REFERENCES
1. SWISS-PROT. SWISS-PROT Protein Knowledgebase Release 43.20. (http://www.expasy.org/sprot/relnotes/relstats.html)
2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne,P.E.(2000). The Protein Data Bank. Nucleic Acids Res. 28, 235-242.
3. King, R.D., and Sternberg, M. J. (1996). Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci. 5, 2298-2310.
4. Rost, B., and Sander, C. (1994). Combining cvolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55-72.
5. Jones, D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195-202.
6. Cuff, J.A., and Barton, G.J. (2000). Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502 -511.
7. Rost, B. (1996). PHD: predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol. 266, 525-539.
8. Petersen, T., Lundegrad, C., Neilsen, M., Bohr, H., Bohr, J., Brunak, S., Gippert, G.P., and Lund, O. (2000). Prediction of protein secondary structure at 80% accuracy. Proteins 41, 17-20.
9. Meiler, J., and Baker, D.(2003). Coupled prediction of protein secondary and tertiary structure. Proc. Natl. Acad. Sci. 100, 12105-12110.
10. Dill, K.A., (1990). Dominant forces in Protein folding. Biochemistry 29, 7131-7155.
11. Bonneau R,Tsai J,Ruczinski I,Chivian D,Rohl C,Strauss CEM,Baker D.Roseeta in Casp4 :progress in ab-intio protein structure prediction. Proteins 2001;45 suppl 5:119-126.
12. Hilbert, M., Bohm, G., and Jaenicke, R. (1993). Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins. 17, 138-51.
13. Rost, B. and Sander, C. (1997). Protein fold recognition by prediction-based threading. J. Mol. Biol. 270, 471-480.
14. Jones, D.T.(2001). Predicting novel protein folds by using FRAGFOLD. Proteins Suppl 5, 127-132.
15. De La Cruz X, Thornton, J.M. (1999). Factors limiting the performance of prediction-based fold recognition methods. Protein Sci. 8, 750-759.
16. Chou, K.C, (1997). Prediction of beta-turns. J. Pept. Res. 49, 120-144.
17. Kaur, H., and Raghava, G.P.S. (2003). Prediction of beta-turns in proteins from multiple alignment using neural network. 12, 627-634.
18. Kaur, H., and Raghava, G.P.S., (2003). A neural network based method for prediciton of gamma-turns in proteins from multiple sequence alignment Protein Science 12, 923-929.
19. Kaur, H., and Raghava, G.P.S., (2004). Prediction of Alpha-turns in proteins using PSI-BLAST profiles and secondary structure information. Proteins 55, 83-90.
20. Burke, D.F., and Deanne, C.M. (2001). Improved protein loop prediction from sequence alone. Protein Eng. 14, 473-478.
21. Sun, Z., Rao, X., Peng, L., and Xu, D. (1997). Prediction of protein supersecondary structures based on artificial neural network method. Protein Eng. 10, 763-769.
22. de la Cruz X. Hutchinson, E.G., Shepherd, A., and Thornton J.M. (2002). Toward predicting protein topology: An approach to identifying B hairpins. Proc. Natl. Acad. Sci. USA. 99, 11157-11162.
23. Kuhn, M., Meiler, J., and Baker, D. (2004). Strand-Loop-Strand Motifs: Prediction of hairpins and diverging turns in proteins. Protein 5, 282-288.
24. Jenny, T.F., Gerloff, D.L., Cohen, M.A., and Benner, S.A. (1995). Predicted secondary and supersecondary structure for the serine-threonine-specific protein phosphatase family. Proteins 21, 1-10.
25. Salem, G.M., Hutchinson, E.G., Orengo, C.A., and Thornton, J.M. (1999). Correlation of observed fold frequency with the occurrence of local structural motifs. J. Mol. Biol. 287, 969-981.
26. Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637.
27. Hutchinson, E. G., and Thornton, J. M. (1996). PROMOTIF - A program to identify and analyze structural motifs in proteins. Protein Sci. 5, 212-220.
28. Vapnik, V. N. The nature of Statistical Learning Theory. 1998.Wiley New York.
29. Joachims, T.Making large-Scale SVM Learning Practical. In: B Scholkopf and C Burges and A Smola, (eds) Advances in Kernel methods - support vector learning. (1999).MIIT Press, Cambridge massachusetts, London England.
30. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
31. Chou, K.C., and Zhang, C.T. (1995). Prediction of protein structural classes. Crit. Rev. Biochem.Mol.Biol. 30, 275-349.
32. Ahmad, S., and Gromiha, M.M.(2002). NETASA: neural network based prediction of solvent accessibility. Bioinformatics 18, 819-824.