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Abstract

Proteins/peptides have shown to be promising therapeutic agents for a variety of diseases. However, toxicity is one of the obstacles
in protein/peptide-based therapy. The current study describes a web-based tool, ToxinPred2, developed for predicting the toxicity of
proteins. This is an update of ToxinPred developed mainly for predicting toxicity of peptides and small proteins. The method has been
trained, tested and evaluated on three datasets curated from the recent release of the SwissProt. To provide unbiased evaluation, we
performed internal validation on 80% of the data and external validation on the remaining 20% of data. We have implemented the
following techniques for predicting protein toxicity; (i) Basic Local Alignment Search Tool-based similarity, (ii) Motif-EmeRging and
with Classes-Identification-based motif search and (iii) Prediction models. Similarity and motif-based techniques achieved a high
probability of correct prediction with poor sensitivity/coverage, whereas models based on machine-learning techniques achieved
balance sensitivity and specificity with reasonably high accuracy. Finally, we developed a hybrid method that combined all three
approaches and achieved a maximum area under receiver operating characteristic curve around 0.99 with Matthews correlation
coefficient 0.91 on the validation dataset. In addition, we developed models on alternate and realistic datasets. The best machine
learning models have been implemented in the web server named ‘ToxinPred2’, which is available at https://webs.iiitd.edu.in/raghava/
toxinpred2/ and a standalone version at https://github.com/raghavagps/toxinpred2. This is a general method developed for predicting
the toxicity of proteins regardless of their source of origin.

Keywords: toxins, toxicity, machine learning, prediction, BLAST, motifs, proteins

Introduction to this, the assessment of toxic properties of protein/

Proteins and peptides are naturally occurring molecules
that play various functions and processes in the body
that are essential to sustain cellular mechanisms [1].
Their aberrant activity has been involved in various dis-
ease conditions, including cancer, neurodegenerative dis-
orders and diabetes [2]. Thus, using them as therapeutic
agents is regarded as a promising way to fight against
a variety of diseases. In recent years, they have shown
the potential to revolutionize medical therapy. They are
preferred over small molecules and antibodies due to
their high target specificity, tissue penetration, high bio-
logical activity and inexpensive [3]. Various peptides and
proteins have been approved by the U.S. Food and Drug
Administration authority for clinical use as therapeutics
[4, 5]. However, there are certain prime concerns in the
protein/peptide-based drug discovery and development,
such as toxicity, immunogenicity and stability [6]. Due

peptide is of great necessity to take this forward as a drug
target.

Toxins are substances that have the potential to
cause deleterious effects on living organisms. They
are naturally present in plants or can be produced by
animals (snakes, spiders, cone snails) and different types
of microbes (such as bacteria, fungi to enhance their
pathogenicity) [7]. Toxins, either natural or synthetic, can
cause adverse health effects whenever the individual is
exposed to them. Toxins originated from certain bacterial
species such as Clostridium botulinum, Vibrio cholerae,
Clostridium tetani cause deadly diseases like botulism,
cholera and tetanus, respectively [7]. A variety of toxins
from certain animals can lead to several lethal effects,
such as scorpion venom can overstimulate neuronal
signalling leading to paralysis [8]. Furthermore, snake
venom could be neurotoxic, causing neuromuscular
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Figure 1. Various effects of toxins on human from different sources.

paralysis as well as haemotoxic damaging the circulatory
system leading to acute tissue damage [/, 9, 10]. The var-
lous effects of toxins from different sources are depicted
in Figure 1. Toxins are generally macromolecules like
proteins, peptides and small molecules such as chemi-
cals. The conventional experimental techniques are used
to evaluate the toxicity of unknown proteins, peptides
and chemical compounds. However, these approaches
are laborious, cost-intensive and involve animal testing
for in vivo assessment. All these impediments lead
to an inclination towards the applicability of in silico
techniques [11]. With the advent of highly accurate and
cost-effective methods, the scientific community has
adopted data-driven computational methods, such as
machine learning techniques, to predict the toxicity of
molecules [12].

Over the years, a plethora of research work has been
published to study the toxicity of chemicals, namely
DeepTox [13], ProTox-1I [14] and eToxPred [15]. The lim-
ited attempts have been made for predicting the toxi-
city of proteins and peptides. The majority of available
tools are extensively specialized for toxins of certain
animal origins; for instance, in 2007, prediction methods
named BTXpred [16] and NTXpred [17] were developed
for the classification of bacterial toxins and neurotoxins,
respectively. In 2009, ClanTox, developed by Naamati
et al, is a classifier of animal toxins from their pri-
mary protein sequences [18]. Another machine learning-
based method, SpiderP, has been developed to predict the
propeptide cleavage sites in spider toxins [19]. Similarly,
ToxClassifier was developed by Gacesa et al., in 2016 to
identify venom toxins [20]. Deep learning-based methods
such as TOXIFY [21] and ToxDL [22] were developed

in 2019 and 2020, respectively. TOXIFY can be used to
classify animal venom proteins from non-toxic proteins,
whereas ToxDL can be used to assess the protein toxicity
of animal origin.

In 2013, Gupta et al., proposed a general method Tox-
inPred for predicting toxicity of peptides and proteins
irrespective of their source. This method is heavily used
by the research community to predict the toxicity of
protein/peptides. It is a support vector machine (SVM)-
based method that utilizes several features like amino
acid composition (AAC), dipeptide composition and find-
ing toxic motifs/ regions derived from the sequences
[23]. NNTox is a machine learning method to detect
the toxicity of protein based on several gene ontology
annotations [24]. Recently, a deep learning-based tools
such as ATSE [25] and ToxIBLT [26] were developed by Wei
et al., for the prediction of protein/peptide toxicity using
structural, evolutionary and physicochemical properties
of the sequences. In addition, a number of methods have
been developed for predicting the specific type of toxicity,
like haemotoxicity. In Table 1, we provide a comprehen-
sive list of toxicity prediction methods.

In this study, we have made an attempt to develop a
highly accurate method for predicting toxicity of large
proteins, which will complement our previous method
ToxinPred. Although, ToxinPred is highly accurate and
used widely by the scientific community, but there are
several constraints that necessitate improvement. Tox-
inPred was trained on 1805 toxic peptides where the
maximum length was 35 amino acids. Thus, ToxinPred
is suitable only for peptides or small peptides of length
up to 50 amino acids but not suitable for large pro-
teins. To address these limitations, we have proposed the
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Table 1. List of computational tools developed for predicting wide range of toxicity of peptide, proteins and small molecules

Tools (year) Description (link) Reference
Protein/Peptide Toxicity Prediction Tools
BTXpred (2007) Classification of bacterial toxins (exotoxins and endotoxins) (https://webs.iiitd.edu.in/raghava/btxpred/) [16]
NTXpred (2007) Prediction of neurotoxins (https://webs.iiitd.edu.in/raghava/ntxpred/) [17]
ClanTox (2009) Classification of animal toxins from their primary protein sequences (http://www.clantox.cs.huji.ac.il) [18]
SpiderP (2013) Prediction of the propeptide cleavage sites in spider toxins (http://www.arachnoserver.org/spiderP.html) [19]
ToxClassifier (2016) Prediction of venom toxins from other proteins (http://bioserv7.bioinfo.pbf.hr/ToxClassifier/) [20]
TOXIFY (2019) Deep learning approach for the classification of animal venom proteins (https://www.github.com/tijeco/ [21]

toxify)
NNTox (2019)
ToxDL (2020)

ToxDL/)
ATSE (2021)
ToxIBLT (2022)

learning (http://server.wei-group.net/ToxIBTL)

Detection of protein toxicity based on gene ontology annotations (http://www.github.com/kiharalab/NNTox)  [24]
Prediction of toxic proteins from animal species like snakes and spiders (http://www.csbio.sjtu.edu.cn/bioinf/  [22]

Prediction of peptide toxicity with their structural and evolutionary information (http://server.malab.cn/ATSE) [25]
A deep learning approach for the prediction of peptide toxicity using information bottleneck and transfer [26]

Other Toxicity Prediction Tools

ToxiPred (2016) Prediction of aqueous toxicity of small chemical molecules (https://webs.ilitd.edu.in/raghava/toxipred/) [27]
HemoPI (2016) Prediction of hemolytic or hemotoxic nature of peptides (https://webs.iiitd.edu.in/raghava/hemopi/) [28]
DeepTox (2016) Prediction of chemical compounds using deep learning (http://www.bioinf jku.at/research/DeepTox/) [13]
HemoPred (2017) Predicting the hemolytic activity of peptides (http://codes.bio/hemopred/) [29]
ToxiM (2017) Prediction of toxicity of small molecules (http://metagenomics.iiserb.ac.in/ToxiM/) [30]
CLC-Pred (2018) Prediction of the cytotoxicity of a chemical compound (http://way2drug.com/Cell-line/) [31]
ProTox-II (2018) Prediction of toxicity of chemicals (http://tox.charite.de/protox_II) [14]
eToxPred (2019) To predict the toxicity of drug candidates (https://github.com/pulimeng/etoxpred) [15]
HLPpred-Fuse (2020) Prediction of hemolytic peptides and its activity (http://thegleelab.org/HLPpred-Fuse) [32]

updated method named ‘ToxinPred?2’ to classify the toxic
and non-toxic protein sequences, which is trained and
evaluated on large proteins/toxins. Models developed in
this study have been trained and evaluated on the latest
dataset consisting of 8233 toxic sequences. In addition,
several features have been integrated into ToxinPred2,
which enhance the performance of the model with high
precision.

Materials and Methods
Creation and compilation of datasets

The dataset was retrieved from UniProt release 2021_03
(released on 2 June 2021) [33] using different key-
words for obtaining toxic and non-toxic proteins. We
extracted 9940 toxic proteins using the keyword ‘toxin
AND reviewed: yes’. All protein sequences comprising
‘BJOUXZ’, <35 amino acids and non-toxic sequences
similar to toxic sequences were discarded. Ultimately,
we obtained 8233 toxic sequences, which is referred to
as a positive dataset. The compilation of experimentally
validated or well-annotated toxic proteins is possible,
whereas it is challenging to obtain non-toxic proteins.
Therefore, we have extracted the negative dataset from
Swiss-Prot [34] using keywords ‘NOT toxin NOT allergen
AND reviewed: yes’ and obtained 554 145 proteins. In this
study, we have considered proteins that are reviewed and
manually curated. From these data, we have discarded
the sequences with length <35 amino acids and with
non-standard characters. Hence, we proceeded with
460 257 non-toxic sequences as a negative dataset. The
creation of datasets is depicted in Figure 2.

After that, CD-HIT software [35] was applied to both
datasets at 40% sequence identity. It leads to a reduced
number of sequences for positive and negative datasets.
After applying CD-HIT, the positive dataset is reduced to
1924 sequences from 8233, whereas the negative dataset
is reduced to 88 263 sequences from 460 257. We have
created three datasets based on the number of toxic and
non-toxic protein sequences, as described below.

(@) Main Dataset: this dataset contains 8233 toxic
(obtained after preprocessing of positive data) and 8233
non-toxic (randomly selected from 88 263 negative data
obtained after CD-HIT) protein sequences.

(b) Alternate Dataset: this dataset contains 1924
toxic (obtained after applying CD-HIT on 8233 positive
data) and 1924 non-toxic (randomly selected from
88 263 sequences obtained after CD-HIT) non-redundant
protein sequences. In this dataset, no two proteins have
>40% sequence similarity.

(c) Realistic Dataset (10 times Negative Dataset): this
dataset consists of 1924 toxic and 19 240 non-toxic pro-
tein sequences. These toxic sequences are same as those
used in the alternate dataset, where no two proteins have
>40% similarity. The non-toxic protein sequences were
randomly selected from non-redundant 88 263 non-toxic
sequences obtained after applying CD-HIT.

Basic local alignment search tool for similarity
search

Basic Local Alignment Search Tool (BLAST version-
2.2.29+)1s a program that is extensively used to annotate
nucleotide and protein sequences [36]. In this study, we
have utilized it for the identification of toxins based on
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Figure 2. Overview of the creation the datasets.

the similarity of a protein sequence with toxic and non-
toxic sequences. Using the protein-protein BLAST, the
similarity-based search module was created in which
the query sequences were searched against the database
of toxins and non-toxins.

For this, two different approaches were used to identify
toxins i.e. the top hit and ensemble of top five hits of
BLAST at different E-value cutoffs. The sequences are
specified as toxins and non-toxins based on the first hit
of the query sequence against the database. Further-
more, a voting strategy was adopted to annotate a query
protein, which is termed as an ensemble of top five
hits. In this, there should be at least or more than five
hits for consideration as a hit with respect to a query
protein sequence. The query sequence was assigned as a
toxin if the top five hits have maximum toxins. A similar
approach is used to assign the query protein sequence as
non-toxin. The performance of the method was assessed
based on the various E-value cutoffs. This methodology
has been used and well-annotated in different studies
[37, 38].

Motif analysis

The toxic proteins were searched for the motifs by using
Motif-EmeRging and with Classes-Identification (MERCI)
tool, a program to locate motifs in any set of sequences
[39]. Motif analysis provides information related to recur-
ring patterns present in the toxic sequences. The soft-
ware uses Perl script to locate motifs in the files using
the default parameters.

Feature generation

There is a need to extract a set of relevant features
for each protein/peptide sequence to develop any
prediction model. Recent studies such as iLBE [40], Proln-
Fuse [41] and HLPpred-Fuse [32] have used different
feature encoding techniques to represent the sequence
into a feature vector. In this study, we have used a
standalone tool, Pfeature, to generate a wide range
of features such as composition and evolutionary
information-based features of the protein sequences
[42].
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Composition-based features

Using a composition-based feature module of Pfeature
[42], a vector of 9163 features was calculated against each
sequence for all three datasets. The detailed information
of each feature, along with the length of the vector, is
tabulated in Supplementary Table S1.

Evolutionary information-based features

It has been shown in the past that evolutionary informa-
tion provides more information about a protein than its
primary sequence [38, 44]. To extract the evolutionary
information for a given protein, position-specific scoring
matrix (PSSM) profile was calculated using Position-
Specific Iterated BLAST [43]. A 20 x 20 compositional
matrix (PSSM-400) was created for each protein sequence
from the PSSM profile of a protein with a size 20 x length
of protein sequence [44]. For generating PSSM-400 from
PSSM profile, the following steps are involved. Firstly,
PSSM values are normalized in the range of 0-1. Secondly,
composition of occurrences of each type of amino acid
corresponding to each type of amino acid in protein
sequence is computed. It means for each column we
will have 20 values instead of one. Hence, we will have a
vector of dimension 20 x 20 for PSSM matrix. To generate
this PSSM-400 matrix, we used Pfeature software, which
generates a normalized matrix PSSM-400 for each protein
with vector dimension 20 x 20 [42].

Feature selection and ranking

Previous studies have shown that all the features are
not important. Thus, it is a major challenge to select
the appropriate features from a larger set of features.
In this study, we have used the support vector classifier
(SVC)-L1-based feature selection technique (Scikit-learn
package) to select the significant features from the high-
dimensional feature set. This method is based on the SVC
with linear kernel, penalized with L1 regularization [45].

Using this method, we have listed important features
for all three datasets from the pool of 9163 features.
Out of that, 129 features were selected for the main
dataset, 32 for the alternate dataset and 52 for the real-
istic dataset. Furthermore, the feature-selector tool was
utilized for ranking the top key features. It uses a deci-
sion tree (DT)-based algorithm called the Light Gradient
Boosting Machine for ranking the feature that is fre-
quently used to split the data across all trees [46]. The
obtained top-ranked features that were used to build the
different machine learning prediction models in all three
datasets are shown in Supplementary Table S2.

Machine learning (ML)-based classifiers

Several machine learning techniques have been used to
discriminate toxic from non-toxic proteins. Random For-
est (RF) [47], Logistic Regression (LR) [48], Gaussian Naive
Bayes (GNB) [49], DT [50], k-nearest neighbours (KNNs)
[51], XGBoost (XGB) [52] and SVC [53] were implemented
to develop the classification models. These classifiers
were optimized using various hyperparameters, and the
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best results were included. The complete workflow of
ToxinPred? is depicted in Figure 3.

Cross-validation and performance metrics

In this study, all the three datasets were divided into 80:20
ratio, respectively, where 80% constitute the training and
20% validation datasets. Here, 5-fold cross-validation
(CV) was applied on 80% training data for evaluating the
machine learning models [38, 54]. For internal validation,
the training data is split into five-folds, where four-
folds are used for training and the remaining fifth for
testing purposes. The same procedure is iterated five
times so that each of the 5-fold is used for testing at
least once. The performance of several machine learning
models was assessed using the standard evaluation
metrics, including threshold dependent and indepen-
dent parameters. The area under receiver operating
characteristic curve (AUC) is a threshold-independent
parameter, and sensitivity, specificity, accuracy and
Matthews correlation coefficient (MCC) are threshold-
dependent parameters. These metrics are well annotated
in the previous studies [37, 55].

. TP
= ———x1 1
Sensitivity oL N & 00 (1)
e TN
Specificity = NP 100 2
TP+ TN
Accuracy = + 100 (3)

TP+ TN+ FN+FP ~

(TP x TN) — (FP x FN)

MCC =
/(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(4)

where FP, FN, TP and TN are false positive, false negative,
true positive and true negative, respectively.

Hybrid approach

In this study, we have also implemented a hybrid
approach to enhance the prediction of the model.

The hybrid approach is the weighted scoring method,
in which the score is computed by integrating three
different methods (i) similarity-based approach using
BLAST, (ii) motif-based approach using MERCI and (iii)
ML-based technique. First, the given protein sequence
was classified using BLAST at the E-value of 107¢. We
assigned the weight of ‘4+0.5" for the positive predictions
(toxic proteins), ‘—0.5 for negative predictions (non-toxic
proteins) and ‘0’ for no hits. Second, the same protein
sequence was classified using MERCI. We assigned the
score of ‘+0.5" if the motifs were found and ‘0’ if the
motifs were not found. In the case of a hybrid approach,
scores obtained from three methods (i.e. BLAST, MERCI
and ML scores) were combined to compute the overall
score. Based on the overall score at different threshold
values, the protein sequence is categorized as toxic and
non-toxic. This hybrid approach has been extensively
employed in several studies [23, 37, 38, 54].
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Figure 3. Flowchart depicting the overall architecture of ToxinPred2.

Results

Compositional analysis

In the study, AAC for both toxic and non-toxic proteins
was computed. We found that the average AAC of amino
acid residues such as cysteine, glycine, lysine and tryp-
tophan is abundant in the toxic sequences, whereas ala-
nine, glutamate, isoleucine, leucine and serine are higher
in the non-toxic sequences. Also, we have compared the
average AAC between the peptides and proteins of Tox-
inPred and ToxinPred?2, respectively. It was observed that
peptides of ToxinPred are exceptionally rich in cysteine
and proline. In contrast, the proteins of ToxinPred2 are
rich in lysine and valine. The comparison of average
AAC between ToxinPred and ToxinPred? is depicted in
Figure 4.

Performance of BLAST models

BLAST is used extensively to annotate or assign the
function to a query protein sequence based on similarity
search. In this study, BLAST was used to classify the pro-
tein as toxin or non-toxin. A 5-fold CVis used for the eval-
uation of the performance of BLAST. First, the sequences
in four-folds are used to construct the BLAST database
and the sequences of the fifth fold are searched against
the respective database. This process has been iterated
five times. For evaluating the performance of BLAST on
the validation dataset, BLAST database was created on
the whole training set, and then each sequence in the
validation dataset was searched against it. For this, we

have used BLAST in two ways: top hit and ensemble of top
five hits. The top hit BLAST is a standard method in which
the proteins were assigned their class based on the first
hit. However, it was noticed that this approach produces
many false positives (data not shown). To reduce false
predictions, we have used an ensemble of top five hits. It
has been observed that after implying an ensemble of top
five hits, the false prediction reduced significantly. For
the main dataset, the number of correct hits (sensitivity)
rises from 35% to 38.79% for the training dataset and
from 36.44% to 40.23% for the validation dataset, with
the E-value varying from 107° to 10~. This also leads to
an increase in the number of wrong hits (error), as shown
in Table 2. It indicates that the BLAST method alone is
not efficient in discriminating between toxins and non-
toxins. A similar approach has been employed on both
alternate and realistic datasets. The results for the same
are shown in Supplementary Tables S3 and S4.

Machine learning-based models

More than 10 types of composition-based features consti-
tuting a total of 9163 features were calculated for each
protein using Pfeature. Apart from this, evolutionary-
based features were also generated. These calculated
features were used to develop different machine learning
based models using the Scikit-learn package [45].

Composition-based features

The features, including AAC of toxins and non-toxins,
were computed to develop several machine learning
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Table 2. The performance of BLAST-based approach on main dataset at different e-values

E-value Training Validation
Toxins Non-toxins Toxins Non-toxins
Chits @ (Sens)  Whits (error)  Chits (Spec) ~ Whits (error)  Chits (Sens) Whits (error) Chits (Spec) ~ Whits (error)

10 -6 4610 (35%) 68 (0.52%) 610 (4.63%) 137 (1.04%) 1201 (36.44%) 16 (0.49%) 182 (5.52%) 42 (1.27%)
10 -5 4681 (35.54%) 71 (0.54%) 662 (5.03%) 146 (1.11%) 1224 (37.14%) 17 (0.52%) 198 (6.01%) 45 (1.37%)
10 4 4762 (36.16%) 77 (0.58%) 735 (5.58%) 157 (1.19%) 1251 (37.96%) 19 (0.58%) 212 (6.43%)  51(1.55%)
10 -3 4869 (36.97%) 87 (0.66%) 812 (6.17%) 174 (1.32%) 1271 (38.56%) 24 (0.73%) 248 (7.52%) 55 (1.67%)
10 2 4976 (37.78%) 102 (0.77%) 900 (6.83%) 192 (1.46%) 1293 (39.23%) 28 (0.85%) 271(8.22%) 61 (1.85%)
10 -1 5109 (38.79%) 124 (0.94%) 1034 (7.85%) 214 (1.62%) 1326 (40.23%) 35 (1.06%) 319 (9.68%) 72 (2.18%)

aChits: Correct hits; Whits: Wrong hits; Sens: Sensitivity; Spec: Specificity

models. For the main dataset, it was observed that RF-
based models performed quite well when compared with
other models and achieved a maximum AUC of 0.93 and
0.92 on training and validation datasets, respectively. For
the alternate dataset, RF-based model attained the AUC
of 0.76 and 0.75 on the training and validation dataset,
respectively. In the case of a realistic dataset, it was found
that the model based on RF obtained the AUC of 0.78 and
0.77 for the training and validation dataset, respectively.
The performance of the main dataset for composition
based features is shown in Table 3, whereas for other
datasets, it is tabulated in Supplementary Tables S5 and
S6.

Evolutionary information-based features

The PSSM profiles based on evolutionary information
were also generated for protein sequences and used to
develop ML-based models. We found that XGB achieved
the AUC of 0.94 on training and 0.93 on validation for the
main dataset. Furthermore, for an alternate dataset, RF-
based model attained the AUC of 0.80 on training and
0.79 on the validation dataset. For the realistic dataset,
XGB performed better and obtained the maximum AUC
of 0.80 on training and 0.79 on validation. The perfor-
mance of the PSSM-based model for all three datasets is
shown in Supplementary Tables S7-S9.

Selected features

As mentioned above in the ‘Feature Selection and
Ranking’ section, a total of 9163 features were assessed
for all three datasets. These features were then reduced
to 129 (main dataset), 32 (alternate dataset) and 52 (real-
istic dataset) using the SVC-L1 method. These reduced
features were used to develop different classification
models, where the RF-based model performed better
for all three datasets. For the main dataset, it achieved
a maximum AUC of 0.94 on training and 0.93 on the
validation dataset. Likewise, the AUC of 0.78 on training
and 0.77 on the validation dataset was obtained in the
case of the alternate dataset. For a realistic dataset,
the attained AUC for the training dataset is 0.80 and
0.79 for validation dataset. The performance of selected
features developed on alternate and realistic datasets is
demonstrated in Supplementary Tables S10-S12.

Top-ranked features

The feature-selector tool ranks the feature based on
their normalized and cumulative importance. The main
objective is to determine the best minimal feature set
that can distinguish toxins and non-toxins with maxi-
mum accuracy and AUC. Thus, the different prediction
models were developed based on top selected features
(5, 10, 20, 30, ...) for all three datasets. The complete

920z Asenuer g1 uo Jasn ABojouyoa | uonewlolu| jo aymnsu| eyiseldespu) Aq 2610659/ 1.0BJA/S/EZ/o101B/qIq/W 00 dno-olWwspeoe//:sdny WoJj papeojumoq



8 |

Table 3. The performance of machine learning-based models developed using AAC on the main dataset

Sharma et al.

Main Dataset

ML Training Validation

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
RF 86.59 + 0.85 86.15 + 0.71 86.37 £ 0.18 0.93 +£0.01 0.73 £0.01 86.47 84.10 85.29 0.92 0.71
SvC 84.39 + 0.64 84.63 + 0.66 84.51+0.27 0.92 +£0.01 0.69 £ 0.01 83.62 82.16 82.89 0.91 0.66
XGB 83.55+0.54 83.98 £ 0.29 83.77 £0.23 0.91+0.01 0.68 +£0.01 82.34 82.77 82.56 0.91 0.65
KNN 82.60+0.2 81.72+1.24 82.16 £ 0.58 0.91 + 0.00 0.64 £0.01 82.40 82.16 82.28 0.90 0.65
DT 77.19 £ 0.69 77.90 + 1.18 77.55+0.53 0.85 + 0.00 0.55+0.01 75.73 80.52 78.13 0.85 0.56
LR 75.54+£0.78 75.114+0.92 75.32 +£0.47 0.84 £ 0.01 0.51+0.01 75.61 73.30 74.45 0.84 0.49
GNB 75.22 +£1.63 7449+ 0.9 74.85+1.03 0.83 £ 0.01 0.50 £ 0.02 74.76 73.60 74.18 0.82 0.48

Sens =sensitivity; Spec = specificity; Acc=accuracy; AUC = area under receiver operating characteristic; MCC =Matthews correlation coefficient

Table 4. The performance of motif-based approach on main dataset when combined with machine learning-based models developed

using AAC
Main Dataset
Training Validation

ML Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
RF 84.60+0.97 89.36+0.56 86.98+0.34 0.94+0.01 0.74+0.01 84.59 87.93 86.26 0.93 0.73
SvC 85.244+0.64 82.20+0.65 83.724+0.33 0.9240.00 0.68+0.01 84.59 80.40 82.49 0.91 0.65
XGB 83.284+0.97 84.534+0.51 83.90+0.49 0.914+0.01 0.68+0.01 81.80 83.50 82.65 0.91 0.65
KNN 81.724+0.54 83.40+0.6 82.56+0.54 0.914+0.00 0.65+0.01 81.74 84.16 82.95 0.90 0.66
DT 75.46+1.37 80.90+1.03 78.18+0.71 0.85+0.01 0.56+0.01 74.15 83.13 78.64 0.85 0.58
LR 74.024+1.08 78.76+0.51 76.3894+0.63 0.8440.01 0.53+0.01 74.21 77.00 75.61 0.84 0.51
GNB 7212+1.68 79.56+0.47 75.84+0.94 0.83+0.01 0.5240.02 72.76 79.37 76.06 0.82 0.52

Sens =sensitivity; Spec = specificity; Acc=accuracy; AUC = area under receiver operating characteristic; MCC =Matthews correlation coefficient

results for all the top-ranked features are provided in
Supplementary Tables S13-S15.

Motif approach

MERCI software has been used to identify the motifs
exclusively present in toxic proteins of the main dataset.
The motifs such as ‘GCYCG, MKTLL, TLLLTL and LLLTLV’
are solely found in toxic proteins. Composition-based
models (AAC) built using different ML techniques were
integrated with this approach. For the main dataset,
RF-based model attains the AUC of 0.94 on training
and 0.93 on validation dataset, whereas for alternate
dataset (GNB-based model) and realistic dataset (RF-
based model) achieved the AUC of 0.72, 0.71 and 0.79,
0.77 on training and validation dataset, respectively. The
performance of the combined approach (ML + MERCI) for
the main dataset is shown in Table 4, whereas for other
datasets, it is shown in Supplementary Tables S16 and
S17.

BLAST search

To build an enhanced method, the similarity search
approach BLAST and ML-based models were synergized.
The BLAST search was initially implemented for a
query sequence; if a BLAST hit was obtained, the query
sequence was assigned as toxin and non-toxin based
on the BLAST result. If no hit is obtained, then the
composition-based model is utilized to predict the same

sequence. For the main dataset, the performance of RF-
based model increases from AUC 0.93 to 0.98 on training
and 0.92 to 0.99 on validation dataset, as shown in
Table 5. In the case of an alternate dataset, it is found
that the AUC increases from 0.76 to 0.89 on training
and 0.75 to 0.89 on validation using an RF-based model.
For realistic dataset, LR-based model performed better
and improved significantly with AUC of 0.75 to 0.94 and
0.74 to 0.94 for the training and validation dataset. The
results for alternate and realistic datasets are shown in
Supplementary Tables S18 and S19.

Hybrid approach

Ultimately, multiple approaches were integrated to
overcome the limitations of individual methods. These
approaches were developed to detect the toxins with
better precision. In this, a composition-based model is
combined with BLAST and MERCI-based approaches.
Initially, proteins were classified using ensemble BLAST
at an E-value of 107° led by the MERCI approach. An
ML-based model then predicts the protein sequences
that are not predicted by these two approaches. The
hybrid method significantly enhanced the coverage and
accuracy, which is not feasible by using all these methods
individually. The performance of the hybrid method has
improved by combining all these methods, as shown
in Table 6. RF-based model performed the best for all
three datasets on training and validation datasets. They
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Table 5. The performance of BLAST-based approach on main dataset when combined with machine learning-based models using AAC

Main Dataset

ML Training Validation

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
RF 93.85+0.42 96.14+0.39 95.124+0.32 0.98+0.01 0.9+0.01 94.36 95.75 95.05 0.99 0.9
KNN 93.53+0.55 95.22+0.57 94.37 £0.54 0.98+£0.00 0.89+0.01 94.05 95.57 94.81 0.98 0.9
XGB 94.73+0.46 93.35+0.21 94.04+0.31 0.98+0.00 0.88+0.01 95.02 93.14 94.08 0.98 0.88
LR 93.65+0.44 92.44+0.37 93.04+0.36 0.98+0.00 0.86+0.01 94.72 92.6 93.66 0.98 0.87
GNB 94.08 £0.56 91.19+0.83 92.63+0.6 0.96 £0.00 0.85+0.01 94.9 91.57 93.23 0.96 0.87
SvC 91.69+0.46 91.47+0.48 91.58+0.17 0.98+0.00 0.83+£0.00 91.14 90.78 90.96 0.98 0.82
DT 88.63+0.76 91.77 £0.62 90.2+0.54 0.97 £0.00 0.8+0.01 88.53 90.59 89.56 0.97 0.79

Sens = sensitivity; Spec =specificity; Acc=accuracy; AUC =area under receiver operating characteristic; MCC =Matthews correlation coefficient

achieved an AUC of 0.98 and 0.99 (main dataset), AUC
of 0.90 and 0.90 (alternate dataset) and AUC of 0.95 and
0.96 (realistic dataset) on training and validation dataset.

Design and implementation of a web server

A web server, ToxinPred2 (https://webs.iiitd.edu.in/
raghava/toxinpred?/), has been developed for predicting
toxic proteins. We have executed our two best performing
modelsi.e. Model-1 (AAC-based RF approach) and Model-
2 (hybrid approach). Both the models are trained on the
main dataset for predicting toxins. The major modules
such as (a) prediction, (b) motif scan, (c) BLAST search
and (d) Download are integrated into the web server.
The ‘prediction module’ permits the user to submit the
single as well as multiple protein sequences in FASTA
format. This module can efficiently classify toxic and
non-toxic proteins. The ‘motif scan module’ uses MERCI
software to identify the exclusively present motifs in the
toxic protein sequences. It also maps or scans the motifs
in the query protein sequence given by the user and
distinguishes them as toxin and non-toxin. The ‘BLAST
search module’ aids the user to carry out a similarity-
based search using BLAST against toxins and non-toxins
database. The web server is built with a responsive
HTML template and browser compatibility for various
operating systems. To facilitate the users to predict toxins
at the genome scale, we have also developed a python-
based standalone package of ToxinPred2, which can be
accessed from ‘Download’ module of the web server.

Comparison with other methods

It is important to compare the performance of the pro-
posed method with existing methods to justify the devel-
opment of new method. We have shown the comparison
of the performance of proposed method, ToxinPred?2 and
other existing methods as reported in the literature in
Table 7. ToxinPred?2 outperforms other existing methods,
as shown in Table 7 under the heading ‘Performance
of existing methods reported in the literature’. To pro-
vide an unbiased comparison, we have computed the
performance of ToxinPred2 on the validation dataset
used in existing methods. As shown in Table 7, under
the heading ‘Performance of ToxinPred2 on validation

dataset of existing methods’, ToxinPred2 obtained AUC
of 0.96, 0.99 and 0.99 for protein datasets used in Tox-
Classifer, TOXIFY and ToxDL, respectively. Our proposed
method achieves AUC of 0.94 on peptide datasets used
in ToxinPred and ATSE, which are lower than their origi-
nal performance. It is because ToxinPred? is developed/-
trained for proteins not for peptides. We also attempted
to evaluate the performance of existing methods on
validation data (main dataset) of ToxinPred?2. Since the
dataset has larger protein sequences, the peptide toxi-
city prediction methods (ToxinPred, ToxIBLT and ATSE)
cannot be implemented. Moreover, we were unable to
predict the toxicity of proteins in the validation dataset
of ToxinPred?2 using ToxDL and ToxClassifier due to the
limitations of their web services (one is non-functional,
another allows a maximum of 10 sequences per sub-
mission for prediction). We used a standalone version
of TOXIFY to predict toxicity of proteins in validation
dataset of ToxinPred?2. It has predicted the toxicity of only
2617 out of 3296 protein sequences, which have length
up to 500 amino acids. As shown in Table 7, under the
heading ‘Performance of existing methods on validation
dataset of ToxinPred?2’, it achieved AUC of 0.88, which
is lower than the performance reported by ToxinPred?2
on the same dataset. This comparison demonstrates the
importance of the newly proposed method in the field of
toxicity prediction.

Discussion

One of the major challenges in the field of protein/pep-
tide based therapeutics is to identify toxic regions in
a protein. There is a dire need to determine the toxic
potential of newly synthesized proteins. Experimental
techniques for determining toxicity proteins are costly
and time-consuming. Thus, there is a need to develop
computer-aided techniques for predicting toxicity of
proteins/peptides with high precision. To facilitate the
scientific community, our group developed a method,
ToxinPred, for predicting and designing toxic peptides.
It is heavily used by the scientific community in
the field of therapeutic peptides. This tool has been
developed mainly for peptides as models have been
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Table 6. The performance of hybrid method on main dataset that combines BLAST, MERCI and machine learning-based approaches

Main Dataset

ML Training Validation

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
RF 92.95 + 0.40 97.65 + 0.42 95.30 + 0.36 0.98 + 0.01 0.91 + 0.01 93.69 97.39 95.54 0.99 0.91
KNN 93.53 £ 0.55 95.22 £ 0.57 9437 £0.54 0.98 £ 0.01 0.89 +£0.03 94.05 95.57 94.81 0.98 0.9
LR 92.26 £ 0.44 95.99 + 0.26 94.12 £0.29 0.98 £0.01 0.88 £ 0.05 93.33 95.81 94.57 0.98 0.89
XGB 94.73 £ 0.46 93.35+0.21 94.04 +0.31 0.98 +0.01 0.88 +0.05 95.02 93.14 94.08 0.98 0.88
SvC 91.69 + 0.46 91.63 + 0.46 91.66 +0.18 0.98 £0.01 0.83 £0.05 91.14 90.96 91.05 0.98 0.82
GNB 94.08 + 0.56 91.19 £ 0.83 92.63 + 0.60 0.96 +0.01 0.85 + 0.04 94.90 91.57 93.23 0.96 0.87
DT 88.64 +£0.78 91.81 +0.62 90.23 £ 0.54 0.97 £0.01 0.80 £ 0.04 88.59 90.59 89.59 0.97 0.79

Alternate Dataset
RF 79.94 + 0.70 80.52 + 3.87 80.23 + 1.76 0.9 £ 0.01 0.60 + 0.03 76.82 82.55 79.69 0.90 0.59
XGB 78.90 +2.41 82.53 +£3.77 80.71 +2.56 0.89 + 0.02 0.61 +0.05 77.08 81.25 79.17 0.90 0.58
SvVC 77.08 £1.82 79.55 £ 3.65 78.31 £ 2.64 0.89 £ 0.02 0.57 £0.05 76.30 83.59 79.95 0.89 0.60
KNN 73.96 £2.79 82.66 + 1.27 78.31+1.34 0.88 £0.01 0.57 £0.03 73.96 81.51 77.73 0.89 0.56
LR 76.10 £2.02 77.34 £2.44 76.72 £2.21 0.87 £0.02 0.53 £ 0.04 76.04 79.43 77.73 0.88 0.56
GNB 75.39 £ 1.69 79.16 £2.73 77.27 £1.94 0.85 +0.02 0.55 £+ 0.04 76.04 80.73 78.39 0.86 0.57
DT 74.42 +£1.68 78.31+0.87 76.36 £ 0.82 0.84 £0.01 0.53 £0.02 73.70 78.12 75.91 0.85 0.52
Realistic Dataset

RF 83.12 + 2.35 90.16 + 0.40 89.52 + 0.22 0.95 + 0.00 0.57 £0.01 81.77 91.22 90.36 0.96 0.58
SvC 69.94 + 3.69 97.10 £ 0.26 94.63 £0.43 0.95 +0.01 0.67 £0.03 71.88 97.17 94.87 0.95 0.69
XGB 80.45 +2.85 90.68 + 0.39 89.75+£0.33 0.94 £0.01 0.56 £+ 0.02 80.47 91.42 90.43 0.95 0.58
KNN 77.08 £2.48 90.92 + 0.67 89.66 + 0.52 0.94 £0.01 0.54 +0.01 78.65 90.77 89.67 0.95 0.55
LR 81.1+0.27 86.73 £0.82 86.22 £0.73 0.94 £0.01 0.49 £ 0.01 82.03 87.37 86.89 0.94 0.51
GNB 78.44 £2.58 89.24 +0.49 88.26 £ 0.54 0.93 £0.01 0.52 £ 0.02 77.6 89.5 88.42 0.93 0.52
DT 83.25 +2.47 77.44 £0.43 77.97 £0.28 0.91+0.01 0.39£0.01 87.24 78.56 79.35 0.92 0.42

Sens = sensitivity; Spec = specificity; Acc=accuracy; AUC = area under receiver operating characteristic; MCC =Matthews correlation coefficient

Table 7. Comparison of proposed method ToxinPred?2 with existing methods

Method Type of dataset used Sensitivity Specificity Accuracy AUC MCC
ToxinPred2 All types of toxins (Proteins) 93.69 97.39 95.54 0.99 0.91
Performance of existing methods reported in the literature
ToxinPred All types of toxins (Peptides) 93.80 94.85 94.50 0.98 0.88
ToxClassifier Animal venom toxins (Proteins) 96.70 99.80 99.70 NA 0.89
TOXIFY Animal venom toxins (Proteins) 96.00 76.00 86.00 NA 0.74
ToxDL Animal toxins (Proteins) NA NA NA 0.98 0.79
ATSE Toxic peptides 96.50 94.00 95.20 0.97 0.90
Performance of ToxinPred2 on validation dataset of existing methods
ToxinPred Toxic peptides 97.73 45.73 63.12 0.94 0.44
ToxClassifier Toxic proteins 97.15 77.54 87.38 0.96 0.76
TOXIFY Toxic proteins 96.48 92.71 94.59 0.99 0.89
ToxDL Toxic proteins 100 88.81 89.74 0.99 0.63
ATSE Toxic peptides 96.65 58.21 76.03 0.94 0.58
Performance of existing methods on validation dataset of ToxinPred2
TOXIFY Toxic proteins 68.94 97.94 81.85 0.88 0.68

trained on peptides having length up to 35 amino
acids. To complement ToxinPred, we proposed a new
method, ToxinPred?, for predicting toxicity of proteins.
In this study, three datasets were created, namely main,
alternate and realistic datasets curated from SwissProt.
The main dataset consists of 8233 toxic and non-toxic
proteins, alternate dataset contains 1924 non-redundant
toxic and non-toxic proteins. Realistic dataset was
generated to create realistic conditions in which negative
data is multiple folds than positive data. Thus, 1924
toxic and 19 240 non-toxic proteins were used in realistic
dataset.

Various features for the protein sequences were com-
puted using Pfeature tool. The relevant set of features
was further selected and ranked using SVC-L1 and Fea-
ture Selector tool, respectively. Our compositional analy-
sis exhibited that cysteine, glycine, lysine and tryptophan
are dominant in toxic proteins in comparison to non-
toxic proteins. It is noteworthy that the composition-
based features are among the top selected features. This
suggests that these features can be used to distinguish
between toxic and non-toxic proteins. Furthermore, we
have implemented the BLAST, a widely used tool to anno-
tate any query protein sequence. If the query protein
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sequence shows high similarity with a known protein
function, then it designates the same function to the
query protein. As shown in Table 2, BLAST has identified
some toxins correctly with the probability of correct pre-
diction of >40%, with a very low error rate. Thereby, it can
be inferred that BLAST is generating a large number of
no hits; hence, it fails when the unknown protein has no
similarity with toxins and non-toxins. To overcome this
limitation, hybrid models were developed using ML mod-
els (composition-based features like AAC), BLAST and
MERCI. We have achieved the highest performance with
balanced sensitivity and specificity and higher accuracy,
as shown in Table 6.

In this study, we have provided a comprehensive plat-
form where users can classify toxic and non-toxic pro-
teins/peptides. We anticipate that our research will be
beneficial to scientists working in the field of protein or
peptide therapeutics. To facilitate the scientific commu-
nity and to promote widespread usage of the proposed
prediction method, we have provided a freely accessible
web server and a standalone package of ToxinPred2. In
the webserver, we have incorporated the best perform-
ing model for correctly predicting the toxins and non-
toxins. However, one of the limitations of our method
is that it can classify toxins and non-toxins regardless
of their source of origin. We hope that the researchers
would use our prediction method extensively for design-
ing improved and accurate protein/peptide-based thera-
peutics against various diseases.

Key Points

e Upgraded version of ToxinPred has been developed for
predicting toxicity of proteins.

¢ A wide range of features have been generated for devel-
oping prediction models.

e Cutting-edge techniques have been employed for feature
engineering.

e Several machine learning techniques
deployed to build prediction models.

¢ Similarity and motif-based techniques have been incor-
porated.

have been
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