FISEVIER

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Short communication

Plasma kallikrein cleaves and inactivates apelin-17: Palmitoyl- and PEG-extended apelin-17 analogs as metabolically stable blood pressure-lowering agents

Conrad Fischer ^a, Tess Lamer ^a, Wang Wang ^b, Shaun M.K. McKinnie ^{a, 1}, Xavier Iturrioz ^{c, d, e}, Catherine Llorens-Cortes ^{c, d, e}, Gavin Y. Oudit ^b, John C. Vederas ^{a, *}

- ^a Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta, T6G 2G2, Canada
- ^b Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440-112 St. NW, Edmonton, Alberta, T6G 2B7, Canada
- c Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM, U1050, Paris, F-75005, France
- ^d Center for Interdisciplinary Research in Biology (CIRB), College de France, Paris, F-75005, France
- e CNRS, UMR 7241, Paris, F-75005, France

ARTICLE INFO

Article history:
Received 20 August 2018
Received in revised form
12 January 2019
Accepted 17 January 2019
Available online 18 January 2019

Keywords: Apelin Plasma kallikrein Cardiovascular disease Peptide mimetics

ABSTRACT

Apelins are human peptide hormones with various physiological activities, including the moderation of cardiovascular, renal, metabolic and neurological function. Their potency is dependent on and limited by proteolytic degradation in the circulatory system. Here we identify human plasma kallikrein (KLKB1) as a protease that cleaves the first three N-terminal amino acids (KFR) of apelin-17. The cleavage kinetics are similar to neprilysin (NEP), which cleaves within the critical 'RPRL'-motif thereby inactivating apelin. The resulting C-terminal 14-mer after KLKB1 cleavage has much lower biological activity, and the presence of its N-terminal basic arginine seems to negate the blood pressure lowering effect. Based on C-terminally engineered apelin analogs (A2), resistant to angiotensin converting enzyme 2 (ACE2), attachment of an N-terminal C16 fatty acid chain (PALMitoylation) or polyethylene glycol chain (PEGylation) minimizes KLKB1 cleavage of the 17-mers, thereby extending plasma half-life while fully retaining biological activity. The N-terminally PEGylated apelin-17(A2) is a highly protease resistant analog, with excellent apelin receptor activation and pronounced blood pressure lowering effect.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

The metabolic syndrome [1] and resulting implications including cardiovascular diseases [2] are significant health concerns and major causes of mortality [3]. In the search for endogenous targets to combat these diseases, the apelinergic system has been identified as key regulating machinery for energy metabolism and cardiovascular health [4,5]. Apelins are endogenous peptide hormones and ligands for APJ, a G-protein-coupled receptor. They are crucial in regulating cardiovascular functions, fluid homeostasis and carbohydrate and fat metabolism [6–8]. Apelin is expressed as a 77-amino acid prepropeptide, that is further processed to bioactive C-terminal fragments including apelin-13 (or the N-terminal

pyroglutamate pyr-apelin-13), apelin-17 and apelin-36. Whereas pyr-apelin-13 is the predominant form in human plasma [9], both pyr-apelin-13 and apelin-17 are dominant in rat plasma [10]. Apelin isoforms have an average lifetime in blood plasma of about 5 min [11], rendering their physiological activity profile. Angiotensin converting enzyme 2 (ACE2) [12,13] and the metalloprotease neprilysin (NEP) [14,15] have so far been unveiled as proteases that cleave and partially (ACE2) [16] or fully (NEP) inactivate apelin. Here we describe plasma kallikrein (KLKB1, EC 3.4.21.34) as another major hydrolytic enzyme, that contributes to the rapid destruction of apelin-17. Cleavage by this enzyme produces a C-terminal 14mer lacking the polar basic KFR head group. In vivo tests show, that this apelin-14 peptide lacks significant blood-pressure lowering effects, in contrast to apelin-17. Several strategies, including insertion of non-natural amino acids [17,18], p-amino acid substitution [19], N- and $\alpha-C$ methylation [14,20] and internal macrocyclization [21] have been tested and shown beneficial in increasing the metabolic stability of various apelin peptides. The

^{*} Corresponding author.

E-mail address: John.Vederas@ualberta.ca (J.C. Vederas).

¹ Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.

recently reported N-terminal PALMytoylation of apelin-13 and PEGylation of apelin-36 increased proteolytic stability and plasma half-life of these analogs [20,22]. However, this strategy has not yet been studied for apelin-17. Here we test N-terminal extension of apelin-17 by a PALM- or PEG-chain in order to increase metabolic stability towards both NEP and KLKB1 and the physiological activity of these novel apelin analogs.

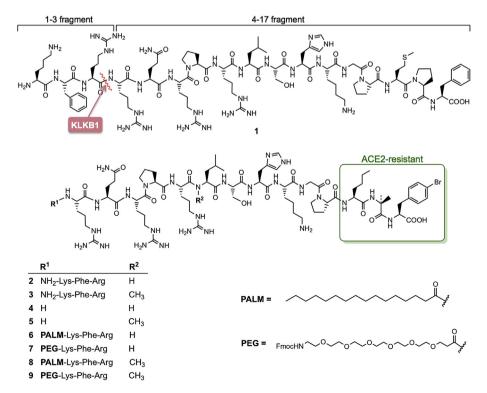
2. Results and discussion

2.1. Elucidation of KLKB1 and kinetics

Our previous studies [14] on apelin-13 and apelin-17 revealed an additional fragment, when apelin-17A2 (compound **2**, Scheme **1**) was incubated with human plasma for very short times (10–30 min, Fig. S1). Analysis of major breakdown products of **2** by LC-MS showed a dramatic increase of the 1–3 and 4–17 fragments, disregarding random amino exopeptidase breakdown. MALDI MS analysis confirmed that this C-terminal 14-mer (i.e. compound **4**, cleavage between Arg3-Arg4) was quickly observed even in the presence of the ACE2 inhibitor MLN-4760 (1 mM) [12], the metalloprotease inhibitor EDTA (10 mM) or thiorphan (10 mM, M13 protease family inhibitor), indicating that a different protease than ACE2 or NEP must be responsible for this cleavage.

Incubation of **2** with 10 mM 4-(2-aminoethyl)benzene-sulfonyl fluoride (AEBSF) resulted in a disappearance of the 14-mer, suggesting the cleaving enzyme to be a serine protease [23,24]. Upon closer comparison of the cleavage characteristics (Phe in P2, basic Arg in P1 and a polar amino to acid in P1', compare Figs. S3 and S4) we suspected the unknown protease to be plasma kallikrein (KLKB1) [25]. Indeed, plasma kallikrein has been shown to be involved in the cleavage and activation of various peptide hormones like kininogen [26], factor XII and Neuropeptide Y (NPY) [27], all of which trigger cardiovascular functions. However, no

connection to date has been made to its involvement in apelin degradation. In the human body, KLKB1 circulates as zymogen bound to high-molecular-weight kininogen and is activated by coagulation factor XIIa [28]. Once activated, KLKB1 possesses a trypsin like activity, cleaving at a basic residue in P1 position (Arg), whereas the bulky hydrophobic Phe side chain at P2 can be accommodated in the S2 pocket of this enzyme [29]. Monitoring the decrease of parent peptide upon incubation of recombinant human KLKB1 (rhKLKB1) with native apelin-17 (compound 1, Scheme 1) as well as ACE2 and NEP-stabilized apelin analogs 2 and 3 enabled us to extract the kinetic parameters for this cleavage (Table 1, S1). It appears that KLKB1 cleaves as effectively as NEP, and the enzyme processes apelin-17 (1) and analogs 2 and 3 with moderate efficiency $(k_{cat}/K_m \sim 10^5)$, comparable to other cardiovascular active peptide substrates (Figs. S5-S7, Table S2). As the potent analog 3, which is resistant to ACE2 and neprilysin, is degraded quickly, this stimulated an endeavor to explore a stabilization strategy closer to the Arg3-Arg4 cleavage site.


2.2. N-terminally PALMitoylated and PEGylated apelin analogs

We tested if N-terminal extension of apelin-17 by a fatty acid

Table 1Kinetic parameters for NEP and KLKB1 cleavage of cardiovascular active peptides.

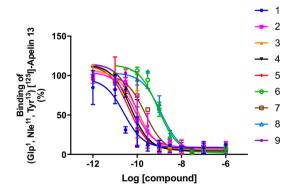
Substrate	Enzyme	$K_m(\mu M)^a$	$k_{cat} (1/s)^a$	k _{cat} /K _m (1/Ms) ^a
1	NEP	190 ± 40	3.4 ± 0.3	$(1.8 \pm 0.4) *10^4$
1	KLKB1	97 ± 21	13.7 ± 1.3	$(1.4 \pm 0.3) *10^{5}$
2	KLKB1	30 ± 4	1.4 ± 0.2	$(4.7 \pm 0.8) *10^4$
3	KLKB1	245 ± 75	16.5 ± 2.1	$(6.7 \pm 1.0) *10^{4}$
Kininogen [25]	KLKB1	0.75	0.031	4.1 *10 ⁴
Factor XII [25]	KLKB1	2.4	0.001	4.2 *10 ²

^a Errors represent standard error of the mean (S.E.M).

Scheme 1. Compounds studied in this paper. KLKB1 cleaves apelin between Arg3-Arg4 (highlighted). Introduction of the ACE2-resistant C-terminus (incorporating L-norleucine, aminoisobutyric acid and 4-bromophenyl alanine) was chosen as basis for the analog design.

chain (PALM, M_{w-gain} 240 g/mol) or a PEG₆-chain (M_{w-gain} 558 g/mol) could minimize recognition and proteolytic degradation not just by the newly described KLKB1 but also by NEP. To negate the impact of ACE2 cleavage, the ACE2 resistant "A2" C-terminus, i.e. Nle-Aib-BrF, was incorporated into all modified analogs [12]. Synthetically, Fmoc-p-BrPhe-OH was loaded onto 2-chlorotrityl chloride resin and extended by solid phase peptide synthesis to the octapeptide stage. For each peptide, 0.2 mmol of the octapeptide was extended to the full 17-mer or to the 14-mer stage excluding (compounds **2**, **4**, **6**, **7**) or including the NEP-resistant Arg-NMe-Leu dipeptide (compounds **3**, **5**, **8**, **9**). The Fmoc-deprotected 17-mers were coupled with palmitic acid (**6**, **8**) or Fmoc-(PEG)₆-propanoic acid (**7**, **9**) in order to yield the title N-terminally palmitoylated and pegylated apelin analogs. All peptides were analyzed by MALDI and LC-MS and purified by preparative HPLC.

2.3. In vitro stability


We initially compared the in vitro NEP and KLKB1 stability of the PALM/PEG analogs to native apelin-17 (1), the A2 substituted analog (2) and the NEP-resistant analog 3. Analogs 6-9 were incubated with recombinant human NEP (rhNEP, Sino Biological) or KLKB1 (rhKLKB1, Novoprotein) at 37 °C for up to 72 h, and the extent of degradation was analyzed via LC-MS because of the overlapping elution patterns of peptide fragments (NEP) (Table 2, Fig. S2). As previously reported, the NMe-Leu apelin analog 3 has a pronounced resistance to NEP with a half-life >30 h [15], compared to the native form 1 and the A2-analog 2. This is also true for the Nterminally PALM/PEG analogs 8 and 9, that have the NMe-Leu substitution. Also the PEGylated analog 7 without the stabilizing NMe-Leu has a significantly higher resistance towards NEP cleavage $(t_{1/2} > 30 \text{ h})$, indicating a size-restriction in the substrate recognition of NEP. It is known, that neprilysin has just a modest active site pocket volume, generally limiting the substrate size to about 2500 g/mol [30]. Therefore it seems, that in addition to previously studied amino acid modification [17,19-21], N-terminal extension of apelins might also benefit NEP resistance. With regard to the cleavage capacity of KLKB1 it becomes obvious from Table 2, that all the N-terminally PALM/PEGylated analogs 6-9 have 2-6 fold longer half-lives than the native apelin-17. This effect gets more pronounced in human plasma. Plasma incubation of native apelin 1 and analogs **2–9** and subsequent HPLC analysis of the remaining peptide reveals that the half-life of the respective N-terminally extended peptides is 225-1350 times longer than for the native apelin-17 (Table 2). Thus, our findings underline that N-terminal extension is a potent strategy to increase the proteolytic stability of apelin-17, as has been shown in similar fashion for a N-terminally palmitoylated apelin-13 derivative [20]. Variations in the effective KLKB1 concentration and differences in its activation state might explain the discrepancy of apelin stability in plasma vs. isolated enzyme incubation assay.

2.4. Binding affinity of apelin analogs

We evaluated the ability of apelin-17 (1) or the different apelin analogs (2 to 8) to displace [125 I]-(Glp [1], Nle [11], Tyr [13]) apelin-13 (0.1 nM) binding on membrane preparations from CHO cells stably expressing the rat ApelinR-EGFP. As shown in Fig. 1, the apelin analogs corresponding to the compounds 2, 3, 4, 5, 7 and 9 were able to displace the radioligand from the rat apelin receptor-EGFP with IC₅₀ values in the subnanomolar range similar to that of compound 1 (IC $_{50} = 0.025 \pm 0.013$ nM). The compounds 6 and 8 displayed IC₅₀ values around the nanomolar range. Altogether, these data showed that all the apelin-17 analogs were able to interact with the rat apelin receptor at the same binding site than the natural ligand and are thus orthosteric ligands. In addition, N-terminal extension of apelin-17 by a palmitoyl or PEG chain does not impair receptor binding as previously shown with the addition of a fluorocarbon chain at the N-terminal part of apelin-17 [31].

2.5. Ca²⁺ mobilization assay

To study the extend to which the newly derived analogs trigger APJ-receptor activation, we used a fluorescence coupled calcium release assay including a recombinant human APJ-Ga16 receptor cell line. Reference apelin-17 (1) has the lowest EC_{50} value, comparable to its shorter isoform Apelin-13 [20]. Compounds **6–9** feature EC_{50} values in the low nanomolar range comparable to the N-terminally free apelin analogs **1–3** (Table 2, Fig. S8). This is in accordance with the results obtained for a N-terminally extended apelin-13 and apelin-36 analog by different groups [20,22]. Unlike palmitoylation within the apelin peptide sequence, which can be detrimental for receptor binding [20], N-terminal extension by a

Fig. 1. Binding inhibition curves with apelin-17 analogs. Membranes of CHO cells stably expressing the rat ApelinR were incubated with 0.1 nM (Glp [1], Nle [11], Tyr [13])[^{125}I]-Apelin-13 in the presence of increasing concentrations of each peptide (from 1 pM to 1 μ M). Data are expressed as percentage of maximal binding of (Glp [1], Nle [11], Tyr [13])[^{125}I]-Apelin-13 in the absence of any nonradiolabeled ligand (n = 3).

Table 2Peptide half-life and receptor activation of studied compounds.

Apelin	Modification	t _{1/2} (<i>rh</i> NEP, h)	t _{1/2} (<i>rh</i> KLKB1, h)	t _{1/2} (<i>h</i> plasma, h)	EC ₅₀ (nM) ^a	ΔMABP _{max} (mmHg)
1	Apelin-17	0.4	0.4	0.02	1.9 ± 1.0	-20
2	Apelin-17A2	1.0	0.7	0.3	4.1 ± 1.0	-32
3	NMeLeu-17A2	>30	0.9	1.2	4.9 ± 1.0	-36
4	Apelin-14A2	_	_	_	568 ± 34	+3
5	NMeLeu-14A2	_	_	_	176 ± 21	-15
6	PALM-17A2	1.5	1.0	4.5	2.6 ± 0.8	-41
7	PEG-17A2	>30	1.4	18	6.3 ± 1.0	-48
8	NMeLeu-PALM17A2	>30	2.1	20.5	11.3 ± 2.1	-12
9	NMeLeu-PEG17A2	>30	2.9	27	2.5 ± 1.5	-53

^a Errors represent standard error of the mean (S.E.M).

palmitoyl or PEG chain seems not to affect receptor binding and internalization. To our surprise, the 14-mer left after KLKB1 cleavage, seems to be rather inactive featuring a 200-times higher EC_{50} than the 17-mers.

2.6. Physiological test-Blood pressure assay

Synthetic analogs **6–9** as well as the KLKB1-cleavage fragments 4 and 5 were tested for blood pressure lowering abilities in anesthetized mice. Apelin peptide analogs were delivered systemically via the right internal jugular vein while blood pressure (BP) and heart rate (HR) were continuously monitored in the aorta cannulated via the right carotid artery. All N-terminally extended apelin analogs, except 8, show pronounced and time-stable blood pressure lowering effects (Fig. 2). Among the newly synthesized Nterminally extended apelin-17 analogs, 8 triggers also the lowest Ca²⁺ mobilization and features the weakest receptor binding. Interestingly, the heart rate increasing effect is restored in this compound, perhaps suggesting alternate activation pathways. In this regard, compounds 6, 7 and 9 are more potent than native apelin-17 (1) and the metabolically stabilized analogs 2 and 3. Importantly, both PEGylated analogs 7 and 9 show the most stable and potent effect. In contrast, both the fragments left after KLKB1 cleavage (compounds 4 and 5) are inactive or nearly so in their cardio-physiological effects. This inactivity correlates with the results obtained from the Ca²⁺ mobilization assay but contrasts with the receptor binding assay, where both C-terminal cleavage fragments show strong binding capability. This discrepancy between receptor binding and downstream effects may be due to different abilities of analogs to induce conformational changes in the receptor and/or induce alternative downstream activation pathways.

3. Conclusions

Human plasma kallikrein (KLKB1) has been identified as human protease, that cleaves apelin-17 relatively quickly between Arg3-Arg4. The resulting C-terminal 14-mer appears to be inactive with regard to Ca²⁺ mobilization (APJ receptor binding unaffected) and is lacking cardiophysiological effects. Hence KLKB1 degradation inactivates apelin 17. N-terminal extension by a palmitoyl or PEG₆ chain yields apelin analogs that are more cleavage resistant towards both KLKB1 and NEP proteases and have prolonged plasma half-life. Combined with their potent and time-stable blood pressure lowering effect, these new apelin analogs present a promising new target for the development of cardiovascular active peptide drugs. Further physiological studies and other synthetic stabilization

approaches are currently underway to obtain a better understanding of the impact of this new cleavage site for the design of novel drug targets.

4. Experimental

4.1. General chemistry and peptide synthesis

General chemistry and full details of the synthesis and purification methods of analogs **4**–**9** can be found in the supplementary material. The attachment of the palmitoyl and PEG chain followed a literature procedure [20].

4.1.1. Apelin-14A2 (4)

Resin bound BrF was subjected to manual SPPS, introducing amino acids in the following order: Fmoc-Aib-OH, Fmoc-Nle-OH, Fmoc-Pro-OH, Fmoc-Gly-OH, Fmoc-Lys(Boc)—OH, Fmoc-His(Trt)—OH, Fmoc-Ser(t-Bu)—OH, Fmoc-Leu-OH, Fmoc-Arg(Pbf)—OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)—OH, Fmoc-Glu(Trt)—OH, Fmoc-Arg(Pbf)—OH). A portion (0.05 mmol) of resin-bound peptide was cleaved as previously described and purified using a C18 RP-HPLC analytical column (method A), eluting at 10.0 min. The desired peptide was isolated as a white solid after lyophilization (9.0 mg, 11%). Monoisotopic MW calculated for C₇₅H₁₂₄BrN₂₇O₁₇1754.8925, found (FTICR-ESI-MS) 1754.8943 (M+H)⁺.

4.1.2. Apelin-NMe14A2 (5)

Resin bound BrF was subjected to manual SPPS, introducing amino acids in the following order: Fmoc-Aib-OH, Fmoc-Nle-OH, Fmoc-Pro-OH, Fmoc-Gly-OH, Fmoc-Lys(Boc)—OH, Fmoc-His(Trt)—OH, Fmoc-Ser(t-Bu)—OH, Fmoc-Arg(Boc₂)-NMeLeu-OH [15], Fmoc-Pro-OH, Fmoc-Arg(Pbf)—OH, Fmoc-Glu(Trt)—OH, Fmoc-Arg(Pbf)—OH). A portion (0.05 mmol) of resin-bound peptide was cleaved as previously described and purified using a C18 RP-HPLC analytical column (method A), eluting at 10.1 min. The desired peptide was isolated as a white solid after lyophilization (7.5 mg, 9%). Monoisotopic MW calculated for C₇₆H₁₂₇BrN₂₇O₁₇ 1768.9091, found (FTICR-ESI-MS) 1768.9119 (M+H)⁺.

4.1.3. PALM-17A2 (6)

Compound **4** was extended by SPPS, introducing amino acids in the following order: Fmoc-Arg(Pbf)—OH, Fmoc-Phe-OH, Fmoc-Lys(Boc)—OH, palmitic acid. A portion (0.05 mmol) of resin-bound peptide was cleaved as previously described and purified using a BiPhe RP-HPLC analytical column (method C), eluting at 12.0 min. The desired peptide was isolated as a white solid after

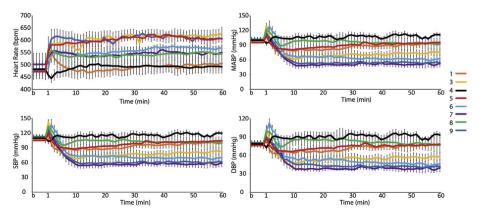


Fig. 2. In vivo mean arterial blood pressure (MABP), systolic (SBP), diastolic (DBP), and heart rate (HR) analyses following injection of native apelin-17 (1) or analogs 3–9 in anesthetized mice (n = 5).

lyophilization (5.0 mg, 8%). Monoisotopic MW calculated for $C_{112}H_{188}BrN_{34}O_{21}$ 606.8521, found (FTICR-ESI-MS) 606.8524 (M + 4H)⁴⁺.

4.1.4. PEG-17A2 (7)

Compound **4** was extended by SPPS, introducing amino acids in the following order: Fmoc-Arg(Pbf)—OH, Fmoc-Phe-OH, Fmoc-Lys(Boc)—OH, Fmoc-(PEG) $_6$ propionic acid. A portion (0.05 mmol) of resin-bound peptide was cleaved as previously described and purified using a BiPhe RP-HPLC analytical column (method C), eluting at 11.1 min. The desired peptide was isolated as a white solid after lyophilization (6.5 mg, 9%). Monoisotopic MW calculated for C₁₂₆H₁₉₇BrN₃₅O₂₉ 686.6103, found (FTICR-ESI-MS) 686.6093 (M + 4H)⁴⁺.

4.1.5. PALM-NMe17A2 (8)

Compound **5** was extended by SPPS, introducing amino acids in the following order: Fmoc-Arg(Pbf)—OH, Fmoc-Phe-OH, Fmoc-Lys(Boc)—OH, palmitic acid. A portion (0.05 mmol) of resin-bound peptide was cleaved as previously described and purified using a BiPhe RP-HPLC analytical column (method B), eluting at 11.9 min. The desired peptide was isolated as a white solid after lyophilization (5.5 mg, 7%). Monoisotopic MW calculated for $C_{113}H_{190}BrN_{34}O_{21}$ 610.3560, found (FTICR-ESI-MS) 610.3585 (M + 4H)⁴⁺.

4.1.6. PEG-NMe17A2 (9)

Compound **5** was extended by SPPS, introducing amino acids in the following order: Fmoc-Arg(Pbf)—OH, Fmoc-Phe-OH, Fmoc-Lys(Boc)—OH, Fmoc-(PEG) $_6$ propionic acid. A portion (0.05 mmol) of resin-bound peptide was cleaved as previously described and puri-fied using a BiPhe RP-HPLC analytical column (method B), eluting at 11.2 min. The desired peptide was isolated as a white solid after lyophilization (6.5 mg, 8%). Monoisotopic MW calculated for $C_{127}H_{199}BrN_{35}O_{29}$ 690.1142, found (FTICR-ESI-MS) 690.1151 (M + 4H) $^{4+}$.

4.2. Ca^{2+} -mobilization assay

Chem-5 cells (Millipore, USA), stably expressing APJ-G α 15 were seeded in 100 μ L medium (HBSS, 20 mM HEPES, pH 7.4) into 96-well plates (20.000 cells/well) and incubated for 24 h at 37°C and 5% CO₂. After that time the buffer was removed and exchanged for fresh medium (HBSS, 20 mM HEPES, probenecid 2.5 mM, pH 7.4). The fluorescence dye was added (Calcium 6-QF, Molecular Devices, USA) and incubated for 2 h at 37°C and 5% CO₂. Test compounds were diluted in HBSS buffer at pH 7.4 and a respective aliquot added to each well according to the dilution series. Fluorescence signals were measured on a Spectramax i3x plate-reader station (Molecular Devices, USA). Experiments were done in triplicate and analyzed using Prism 5.01 (GraphPad, USA, Fig. S8).

4.3. Blood pressure assay

Mice were anesthetized with 1.5% isoflurane/oxygen, and body temperature was monitored and maintained at 36 °C by a heating pad. The aorta was cannulated via the right carotid artery using a PV loop catheter (model 1.2F from Scisense, Transonic) in order to continuously record arterial blood pressure and heart rate (Lab-Scribe 2.0, Scisense). Peptides 3-9 (1.4 μ M/kg body weight) or the same volume of saline was injected via the right jugular vein. Results are reported as systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MABP), and heart rate (HR).

4.4. API radioligand binding experiments

Crude membrane preparation from CHO cells stably expressing the wild-type rat apelin receptor tagged at its C-terminal part with EGFP (enhanced green fluorescent protein; clone B70; apelin receptor-EGFP), were prepared as previously described [32]. Membrane preparations (1 μg total mass of membranes/assay) were incubated for 3 h at 20 °C with 0.1 nM of the radioligand, [^{125}I]-(Glp [1], Nle [11], Tyr [13]) apelin-13 (Perkin Elmer) in binding buffer (50 mM Hepes pH 7.5, 5 mM MgCl₂, 1% BSA) alone or in the presence of apelin-17 or apelin analogs at various concentrations (from 1 pM to 1 μ M). The reaction was stopped with cold binding buffer and filtered on Whatman GF/C filters. After washing the filters, radioactivity was counted.

Notes

The authors declare no competing financial interest.

Acknowledgments

We thank Jing Zheng, Bela Reiz, Dr. Angie Morales-Izquierdo, and Dr. Randy Whittal (University of Alberta Mass Spectrometry Facility) for assistance with mass spectrometry characterization and analyses of peptides and peptide fragments, Gareth Lambkin for his kind assistance with the Ca-mobilization assay. This work was supported by the Canadian Institutes of Health Research (CIHR Grant 136921), the Natural Sciences and Engineering Council of Canada (NSERC), Alberta Innovates - Health Solutions (CF, AIHS).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejmech.2019.01.040.

Abbreviations

ACE2	angiotensin-converting enzyme 2
A :1-	

Aib aminoisobutyric acid
APJ apelin receptor
BP blood pressure
BiPhe Biphenyl

DIPEA N,N-diisopropylethylamine EIC extracted-ion chromatogram HOAt 1-hydroxy-7-azabenzotriazole

KLKB1 plasma kallikrein

LVDP left ventricle developed pressure MABP mean arterial blood pressure

max dP/dt maximum derivative of change in systolic pressure over

min dP/dt minimum derivative of change in diastolic pressure over

time
NEP neprilysin
Nle norleucine
Orn ornithine

p-TsOH para-toluenesulfonic acid

Pmc 2,2,5,7,8-pentamethylchroman-6- sulfonyl

Rh recombinant human RP reversed phase

SPPS solid phase peptide synthesis

Trt trityl

References

[1] J.A. Kaur, A comprehensive review on metabolic syndrome, Cardiol. Res. Pract.

- 2014 (2014) 943162.
- [2] S. Malik, N.D. Wong, S.S. Franklin, Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults, Circulation 110 (2004) 1245–1250.
- [3] World Health Organization (WHO), Silent Killer, Global Public Health Crisis, A global brief on hypertension, WHO, Geneva, USA, 2013, p. 40. Available online: http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/. (Accessed 11 February 2017).
- [4] J.C. Zhong, Z.Z. Zhang, W. Wang, S.M.K. McKinnie, J.C. Vederas, G.Y. Oudit, Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochim. Biophys. Acta 1863 (2017) 1942–1950.
- [5] R. Guo, O. Rogers, S. Nair, Targeting apelinergic system in cardiometabolic disease, Curr. Drug Targets 18 (2017) 1785—1791.
- [6] C. Bertrand, P. Valet, I. Castan-Laurell, Apelin and energy metabolism, Front. Physiol. 6 (2015) 115.
- [7] J.R. Dalzell, J.P. Rocchiccioli, R.A. Weir, et al., The emerging potential of the apelin-APJ system in heart Failure, J. Card. Fail. 21 (2015) 489–498.
- [8] A. Folino, P.G. Montarolo, M. Samaja, R. Rastaldo, Effects of apelin on the cardiovascular system, Heart Fail. Rev. 20 (2015) 505–518.
- [9] E.Y. Zhen, R.E. Higgs, J.A. Gutierrez, Pyroglutamyl apelin-13 identified as the major apelin isoform in human plasma, Anal. Biochem. 442 (2013) 1–9.
 [10] N. De Mota, A. Reaux-Le Goazigo, S. El Messari, N. Chartrel, D. Roesch,
- [10] N. De Mota, A. Reaux-Le Goazigo, S. El Messari, N. Chartrel, D. Roesch, C. Dujardin, C. Kordon, H. Vaudry, F. Moos, C. Llorens-Cortes, Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 10464–10469.
- [11] A.G. Japp, N.L. Cruden, D.A. Amer, V.K. Li, E.B. Goudie, N.R. Johnston, et al., Vascular effects of apelin in vivo in man, J. Am. Coll. Cardiol. 52 (2008) 908–913.
- [12] W. Wang, S.M.K. McKinnie, M. Farhan, M. Paul, T. McDonald, B. McLean, C. Llorens-Cortes, S. Hazra, A.G. Murray, J.C. Vederas, G.Y. Oudit, Angiotensin converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17: physiological effects in the cardiovascular system, Hypertension 68 (2016) 365–377.
- [13] C. Vickers, P. Hales, V. Kaushik, L. Dick, J. Gavin, J. Tang, K. Godbout, T. Parsons, E. Baronas, F. Hsieh, S. Acton, M. Patane, A. Nichols, P. Tummino, J. Biol. Chem. 277 (2002) 14838–14843.
- [14] S.M.K. McKinnie, C. Fischer, K.M.H. Tran, W. Wang, F. Mosquera, G.Y. Oudit, J.C. Vederas, The metalloprotease neprilysin degrades and inactivates apelin peptides, Chembiochem 17 (2016) 1495–1498.
- [15] S.M.K. McKinnie, W. Wang, C. Fischer, T. McDonald, K.R. Kalin, X. Iturrioz, C. Llorens-Cortes, G.Y. Oudit, J.C. Vederas, Synthetic modification within the "RPRL" region of apelin peptides; impact on cardiovascular activity and stability to neprilysin and plasma degradation, J. Med. Chem. 60 (2017), 6408-5427
- [16] P. Yang, R.E. Kuc, A.L. Brame, A. Dyson, M. Singer, R.C. Glen, J. Cheriyan, I.B. Wilkinson, A.P. Davenport, J.J. Maguire, [Pyr¹]Apelin-13₍₁₋₁₂₎ is a biologically active ACE2 metabolite of the endogenous cardiovascular peptide [Pyr¹] apelin-13, Front. Neurosci. 11 (2017) 92.
- [17] Y. Ma, Y. Yue, Y. Ma, Q. Zhang, Q. Zhou, Y. Song, Y. Shen, X. Li, X. Ma, C. Li, M.A. Hanson, G.W. Han, E.A. Sickmier, G. Swaminath, S. Zhao, R.C. Stevens, L.A. Hu, W. Zhong, M. Zhang, F. Xu, Structural basis for apelin control of the human apelin receptor, Structure 25 (2017) 858–866.

- [18] A. Murza, K. Belleville, J.-M. Longpré, P. Sarret, É. Marsault, Stability and degradation patterns of chemically modified analogs of apelin-13 in plasma and cerebrospinal fluid, Biopolymers 102 (2014) 297–303.
- [19] A. Murza, A. Parent, E. Besserer-Offroy, H. Tremblay, F. Karadereye, É. Marsault, Elucidation of the Structure-Activity relationship of apelin; influence of unnatural amino acids on binding, signaling, and plasma stability, ChemMedChem 7 (2011) 318–325.
- [20] C. Juhl, S. Els-Heindl, R. Schönauer, G. Redlich, E. Haaf, F. Wunder, B. Riedl, N. Burkhardt, A.G. Beck-Sickinger, D. Bierer, Development of potent and metabolically stable APJ ligands with high therapeutic potential, Chem-MedChem 11 (2016) 2378–2384.
- [21] K. Trân, A. Murza, X. Sainsily, D. Coquerel, J. Côté, K. Belleville, L. Haroune, J.-M. Longpré, R. Dumaine, D. Salvail, O. Lesur, M. Auger-Messier, P. Sarret, É. Marsault, A systematic exploration of macrocyclization in apelin-13: impact on binding, signaling, stability, and cardiovascular effects, J. Med. Chem. 61 (2018) 2266–2277.
- [22] Z.Q. Jia, L. Hou, A. Leger, I. Wu, A.B. Kudej, J. Stefano, C. Jiang, C.Q. Pan, G.Y. Akita, Cardiovascular effects of a PEGylated apelin, Peptides 38 (2012) 181–188
- [23] T.M. Chu, E. Kawinski, Plasmin, subtilisin-like endoproteases, tissue plasminogen activator, and urokinase plasminogen activator are involved in activation of latent TGF-beta 1 in human seminal plasma, Biochem. Biophys. Res. Commun. 253 (1998) 128–134.
- [24] J.C. Powers, J.L. Asgian, O.D. Ekici, K.E. James, Irreversible Inhibitors of serine, cysteine and threonine proteases, Chem. Rev. 201 (2002) 4639–4750.
- [25] M. Pathak, S.S. Wong, I. Dreveny, J. Emsley, Structure of plas-ma and tissue kallikreins, Thromb. Haemostasis 110 (2013) 423–433.
- [26] A.J. Gozzo, V.A. Nunes, I. Cruz-Silva, A.K. Carmona, H.B. Nader, A. Faljoni-Alarino, M.U. Sampaio, M.S. Araujo, Heparin modulation of human plasma kallikrein on different substrates and inhibitors, Biol. Chem. 387 (2006) 1129–1138
- [27] K. Abid, B. Rochat, P.-G. Lassahn, R. Stöcklin, S. Michalet, N. Brakch, J.-F. Aubert, B. Vatansever, P. Tella, I. De Meester, E. Grouzmann, Kinetic study of neuropeptide Y (NPY) proteolysis in blood and identification of NPY3-35: a new peptide generated by plasma kallikrein, J. Biol. Chem. 284 (2009) 24715-24724.
- [28] A.P. Kaplan, K. Joseph, Y. Shibayama, Bradykinin formation. Plasma and tissue pathways and cellular interactions, Clin. Rev. Allergy Immunol. 16 (1998) 403–429.
- [29] J. Tang, C.L. Yu, S.R. Williams, Expression, crystallization, and threedimensional structure of the catalytic domain of human plasma kallikrein, J. Biol. Chem. 280 (2005) 41077–41089.
- [30] K. Pankow, A. Schwiebs, M. Becker, W.-E. Siems, G. Krause, T. Walther, Structural Substrate conditions required for neutral endopeptidase-mediated natriuretic peptide degradation, J. Mol. Biol. 393 (2009) 496–503.
- [31] R. Gerbier, R. Alvear-Perez, J.F. Margathe, A. Flahault, P. Couvineau, J. Gao, N. De Mota, H. Dabire, B. Li, E. Ceraudo, A. Hus-Citharel, L. Esteoulle, C. Bisoo, M. Hibert, A. Berdeaux, X. Iturrioz, D. Bonnet, C. Llorens-Cortes, Development of original metabolically stable apelin-17 analogs with diuretic and cardiovascular effects, FASEB J. 31 (2017) 687–700.
- [32] X. Iturrioz, G. Vazeux, J. Celerier, P. Corvol, C. Llorens-Cortes, Histidine 450 plays a critical role in catalysis and, with Ca²⁺, contributes to the substrate specificity of aminopeptidase A, Biochemistry 39 (2000) 3061–3068.