ‘allergen AND reviewed: yes’ [23]. All proteins
containing non-standard characters (i.e. ‘BJOUXZ’) or less than
50 amino acids or non-allergen sequences which have similarity
with allergen sequences were removed. Finally, we got 10 075
allergen sequences, which we called a positive dataset. It is
challenging to obtain a negative dataset, as non-allergens
are not readily available like allergens, where experimentally
validated data are easily available. Thus, in this study, we
carefully extracted and assigned non-allergens from Swiss-Prot
release 2019_04. We extracted 545 820 proteins using the query
‘NOT allergen NOT cancer NOT allergenic AND reviewed: yes’;
these proteins were assigned as non-allergens. In this study, we
have only taken the proteins which are reviewed and manually
annotated. Thus, chances that some non-allergens used in
this study might be allergens are rare as we have only taken
proteins that have been annotated manually (only possible
if the annotation is incorrect). We got 533 719 non-allergenic
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Figure 2. Flowchart shows the process of creating non-redundant training,

testing and validation datasets of allergens. First, clusters of all allergens are

partitioned in training and validation datasets, and then clusters in the training

dataset are partitioned into five sets.

sequences after removing sequences having less than 50 amino
acids and containing the non-standard characters. We randomly
pick up 10 075 non-allergenic sequences from 533 719 non-
allergenic sequences. Finally, we got a dataset that contains
10 075 allergenic and 10 075 non-allergenic sequences.

Creation of non-redundant dataset

One should remove the redundancy among proteins in a dataset
to develop a robust method. In the past, researchers have created
non-redundant datasets at different levels of similarity from 30%
to 100% [11, 24–27]. One of the major reasons to create a non-
redundant dataset is to remove similar sequences among pro-
teins in training and testing datasets. Unfortunately, the removal
of redundant sequences also reduces the size of the dataset. In
a previous study, we introduced the concept of data partitioning
to create non-redundant training and testing datasets without
reducing the size of the dataset [11]. In this study, we also used
the same approach to partition data in training and testing
datasets, where no protein in the training set had more than 40%
similarity with any protein in the test dataset. First, clusters were
created using CD-HIT [28] software at a 40% sequence similarity
for the positive dataset (allergens) as well as for the negative
dataset (non-allergens). Second, clusters obtained for both aller-
gens and non-allergens dataset were divided into 80% training
data and 20% validation data. The clusters in training data (both
for positive and negative data) were further fractionated into
five sets such that all proteins of a given cluster are kept in
one set and sequences in one set do not have any similarity
with sequences of other sets. It results in five positive sets and
five negative sets. The 20% validation set also consists of both
positive and negative clusters that are not present in the training
data. The graphical representation of steps used for creating a
non-redundant dataset is shown in Figure 2.

Independent dataset

In this study, we already used 20% data for validation of our
models using external validation. In addition, we also created an
independent dataset of allergens for evaluating the performance
of the main model of AlgPred 2.0. These allergens have been
recently added to the COMPARE 2020 database and Swiss-Prot
after we extracted data for creating a dataset for AlgPred 2.0.
We extracted 191 unique allergen sequences from the COMPARE
2020 database; none of these sequences were identical to the
AlgPred 2.0 dataset. The protein sequences were searched
for unnatural amino acids, ‘BJOUZX’ and were removed. At
last, final 180 allergens were taken from the COMPARE 2020
database. We also extracted proteins from Swiss-Prot release
2020_04 (Released on 12 August 2020) using the keywords
‘allergen AND reviewed: yes’. We removed all those proteins
which were present in the Swiss-Prot release 2019_04 (release
used for creating the main dataset of AlgPred 2.0). We got 117
allergen sequences from Swiss-Prot, which were unique and
did not contain any unnatural amino acid. Finally, we created
an independent dataset that contains 297 antigen sequences
(180 from COMPARE and 117 from Swiss-Prot). In addition,
we also created a non-redundant independent dataset of 56
sequences after removing all those sequences having 40% or
more similarity with sequences in the main dataset of AlgPred
2.0. This non-redundant independent dataset was created using
CD-HIT software at cutoff of 40%. It means no sequence in a
non-redundant independent dataset has a similarity of more
than 40% with sequences in the main dataset.

Mapping of epitopes

IgE epitopes are responsible for inducing antibodies which in
turn induces an allergic reaction in the animal body. It means
that a protein would be called as an allergen if it contains an IgE
epitope or has high similarity with the sequence of IgE epitopes.
Thus, mapping of an IgE epitope can be used to identify any
protein as an allergen. Here, IgE epitopes were obtained from
following databases/datasets: (i) 15 046 from IEDB [29], (ii) 863
from AllerBase [30] and (iii) 2341 from IgPred [31]. Similarly,
we obtained 381 196 and 35 219 non-IgE epitopes from IEDB
and IgPred, respectively. Finally, we got 10 451 IgE epitopes and
307 866 non-IgE epitopes after removing redundant epitopes and
epitopes having less than 5 and more than 50 amino acids. In
this study, we used two techniques for mapping IgE epitopes:
(i) BLAST-based searching [14] and (ii) motif-emerging and with
classes-identification (MERCI) [32]. In the case of the BLAST-
based technique, we searched the proteins against a database of
IgE epitopes. A query protein is assigned an allergen if there is a
hit against the IgE epitope at a given expectation value (E-value)
cutoff. We used MERCI software to identify motifs present in
experimentally validated IgE epitopes [32]. A protein is assigned
as an allergen if it contains an IgE-specific motif identified by
MERCI software.

Five-fold cross-validation

In order to train and evaluate our models on the training dataset,
we used a standard 5-fold cross-validation technique. A training
set was formed by combining four negative and four positive
sets, while the corresponding test set was created by combining
the remaining one positive and one negative set. To make sure
that the combination of a positive set and a negative set is
used as a test set only once, this method is repeated five times.
These five training and testing sets were used for developing
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learning-based prediction models. Models were then evaluated
by performing prediction on the unseen validation set. It is a
standard process that has been successfully implemented in
several machine learning (ML)-based studies in the past [11,
33–39].

BLAST for similarity search

BLAST is heavily used in literature to annotate protein sequences
[24, 40–42]. We have used it to identify allergens based on
the similarity of a protein with allergenic and non-allergenic
sequences. The similarity-based search module was developed
using the blastp (protein–protein BLAST) suite of BLAST+ version
2.7.1 [14], where the query sequences were hit against the
database of allergens and non-allergens. In this study, two
strategies were used to identify allergens: (i) top hit of BLAST and
(ii) ensemble of top five hits of BLAST. In the case of the top hit
of BLAST, a protein is searched against a database of allergens
or non-allergens using BLAST at different E-value cutoffs. If
the top hit of the BLAST is against an allergenic sequence of
the database, then the protein is assigned as an allergen and a
similar approach is used for assigning protein as non-allergen.
For ensemble of top five hits of BLAST, we considered a voting
approach to annotate a query protein. If there are at least five or
more than five hits corresponding to a query protein sequence,
then we consider it as a hit. We assigned the function of query
sequence based on maximum hits; if the top five hits have
maximum allergens, then the query sequence was assigned
as an allergen. Similarly, if the top five hits have maximum non-
allergens, then the query was assigned as non-allergen. Various
E-value cutoffs were used to evaluate the performance of the
method.

Motif scanning/motif-based prediction

The motif is a recurring pattern of amino acids or nucleotides
that occur in protein or DNA, respectively. MEME/MAST con-
sists of two modules of MEME suite version 5.0.5 [12]. It was
downloaded from http://meme-suite.org/index.html. This suite
allows the discovering of novel motifs and performing a wide
variety of motif-based analyses. The MEME module was used
to discover motifs in closely related sequences. It represents
motifs as position-dependent letter-probability matrices, which
depicts the probability of occurring of each possible letter at
each position in the pattern. It takes a file containing primary
sequences in FASTA format (training set) as input and gives
the output file containing motifs as many as requested using
statistical modeling techniques. The MAST [13] module was used
to search for matches to a set of motifs (from the output of
MEME). It takes an output file of MEME as input and hitting
the query file (test set) on the MEME matrix to search for the
match for the motifs. In this study, five MEME matrices have
been created corresponding to the five training sets, one matrix
for each set. Then each matrix was used as an input file for
searching motifs in the test sets using MAST. E-value cutoffs
were also taken into account during MAST analysis.

Protein features
Composition-based features

Residue information of the protein was used in the form of
amino acid composition (AAC) and dipeptide composition (DPC).
The information in this form was used as a feature for devel-
oping ML models. The web server ‘Pfeature’ was used for this

purpose. For a given protein sequence, AAC provides a 20-length
vector, where each element is a fraction of a specific type of
amino acid residue in the sequence. Whereas, DPC provides
the information about the pairwise composition of the amino
acids (e.g. A-A, A-C, A-D . . . .Y-W, Y-Y, etc.) present in the protein
sequence in the form of a 400-length feature vector. Pfeature can
be referred for detailed information on these features [43]. The
formula for calculating AAC and DPC for each residue is provided
in Equations (1) and (2), respectively.

AAC(i) = Ri

N
∗ 100, (1)

where AAC (i) is the amino acid percent composition (i), Ri is the
number of residues of type i and N represents the length of the
peptide sequence.

DPC(i) = Total number of dipeptide (i)
N − 1

∗ 100, (2)

where DPC(i) is the percent composition of the dipeptide of type
i, and N represents the length of a protein.

Evolutionary information-based features

Evolutionary information of the protein in the form of a position-
specific scoring matrix (PSSM-400) composition was computed.
PSSM-400 uses PSI-BLAST for extracting evolutionary informa-
tion for a given protein and has been implemented in numerous
studies in the past [42, 44–48] PSSM-400 is a 20 × 20 matrix, which
encapsulates the composition of occurrences of each type of 20
amino acids with respect to each amino acid present in the given
protein sequence. For this study, a PSSM matrix was created for
each protein, which is subsequently normalized and converted
into a 20 × 20 PSSM-400 vector by utilizing Pfeature web server
[43].

ML-based classifiers

Different classification models such as random forest (RF), SVM,
decision tree (DT), K-nearest neighbor (KNN) and multilayer per-
ceptron (MLP) were implemented using Scikit’s sklearn package
[49] from Python. GridSearchCV was used for the optimization
of hyper-parameters. Protein features such as AAC and PSSM-
400 were used as fixed-length vectors for training and testing
in classification models. 5-fold cross-validation was used for the
evaluation of the models using different performance measures.
This method has been implemented in various studies in the
past [33, 36, 37, 50, 51]. The complete architecture of AlgPred 2.0
is shown in Figure 3.

Performance evaluation parameters

Threshold-dependent parameters such as sensitivity (Sens),
specificity (Spec), accuracy (Acc) and Matthew’s correlation
coefficient (MCC) were used to measure performance at a
different threshold. Besides, threshold-independent parameter,
viz., area under receiver operating characteristic curve (AUC) was
used to evaluate the performance of our models. ‘Sens’ is the
ratio of true positives and total positives, also known as the true
positive rate (TPR), whereas ‘Spec’ is the true negative rate (TNR).
‘Acc’ is the number of the total correct predictions (both positive
and negative) with respect to total positives and negatives, and
MCC is the correlation coefficient between predicted and actual
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Figure 3. Flowchart shows the overall architecture of AlgPred 2.0, where models are trained and tested using 5-fold cross-validation, further evaluated on validation

data. Our hybrid model, which combines RF, BLAST and MERCI, overperforms individual models.

classes. The following standard formulae were used to calculate
these parameters:

Sens = TP
TP + FN

× 100 (3)

Spec = TN
TN + FP

× 100 (4)

Acc = TP + TN
TP + FP + TN + FN

× 100 (5)

MCC = (TP × TN) − (FP × FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(6)

where TP is the number of true positive predictions, TN is the
number of true negative predictions, FP denotes the number
of sequences falsely predicted as positive sequences and FN
represents the number of sequences falsely predicted as nega-
tive sequences. These evaluation parameters have been used in
many studies for the model’s performance evaluation and are
well established in the literature [11, 38, 52, 53]. The threshold-
independent parameter, area under receiver operating charac-
teristic curve (AUROC), is calculated via the plot between TPR
and false positive rate (FPR) [54].

Hybrid approach for classification

In order to improve the accuracy of classifying allergenic and
non-allergenic proteins, we implement a hybrid approach as
used in AlgPred and other state-of-the-art methods. The studies
conducted by Wan et al. have proposed the ensemble classifier
method using hybrid features like split amino acid composition
(SAAC) features and profile alignment (PA) features for predict-
ing subchloroplast localization of multilocation proteins [55].
They have also used ensemble features like pseudo amino acid
composition (PseAA) features and PA features for developing
method EnTrans-Chlo [56]. In the past, ensemble methods have

also been used for predicting protein primary and secondary
structures. A study by Han et al. [57] has incorporated various fea-
tures based on amino acid classification as well as physicochem-
ical properties, and they have developed the ensemble method
for predicting subnuclear localizations from primary protein
structures. Another study by Bouziane et al. [58] has developed a
voting-based ensemble method for protein secondary structure
prediction. In this study, authors have combined different ML
algorithms like KNNs, ANNs and multi-class SVMs (M-SVMs)
based on PSSM profiles of the proteins. They have used two
variants voting concept, that is, simple majority voting (SMV)
and weighted majority voting (WMV), to improve the secondary
structure prediction.

In AlgPred 2.0, we have also implemented a hybrid or ensem-
ble approach. Here, the following three techniques have been
combined: (i) similarity-based approach using BLAST, (ii) motif-
based approach using MERCI and (iii) ML-based technique. First,
the given protein sequence was classified using BLAST at the
E-value of 10−6. We assigned the score of ‘+0.5’ for the correct
positive predictions (allergenic proteins), ‘−0.5’ for correct neg-
ative predictions (non-allergenic proteins) and ‘0’ for no hits.
Second, the same protein sequence was classified using MERCI.
We assigned the score of ‘+0.5’ if the motifs were found and ‘0’
if the motifs were not found. In the case of a hybrid approach,
scores obtained from three methods (i.e. BLAST, MERCI and ML
scores) were combined to compute the overall score. This overall
score of the hybrid approach was used for assigning the protein
as allergenic and non-allergenic protein at different thresholds.
These types of hybrid methods using different approaches have
been extensively used in many studies in the past [11, 24, 55–58].

Results
Performance on BLAST models

BLAST is a commonly used software in literature for annotating
or assigning function to a protein based on similarity search.
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Table 1. The performance of BLAST-based search on training and validation dataset

E-value Training Validation

Allergens Non-allergens Allergens Non-allergens

Chits (Sens) Whits (Error) Chits (Spec) Whits (Error) Chits (Sens) Whits (Error) Chits (Spec) Whits (Error)

10−6 4618 (57.3%) 164 (2.03%) 912 (11.32%) 107 (1.33%) 878 (43.57%) 48 (2.38%) 264 (13.1%) 24 (1.19%)
10−5 4665 (57.88%) 174 (2.16%) 1001 (12.42%) 111 (1.38%) 883 (43.82%) 48 (2.38%) 284 (14.09%) 24 (1.19%)
10−4 4772 (59.21%) 189 (2.34%) 1093 (13.56%) 120 (1.49%) 887 (44.02%) 50 (2.48%) 311 (15.43%) 24 (1.19%)
10−3 4940 (61.29%) 216 (2.68%) 1201 (14.9%) 127 (1.58%) 899 (44.62%) 52 (2.58%) 342 (16.97%) 24 (1.19%)
10−2 5056 (62.73%) 264 (3.28%) 1349 (16.74%) 135 (1.67%) 913 (45.31%) 55 (2.73%) 383 (19.01%) 28 (1.39%)
10−1 5133 (63.68%) 291 (3.61%) 1552 (19.26%) 152 (1.89%) 947 (47%) 70 (3.47%) 449 (22.28%) 35 (1.74%)

Chits: correct hits; Whits: wrong hits

Thus, we also used BLAST for assigning a protein as allergen
or non-allergen. We evaluated the performance of BLAST using
a 5-fold cross-validation technique to avoid any biasness. First,
a BLAST database is created using sequences in four sets and
sequences in the fifth set were searched against the database
using BLAST. This process has been repeated five times so that
each sequence should be searched at least once. For the evalu-
ation of BLAST on the validation dataset, we created the BLAST
database using all sequences in the training dataset, and each
sequence in the validation dataset was searched against the
database. We used standard BLAST, where the class assignment
is based on the top hit; it was observed that BLAST produces a lot
of false positives (data not shown). Then we used an ensemble
of top five BLAST hits, which reduces the false prediction signif-
icantly (Table 1). Though the number of correct hits (sensitivity)
increased from 57.3% to 63.68% for the training dataset with the
E-value ranging from 10−6 to 10–1, false predictions or wrong hits
also increased proportionally. A similar trend was observed for
the validation dataset where sensitivity increases from 43.57% to
47.00%, with the E-value ranging from 10−6 to 10−1. The overall
performance of BLAST is too poor due to the large number of
no hits; it means BLAST alone cannot be used for predicting
allergenic proteins as represented in Table 1.

Mapping of IgE epitopes

It is known that a protein containing an IgE epitope is an
allergen as IgE epitopes are responsible for allergenicity. It has
been observed in the case of AlgPred that only a few allergen
sequences can be mapped on IgE epitopes. Thus, in this study,
we used a similarity-based approach for searching IgE epitopes
in a protein sequence. As described in Materials and methods,
we used BLAST to search a protein against a database of IgE
epitopes. As shown in Figure 4A, the sensitivity increased from
55.3% to 72.99% with E-value ranging from 10−6 to 10−1, which
implies that the allergens have similarities with that to IgE
epitopes. It is interesting to note that this technique has a low
rate of false positive or error (i.e. 0.03–0.66%). This technique
can be used to assign allergens based on the BLAST hit of a
protein against IgE epitopes. We integrated this technique in
our web server to facilitate users to hit their protein against the
database of IgE epitopes. In addition to BLAST-based mapping,
we also used MERCI software to map IgE epitopes on a protein.
In this case, IgE specific motifs that are exclusively found in the
IgE epitope were discovered using MERCI software. Finally, we
search these IgE-specific motifs in a query protein. Though this
technique was only able to identify 1% allergens, but the false
prediction was nearly negligible.

Motif-based prediction

We identified motifs using MEME software from proteins in the
training set. Then MAST module was used to search for matches
to a set of motifs in the test set. This process is repeated five
times to obtain the performance of MEME/MAST on the training
dataset. As shown in Figure 4B, sensitivity increases from 21.64%
to 41.89% on the training dataset and from 10.52% to 36.97% on
the validation dataset, respectively, at the E-value ranging from
0.001 to 100. Although the sensitivity increased with an increase
in the E-value, the percent of the wrong assignment of non-
allergens to allergens also increased from 2.07% to 17.95% on the
training dataset and 1.49% to 19.9% on the validation dataset,
respectively. This depicts that the alone motif-based approach
is not sufficient to discriminate allergens and non-allergens
(Figure 4B).

ML-based models

First, we compute the AAC of allergen and non-allergen proteins.
These features were used for developing models using a wide
range of ML techniques (e.g. RF, SVM, KNN, MLP and DT). We
optimize these ML models by tuning the different parameters.
As shown in Table 2, a model based on RF performs better
than other models and achieved maximum AUC 0.93 and 0.92
on the training and validation datasets, respectively. The SVM-
based models also achieved reasonable high performance and
achieved AUC 0.89 on training and 0.90 on validation. It has
been shown in the past that evolutionary information provides
more information than a query sequence. In order to capture
evolutionary information, we generate PSSM profiles for a pro-
tein. These PSSM profiles were used for developing ML-based
models. The performance of PSSM-based model is shown in
Supplementary Table S1 available online at https://academic.ou
p.com/bib. In this study, our PSSM-based model does not perform
better than composition-based models. We also developed ML
techniques based models using DPC of proteins but its per-
formance was not significantly better than AAC-based models.
Thus, in this study, the rest of models were developed using AAC
which is simple and easy to implement.

ML-based models with motif approach

Composition-based models (AAC) developed using different ML
techniques were combined with the MEME/MAST approach. As
shown in Supplementary Table S2 available online at https://aca
demic.oup.com/bib, MEME/MAST with RF model performs better
than other combinations. It achieves AUC 0.93 with MCC 0.72
on the training dataset and AUC 0.92 with MCC 0.68 on the
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Figure 4. Line graphs show the performance of similarity and motif search methods. (A) BLAST; allergens were searched against IgE epitopes (x-axis shows BLAST

E-value; y-axis shows the percent of correct hits). (B) MAST; motifs were searched in allergens (x-axis shows E-value of MAST; y-axis shows the percent of correct hits).

Table 2. The performance of ML-based models developed using amino acid composition

ML (parameters) Training Validation

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

RF (ne =1000, mf = sqrt, md = 100, c = gini) 89.16 82.7 85.93 0.93 0.72 84.52 83.62 84.07 0.92 0.68
SVM (k = rbf, g = 0.05, C = 0.1) 85.89 79.9 82.9 0.88 0.66 87.79 77.92 82.85 0.90 0.66
KNN (m = minkowski, w = distance, nn = 84) 85.57 79.26 82.41 0.90 0.65 85.11 79.95 82.53 0.90 0.65
MLP (s = sgd, a = relu) 81.81 80.79 81.3 0.87 0.63 85.76 76.67 81.22 0.89 0.63
DT (mf = log2, md = 10 and c = entropy) 73.75 78.31 76.03 0.77 0.52 54.24 82.78 68.51 0.74 0.39

Note. ne, n_estimators; mf, max_features; md, max_depth; c, criterion; k, kernel; g, gamma; C, Regularization parameter; m, metric; w, weights; nn, n_neighbors; s, solver;
a, activation; DT, decision tree.

validation dataset. The input feature combines the probabil-
ity scores generated by ML after computing AACs and MEME/-
MAST scores. Overall, there is no significant improvement in the
performance of composition-based models after integration of
the MEME/MAST approach. Similarly, the MERCI approach was
also combined with composition-based models. As shown in
Supplementary Table S3 available online at https://academic.ou
p.com/bib, there was no significant improvement in ML-based
models combined with the MERCI motif approach. Overall, the
combination of ML-based models and motif approach is not
better than ML-based models.

ML-based models with BLAST search

In order to combine the power of similarity search approach
BLAST and ML-based models, we developed a method using
these approaches. First, the BLAST search was performed for
a query sequence; if we got a BLAST hit, then we assign the
query sequence based on the BLAST result. A composition-based
model is used to predict allergenic and non-allergenic protein if
there is no hit. The performance of our RF-based model improved
significantly from AUC 0.93 to 0.99 on the training dataset and
AUC 0.92 to 0.98 on the validation dataset. Figure 5 shows the
receiver operating characteristic (ROC) curves for different ML
classifiers corresponding to the combination of BLAST and AAC,
both for training and validation datasets. We also combine the
BLAST search with ML-based models developed using the PSSM
profile. As shown in Supplementary Table S4 available online
at https://academic.oup.com/bib, the performance of ML-based
techniques improved significantly.

Hybrid approach

Finally, we combined multiple approaches developed in this
study to predict allergens with high precision. In the hybrid
approach, we combine two or more methods to overcome the
limitation of individual methods. Here, we have combined
a composition-based model with BLAST- and MERCI-based
approaches. In order to integrate all three approaches, proteins
were first classified using BLAST at an E-value of 10−6, followed
by MERCI. We predicted the allergenicity of protein using a
ML-based model if a protein is not predicted using these two
approaches (no hits). The hybrid method improved the coverage
as well as accuracy, which is not practically possible for a single
method or approach. As shown in Table 3, the performance of
the hybrid method had improved when all the methods were
combined. The best performing model was an RF-based model
with AUC 0.99 with MCC 0.88 on the training dataset and AUC
0.98 and MCC of 0.85 on the validation dataset.

Comparison with existing methods

It is important to compare newly developed methods with exist-
ing methods to understand the advantage or disadvantages of
the newly developed method. As AlgPred 2.0 is a new version of
AlgPred, comprehensive comparison is required to understand
the merits of the new version. We used evolutionary information
as a new feature in AlgPred 2.0 for building prediction models
using the PSSM profile. Though evolutionary information is
a powerful feature, its performance is lower than the simple
AAC in this study. Thus, this feature does not contribute in
terms of the method’s performances. In order to emphasize our
contribution to AlgPred 2.0, we only showed those contributions
that improve the performance or service of AlgPred 2.0 over
AlgPred (Table 4). Besides the large dataset used for training and
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Figure 5. The performance of ML-based models after combining with BLAST is shown by ROC curves on training and validation datasets. These ML-based models were

developed using the AAC of proteins.

Table 3. The performance of the hybrid method that combines ML model with BLAST-based search and MERCI-based IgE motifs

ML Training dataset Validation dataset

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

RF 93.1 ± 0.02 95.36 ± 0.03 94.23 ± 0.02 0.99 ± 0.01 0.88 ± 0.04 89.43 95.09 92.26 0.98 0.85
KNN 94.47 ± 0.02 90.45 ± 0.01 92.46 ± 0.02 0.98 ± 0.01 0.85 ± 0.03 94.04 91.46 92.75 0.97 0.86
SVM 91.55 ± 0.04 85.22 ± 0.05 88.39 ± 0.06 0.97 ± 0.01 0.77 ± 0.09 96.53 83.97 90.25 0.97 0.81
MLP 90.33 ± 0.03 90.22 ± 0.03 90.28 ± 0.03 0.96 ± 0.03 0.81 ± 0.05 90.82 89.33 90.07 0.96 0.8
DT 86.43 ± 0.05 88.54 ± 0.06 87.48 ± 0.06 0.93 ± 0.02 0.75 ± 0.09 85.06 88.93 87 0.93 0.74

Note. DT, decision tree.

mapping IgE epitopes, first-time motifs were derived from IgE
epitopes using MERCI software. As shown above, MERCI-based
motif search reduces the false prediction drastically. In previous
studies, including AlgPred, the top hit of BLAST was used for the
identification of allergens; in this study, for the first time, the
top five hits were used for predicting allergens. As shown in the
table, this strategy improves the sensitivity and precision power
of BLAST. The hybrid method developed in AlgPred 2.0 combines
composition-based RF model, BLAST-based search and MERCI
motifs, whereas AlgPred combines SVM-based models with
IgE epitopes mapping. This is the reason the performance of
AlgPred 2.0 is significantly better than that of AlgPred. Several
features have been incorporated in the web server to facilitate
the scientific community. It includes a provision to submit
multiple sequences at a time for the prediction, whereas the old
version only allows to submit one sequence at a time. AlgPred 2.0
website has been designed using responsive web design pages
to make it suitable for all modern devices, including mobiles,
smartphones and iPad. The new version also allows to perform
mapping of IgE epitope using MERCI and BLAST, which is not
available in AlgPred. In the era of genomics, users wish to predict
allergenic proteins in the whole proteome of an organism, which

is difficult via web services. Thus, we also developed a stand-
alone version of AlgPred 2.0 in Python, which can be run on any
operating system having Python. In summary, the new version
has many novel features in term of algorithm or services.

In addition to AlgPred, a number of other methods have been
developed for predicting allergenic proteins. Thus, it is important
to benchmark the existing methods with our AlgPred 2.0. The
comparison of AlgPred 2.0 with other existing methods is shown
in Table 5. AllerCatPro was developed on 4180 unique allergenic
proteins, but the dataset contains the proteins which have 70%
or more sequence identity with each other [21]. AllerTOPv2 was
developed using 2427 allergens and 2427 non-allergens; in this
method, the dataset used for building the model was redundant
[18]. The methods mentioned above have not been evaluated
on the independent or external dataset. Recently, a state-of-the-
art method, AllerHunter, has been developed, which uses both
internal (5-fold) and external cross-validation. In this study, they
used 1356 allergens and 13 449 non-allergens for developing
prediction models [16]. AllerHunter achieved maximum MCC
0.738 on an external dataset that contains 129 allergens and 1314
non-allergens. Our hybrid approach achieved maximum MCC
0.88 on training and 0.85 on validation dataset.
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Table 4. Comprehensive comparison of two methods AlgPred and AlgPred 2.0

S.N. AlgPred AlgPred 2.0

Datasets, features and algorithm
1. Dataset: 578 allergens, 700 non-allergens and

178 IgE epitopes
Dataset: 10 075 allergens, 10 075 non-allergens
and 10 451 IgE epitopes

2. No MERCI motifs Identification of MERCI motifs in IgE epitopes
3. BLAST top hit was used for prediction BLAST top five hits were used for prediction
4. SVM model + mapping of IgE epitopes RF model + BLAST + MERCI motifs
Web service and stand-alone version
6. Submission of one sequence at a time Submission of multiple sequence at a time
7. Not compatible with smart devices Compatible with all modern or smart devices
8. No MERCI motif search Allow to search MERCI motifs
9. No BLAST search against IgE epitopes BLAST search against IgE epitopes
10. No stand-alone version Stand-alone software written in Python

Table 5. Comparison of AlgPred 2.0 with existing methods as reported in the literature

Methods Dataset Sens Spec Acc AUROC MCC Web server
working

AlgPred 2.0 20 150 93.1 ± 0.02 95.36 ± 0.03 94.23 ± 0.02 0.99 ± 0.01 0.88 ± 0.04 Yes
AlgPred 1278 88.87 81.86 85.02 NA 0.7053 Yes
AllerCatPro 4180 100 67.00 84.00 NA NA Yes
AllerTOPv2 4854 86.70 90.70 88.70 NA 0.775 Yes
AllerTOP 4420 87.60 78.00 82.80 NA 0.671 No
AllerHunter 14 805 83.70 96.40 95.30 0.928 ± 0.004 0.738 No
AllerTool 1274 86.00 86.00 NA 0.90 NA No
AllergenFP 4854 86.80 89.10 87.90 NA 0.759 Yes

We have also computed the performance of our hybrid model
on an independent dataset that contains 297 allergen proteins
added recently in the COMPARE and Swiss-Prot database
(see Independent dataset section of Materials and methods).
No sequence in the independent dataset has similarity with
sequences in the main dataset of AlgPred 2.0. Out of the 297
positive proteins, 280 were correctly predicted as allergens by
our hybrid model at the default threshold/parameters. Thus,
our method achieved high performance (accuracy of 94.28%)
on the independent dataset. Though there are no identical
sequences between the independent and main dataset, they
may still exhibit high similarity. Thus, we also created a non-
redundant independent dataset using CD-HIT software at cutoff
of 40%. The non-redundant independent dataset contains 56
sequences, where no sequence has more than 40% similarity
with sequences in the main dataset. Our hybrid model at the
default threshold and parameters correctly predicted 51 out of
56 sequences as allergens, achieving 91.07% accuracy. These
results indicate the reliability of our method AlgPred 2.0 on an
independent dataset that is not used while training, testing or
validating the models.

Web server interface and stand-alone version

A web server AlgPred 2.0 (https://webs.iiitd.edu.in/raghava/a
lgpred2/) has been developed for predicting allergenic proteins.
It integrates four major modules: (i) prediction, (ii) IgE epitope
mapping, (iii) motif scan and (iv) BLAST search. The ‘prediction
module’ allows users to submit the protein sequences in FASTA
format for the prediction of the allergenic and non-allergenic
proteins. In this module, the hybrid approach and RF model
based on AAC have been integrated. The ‘IgE epitope mapping
module’ facilitates the users to map the IgE epitope on a query

protein sequence. The ‘motif scan module’ allows to scan or
map motifs in the protein sequence given by the user. It uses
two software, MEME/MAST and MERCI, to derive the motifs.
The ‘BLAST search module’ facilitates the users to perform
a similarity-based search using BLAST against allergen and
non-allergen database and IgE epitopes database. The web
server has been designed by using a responsive HTML template
and browser compatibility for different OS systems. In order
to facilitate the users to predict allergens at the genome scale,
we developed a stand-alone version of AlgPred 2.0, which is
available from the download page of our website. We measured
the time taken by AlgPred 2.0 for executing 100 proteins; then,
the average time for each protein is measured in seconds. We run
the stand-alone version on the Linux server as well as on desktop
(macOS Catalina version 10.15.7) to compute the execution time.
We also submitted the proteins to our web server and calculated
the total time taken by the web server from submission to
display the result. Table 6 shows the total computation time
taken by AlgPred 2.0 for each protein in seconds.

Discussion
In the last five decades, there has been a rise in the prevalence
of allergic diseases worldwide. These diseases include allergic
rhinitis [59, 60], drug allergy [61, 62], food allergy [63–65], skin
allergy [66, 67] and insect allergy [68, 69], among many others
[70]. Several in silico methods/techniques have been developed in
the past that could be used to assess the allergenicity of proteins
[16, 17, 20, 21] Each method has its own merits and limitations. In
2006, our group also developed a method called AlgPred, which
combines a wide range of approaches that include SVM-based
models, BLAST and mapping of IgE epitopes. One of the major
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Table 6. The total computation time taken by AlgPred 2.0 for each protein in seconds (average)

Method/model Computation time Stand-alone version Web server

Linux server Desktop

RF model Real time 0.015 0.213 0.736
User time 0.012 0.010
System time 0.003 0.005

Hybrid model Real time 0.156 0.209 0.798
User time 0.149 0.123
System time 0.005 0.005

limitations of AlgPred is that it was trained on limited data (i.e.
578 allergens, 700 non-allergens and 183 IgE epitopes) due to lack
of data. In the last 14 years, the numbers of allergens and IgE
epitopes have been discovered. Thus, there is a need to update
AlgPred using recent advances in the field of immunology. In the
present study, we have developed models using 10 075 allergens
and 10 075 non-allergens. In addition, 10 451 IgE epitopes were
used to identify antigenic regions in proteins.

One of the commonly used techniques to assign the function
of a protein is a similarity-based search, where a query sequence
is searched in a database of annotated proteins. If the query
sequence exhibits high similarity with a protein whose function
is known, we assign the same function to the query protein.
Though there are several methods available for similarity search,
here we used the frequently used method BLAST. As shown in
Table 1, BLAST successfully identified the allergens; the proba-
bility of correct prediction is more than 50%, or the rate of error
is low. This method fails because all unknown proteins do not
have similar sequences in the database of allergens and non-
allergens. In simple words, BLAST fails due to a large number of
no hits.

We observed the same trend in the case of motif search
and mapping of IgE epitopes. Though most of these methods
successfully identify allergenic protein, they fail due to poor
coverage (Figure 4A and B). In order to overcome this limitation,
we developed ML-based models using AAC. Overall, the
composition-based model has much higher performance in
terms of sensitivity as well as specificity. To combine the power
of similarity search-based technique and ML-based models,
we developed hybrid models. As shown in Table 3, we got the
highest performance on both training and testing datasets.
We hope our study will be useful for the scientific community
working in the areas of protein or peptide therapeutics [71–
73]. In the present scenario, there is the utmost need for the
development of an efficient prediction tool that can identify the
potential allergens from the modified proteins often used in the
biotechnology-derived products, such as genetically modified
foods, therapeutics and vaccine designing. To facilitate the
scientific community and to promote extensive public usage
of the proposed prediction method, we have also provided a free
web server, AlgPred 2.0. We believe that our method would aid in
the more accurate recognition of allergenic proteins and thereby
bring a significant improvement in the field of allergy research
and therapy.
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• Implementation of a wide range of ML techniques for
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• It allows to search motifs in proteins identified using

MEME/MAST and MERCI.
• Server integrates facilities like similarity search by

BLAST, mapping of IgE epitope.
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