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ARTICLE INFO ABSTRACT

Keywords: Background: Proinflammatory cytokines are correlated with the severity of disease in patients with COVID-19.
STAT3 IL6-mediated activation of STAT3 proliferates proinflammatory responses that lead to cytokine storm promo-
COVID-19 tion. Thus, STAT3 inhibitors may play a crucial role in managing the COVID-19 pathogenesis. The present study
El;gﬁseproved discusses a method for predicting inhibitors against the STAT3 signaling pathway.

Inhibitors Method: The main dataset comprises 1565 STAT3 inhibitors and 1671 non-inhibitors used for training, testing,

and evaluation of models. A number of machine learning classifiers have been implemented to develop the
models.

Results: The outcomes of the data analysis show that rings and aromatic groups are significantly abundant in
STAT3 inhibitors compared to non-inhibitors. First, we developed models using 2-D and 3-D chemical descriptors
and achieved a maximum AUC of 0.84 and 0.73, respectively. Second, fingerprints are used to build predictive
models and achieved 0.86 AUC with an accuracy of 78.70% on the validation dataset. Finally, models were
developed using hybrid descriptors, which achieved a maximum of 0.87 AUC with 78.55% accuracy on the
validation dataset.

Conclusion: We used the best model to identify STAT3 inhibitors in FDA-approved drugs and found few drugs (e.
g., Tamoxifen and Perindopril) to manage the cytokine storm in COVID-19 patients. A webserver “STAT3In” (htt
ps://webs.iiitd.edu.in/raghava/stat3in/) has been developed to predict and design STAT3 inhibitors.

1. Introduction

Numerous studies have shown that the elevated level of pro-
inflammatory cytokines play a critical role in the COVID-19 pathogen-
esis [1-4]. The activation of the IL6/STAT3 signaling pathway is asso-
ciated with the cytokine storm which is responsible for the high
mortality rate among COVID-19 patients [5,6]. STAT3 is a cytoplasmic
transcription factor, which participates in the normal cellular events,
including differentiation, proliferation, and angiogenesis [7]. STAT3 is
activated in response to various cytokines, chemokines, and growth
factors [8,9]. As shown in Fig. 1, these factors bind to the Janus kinases
and phosphorylate STAT3 monomers to form a homodimer molecule
and regulate the gene transcription [9]. However, the upregulation of
STAT3 is correlated with pathological events such as cancer

proliferation, angiogenesis, and cytokine storm in COVID-19 [10,11].
Various preclinical and clinical evidence has confirmed that STAT3 is a
promising potential therapeutic target [12]. Aberration in STAT3 tran-
scription, increases several gene expressions (such as Bcl-xL, Fas, Fas-L,
CASP3), responsible for oncogenesis, and apoptosis [13-15]. Evidence
indicated that mutations in the STAT3 gene provoked different diseases,
such as Type 1 diabetes, pulmonary fibrosis, and acute lung injury
[16-18].

STATS3 hyperactivation promotes COVID-19 pathogenesis via eleva-
tion of cytokines storm production [6,19-21]. Thus, it is critical to target
IL6 mediated STAT3 activation to manage the pathogenesis of infectious
diseases. At present, several STAT3 inhibitors are in clinical trials. For
example, pyrrolidinesulphonylaryl molecules (6a), demonstrate prom-
ising activity against IL6/STAT3 signaling in breast cancer [22]. In
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addition, several FDA-approved drugs (e.g., Celecoxib, BBI608, Pyri-
methamine) are under clinical trials for cancer immunotherapy [23].
However, the finding of a novel STAT3 inhibitor against the COVID-19
disease remains a major scientific challenge. Thus, it is vital to target the
IL6/STATS3 signaling pathway to achieve a better therapeutic candidate
against COVID-19.

No computational tool predicts the chemical moieties as potential
STATS3 inhibitors accurately. The present study develops a computa-
tional model for predicting STAT3 inhibitors. We have used 3236
chemical compounds (STAT3 inhibitors and non-inhibitors) and 16,112
(2-D, 3-D, and FP) descriptors to generate prediction models. To better
serve the scientific community, we provide a computational tool
“STAT3In” (https://webs.iiitd.edu.in/raghava/stat3in/) to predict and
design potential STAT3 inhibitor candidates.

2. Materials and methods
2.1. Dataset collection

The IL-6 mediated STAT3 inhibitors and non-inhibitors were
collected from the PubChem repository (https://pubchem.ncbi.nlm.nih.
gov). We searched all the assays in PubChem using following keyword
“((IL-6 AND STATS3) inhibitors)” and obtained approximately 251 Pub-
Chem bioassays. Next, we manually refined the obtained assays based on
the number of inhibitors per assay and selected assays that possessed the
maximum number of inhibitors. After this rigorous selection criteria
without compromising data quality, we selected bioassay AID 862 (see
URL: https://pubchem.ncbi.nlm.nih.gov/bioassay/862). The high-
throughput bioassay was based on a luciferase experiment performed
on STAT-1 deficient human U3A fibrosarcoma cell line, which contained
STATS3:luciferase reporter activity. In the assay, 28 nL of the test com-
pound in DMSO (5.5 yM final nominal concentration; 0.6% DMSO) was
dispensed into sample field wells. However, the control wells received
nifuroxazide in DMSO (100 uM final concentration; 0.6% DMSO final
concentration) or in DMSO only (0.6% final concentration) [24]. IL6
was used as a reaction triggering agent, and the reaction response was
monitored via luciferase activity. STAT3 inhibitors were termed as
chemicals that induced loss or declined during the luciferase activity in
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the presence of IL-6.

In this bioassay, a total of 194,698 compounds was tested to identify
STATS3 inhibitors. From these compounds, 1724 were reported as STAT3
inhibitors and 192,974 as non-inhibitors. Then, we randomly selected
1724 non-inhibtor compounds to create a balanced dataset. Further-
more, we filtered those compounds whose three-dimensional structures
are unavailable. The final dataset contained 1565 inhibitors and 1671
non-inhibitors. We used the standard protocols, for the inhibitors and
non-inhibitors classification, frequently implemented by previous
studies [25-29]. We divided the entire dataset into 80:20 ratio, where
80% of the data (i.e., 1252 inhibitors, and 1337 non-inhibitors) were
used for training. However, the remaining 20% (i.e., 313 inhibitors, and
334 non-inhibitors) of the data were used for validation.

2.2. Descriptors of molecules

Chemical descriptors are the mathematical representations of
chemical molecules that transform chemical information into stan-
dardized activities. This study used PaDEL software [30] to calculate the
chemical descriptors of molecules. The software computed several
1-D/2-D/3-D and binary fingerprints (FP) (e.g., Fingerprinter, Extended,
KlekotaRoth count, SubStructure, MACCS keys). From the computation,
we obtained 1444 2-D descriptors, 136 3-D descriptors, and 14532 FP
descriptors for 1565 positive and 1671 negative compounds. These 2-D,
3-D, and FP descriptors were used to develop various machine learning
models.

2.3. Pre-processing of data

The calculated descriptors were lying in a varying range. We
normalized each descriptor file using a standard scaler package of Scikit
learn to preprocess the dataset. sklearn.preprocessing.StandardScaler is
a method that uses a z-score algorithm to normalize the data. Afterward,
we removed the null values from each descriptor file. 2-D and FP
descriptor files do not have any null values. However, a few null values
were found in the 3-D descriptor file. Hence, we were left with 1444 2-D,
116 3-D, and 14532 FP descriptors/features for the entire dataset.
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Fig. 1. Schematic representation of STAT3 signaling pathway.
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2.4. Selection and ranking of significant descriptors

Previous studies showed that all the calculated descriptors using
PaDEL software were irrelevant [25,31]. Thus, selecting the most sig-
nificant descriptors is a vital step to develop a good prediction model.
This study used three major feature selection techniques as follows:
VarianceThreshold-based method, correlation-based method, and
SVC-L1-based method. We used the VarianceThreshold package of Scikit
(sklearn.feature_selection) to remove the low-variance features.
Initially, we recorded 1444 2-D, 116 3-D, and 14,532 FP descriptors.
After eliminating low variance features, we were left with 622 2-D, 66
3-D, and 2251 FP descriptors. Thus, a correlation-based feature selection
method was used to select the features correlated with the coefficient of
less than 0.6. Then, we removed the features, in which their correlations
were greater than or equal to 0.6. After this process, we were left with 74
2-D, 9 3-D, and 1622 FP descriptors. Finally, we used the SVC-L1 feature
selection technique to obtain the most significant feature set. This
popular method was effective to minimize the feature vector size. Using
the SVC-L1 approach, we obtained the most essential 41 2-D, 5 3-D, and
116 FP descriptors. Furthermore, we used the combination of 2-D, 3-D,
FP descriptors to develop a hybrid model. Using the feature-selector
program, we ranked 162 features based on their importance to classify
the inhibitors/non-inhibitors. The program uses the gradient boosting
decision tree, a popular machine learning algorithm, also known as
LightGBM. To rank the features through the estimation, the program
calculated the number of times a feature split the data across all trees
[32]. The selected descriptors were ranked to develop different machine
learning models where the performance was computed on top-10, 20,
30, ....162 features.

2.5. Cross-validation techniques

We used the standard five-fold cross-validation technique to train,
test, and evaluate our prediction model on the training dataset. In this
technique, the training dataset was divided into five sets of the similar
size. Of these five sets, four sets were used for training, and the fifth set
will be used for testing purposes. The same process is iterated five times
so that each of the five sets will be used, at least once, for testing the
model. Finally, average performance was computed on five test sets. We
tune parameters to optimize the model’s performance and achieve the
best performance of test sets. To validate the performance of the best
model, we selected 20% of data, not used for training or testing of these
models. This method was a standard procedure extensively used by the
previous studies [33-35].

2.6. Machine learning-based classifiers

This study used several machine learning techniques to develop the
prediction models and classify STAT3 inhibitors/non-inhibitors. We
implemented Random Forest (RF), Decision Tree (DT), Logistic
Regression (LR), Support Vector Classifier (SVC), Gaussian Naive Bayes
(GNB), K-nearest neighbour (KNN), and eXtreme Gradient Boosting
(XGB) to develop classification models. These machine learning algo-
rithms were implemented in Scikit-learn package [36].

2.7. Performance evaluation parameters

We used the standard evaluation parameters to evaluate the per-
formance of different prediction models. Moreover, we used the stan-
dard evaluation parameters. In this study, we have used both threshold-
dependent and independent parameters. The model’s performance was
measured using threshold-dependent parameters such as sensitivity
(Sens), specificity (Spec), accuracy (Acc), and Matthews correlation
coefficient (MCC). However, the threshold-independent parameter, i.e.,
the area under the receiver operating characteristic curve (AUC), was
used to evaluate the model performance. Some previous studies had
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used these parameters extensively to evaluate the model’s performance
[37,38].

. TP
Sensitivity (Sens) =TP+FN x 100 (@D)]
TN
Specificity (S =——x 100 2
pecificty (Spec) =t x @
TP + TN

Accuracy (Acc) =

=~ T %100 3
TP + TN + FN + FP

vce — (TP x TN) — (FP x FN) @
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Where FP, FN, TP, and TN are false positive, false negative, true positive,
and true negative, respectively.

3. Results
3.1. Functional groups analysis

The ChemmineR package was used to calculate the frequency of
functional groups of STAT3 inhibitors and non-inhibitors [39]. We
analyzed the average frequency values, and found the abundance of
rings, and aromatic groups in inhibitors when compared to
non-inhibitors. As shown in Fig. 2, the frequency of secondary amines
(R2NH), tertiary amines (R3N), and ester (ROR) groups is significantly
elevated in non-inhibitor compounds.

In addition, we observed that the occurrence of the rings and aro-
matic groups in few existing FDA-approved STAT3 inhibitors such as
Napabucasin (BBI608), and STAT3 Inhibitor VII. These drugs are
effective to treat advanced malignancies. Some indirect STAT3 in-
hibitors like AZD-1480 and Ruxolitinib (FDA-approved) also exhibit
similar trends. Fig. 3 shows the presence of the functional groups in the
chemical 2-D-structures, known as STAT3 inhibitors, i.e., STAT3 In-
hibitor VII, Ruxolitinib, AZD-1480, and BBI608. These findings suggest
that the analysis can be used to design the novel drug candidates serving
as an inhibitor of the STAT3 signaling pathway.

3.2. Prediction models

A major challenge is to choose the most appropriate descriptors to
classify the chemicals since many of the descriptors are unimportant.
Several feature selection techniques are used to select the best features
for the classification. After selecting the best features, we developed
several prediction models using machine learning-based classifiers such
as RF, DT, LR, XGB, SVC, and GBM. Fig. 4 shows the complete
architecture.

4. Performance of classification models
4.1. 2-D descriptors

We computed 1444 2-D descriptors initially, after removing low
variance and highly correlated features we were left with 74 features.
These features were further used to develop classification models for
discriminating inhibitors and non-inhibitors. Of all the classifiers, RF
attains the maximum performance (0.84 AUC) with balanced sensitivity
and specificity; complete information is available in Supplementary
Table S1. Furthermore, we obtained 41 2-D descriptors with the help of
the SVC-L1 method. A slight alteration is observed after reducing the
features with the AUC of 0.83 and 76.35% accuracy on the training
dataset and AUC 0.84 with the 75.46% accuracy on the validation
datasets (Table 1).
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Fig. 2. Representation of average values of various functional groups in STAT3 inhibitors and non-inhibitors.

Ruxolitinib

% Rings =4
Aromatic group = 3

Azd-1480

Rings =3
Aromatic group = 3

0 o STAT3-IN-8

C

\\ Rings=3
N Aromatic group = 3

Napabucasin
0
N\ 7N 0
// \\\\\\ /// N - 0
7\ AN
\\ V. >
\\ )/// ‘// S
0 Rings =3

Aromatic group = 3

Fig. 3. Represents the abundance of rings and aromatic functional groups in STAT3 inhibitors (i.e., Ruxolitinib, STAT3 Inhibitor VII, AZD-1480 and B, BI608).

4.2. 3-D descriptors

We performed feature selection on 3-D descriptors and obtained nine
3-D descriptors, which were used for developing classification models.
Our RF-based model achieved a maximum AUC of 0.75 on training and
an AUC of 0.74 on the validation dataset. Supplementary Table S2 shows
the complete information. After removing four features with the help of
SVC-L1, the performance is computed on the best five 3-D descriptors.
The outcome shows that RF outperforms all other classifiers and obtains
the highest AUC of 0.74 on training dataset and an AUC of 0.73 on
validation dataset. However, XGB performs excellently by achieving
AUC 0.73 on training data and AUC 0.72 on validation data, as shown in
Table 2.

4.3. Fingerprints

We developed classification models using fingerprints descriptors,
and we obtained 1622 fingerprints after removing low variance and
highly correlated descriptors. These selected fingerprints are used for
developing prediction models. The RF-based models achieved the
maximum performance with AUC 0.86 on both training and validation
dataset. The SVC also achieved comparable performance with AUC
(training data = 0.84 and testing data = 0.85). Supplementary Table S3
shows the results of other classifiers. In addition, we developed models
using 116 features. With the SVC-L1 method, we achieved nearly the
same performance (Table 3). The results show that fingerprints-based
models outperform the classification models based on 2-D and 3-D
chemical features.
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Table 1

The performance of machine-learning models on training and validation dataset with best 41 2-D descriptors.

Classifier Training Dataset Validation Dataset

Sensitivity Specificity Accuracy AUC McCC Sensitivity Specificity Accuracy AUC McCC
DT 64.15 64.29 64.22 0.69 0.28 72.24 59.74 66.20 0.73 0.32
RF 76.10 76.58 76.35 0.83 0.53 74.63 76.36 75.46 0.84 0.51
LR 69.68 69.00 69.32 0.75 0.39 71.64 69.01 70.37 0.77 0.41
XGB 71.55 71.80 71.68 0.78 0.43 72.54 70.93 71.76 0.80 0.44
KNN 70.33 70.40 70.36 0.77 0.41 70.75 70.93 70.83 0.79 0.42
GNB 65.20 66.13 65.69 0.70 0.31 69.55 68.05 68.83 0.73 0.38
svc 74.80 73.79 74.27 0.81 0.49 71.34 74.76 72.99 0.81 0.46

#DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian

Naive Bayes; SVC:

Support Vector Classifier; AUC: Area under the receiver operating characteristic curve; MCC: Matthews correlation coefficient.

Table 2

Performance of machine learning models on 5 selected 3-D descriptors on training and validation dataset.

Classifier Training Dataset Validation Dataset

Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC
DT 64.80 62.00 63.33 0.68 0.27 67.16 51.76 59.72 0.66 0.19
RF 67.15 66.35 66.73 0.74 0.34 66.27 65.18 65.74 0.73 0.31
LR 65.77 65.54 65.65 0.71 0.31 65.67 64.54 65.12 0.70 0.30
XGB 65.29 66.94 66.15 0.73 0.32 65.67 66.13 65.90 0.72 0.32
KNN 68.21 67.01 67.58 0.74 0.35 69.85 62.62 66.36 0.73 0.33
GNB 65.85 65.69 65.77 0.71 0.32 67.46 61.98 64.82 0.70 0.30
svc 66.91 66.50 66.69 0.73 0.33 66.87 65.18 66.05 0.71 0.32

#DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naive Bayes; SVC:
Support Vector Classifier; AUC: Area under the receiver operating characteristic curve; MCC: Matthews correlation coefficient.

4.4. Hybrid descriptors

To develop the models and improve the performance, we combine
the selected 2-D (41 features), 3-D (5 features), and fingerprints (116
features) descriptors. The RF-based model’s performance using these
combined features was 0.87 and 0.88 AUC on the training and validation
dataset, respectively (refer to Supplementary Table S4). Furthermore,
we performed feature ranking on the combined 162 features using the
feature selector algorithm. Finally, we obtained a minimum set of fea-
tures that offered nearly similar performance of the above-mentioned

models. First, we have ranked the features based on their perfor-
mances and checked the performance using the top-10, 20, 30, ....162
features. Supplementary Table S5 shows the performance of all the
combined 162 features. Finally, we selected the top-49 descriptors (i.e.,
14 2-D, 1 3-D and 34 FP) out of 162 feature set as shown in Supple-
mentary Table S4. Models developed on top-49 features performed
almost similar as 162 features. The RF-based model obtained the
maximum AUC of 0.87, and accuracy >78.5 for training and testing
dataset with minimum sensitivity and specificity difference. Table 4
shows the results of all other classifiersi.e., SVC, DT, KNN, LR, XGB, and
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Table 3

The performance of machine learning models on 116 FP based features on training and validation dataset.
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Classifier Training Dataset Validation Dataset

Sensitivity Specificity Accuracy AUC McCC Sensitivity Specificity Accuracy AUC McCC
DT 64.96 65.24 65.11 0.71 0.30 67.46 61.66 64.66 0.70 0.29
RF 78.46 77.61 78.01 0.86 0.56 79.40 77.96 78.70 0.86 0.57
LR 75.85 76.66 76.28 0.83 0.53 72.84 76.68 74.69 0.81 0.50
XGB 77.32 77.54 77.43 0.84 0.55 77.91 80.83 79.32 0.86 0.59
KNN 76.18 75.04 75.58 0.83 0.51 77.02 73.80 75.46 0.83 0.51
GNB 73.98 74.08 74.03 0.81 0.48 69.55 73.80 71.61 0.79 0.43
svc 78.62 78.35 78.48 0.86 0.57 77.31 80.19 78.70 0.86 0.58

#DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian
Support Vector Classifier; AUC: Area under the receiver operating characteristic curve; MCC: Matthews correlation coefficient.

Table 4

Naive Bayes; SVC:

The performance of machine learning based models developed using hybrid descriptors (2-D+3-D + FP) on training and validation dataset.

Classifier Training Dataset Validation Dataset

Sensitivity Specificity Accuracy AUC McCC Sensitivity Specificity Accuracy AUC McCC
DT 68.22 68.03 68.12 0.74 0.36 66.67 72.70 69.91 0.74 0.39
RF 78.42 78.61 78.52 0.87 0.57 79.00 78.16 78.55 0.87 0.57
LR 77.00 76.34 76.66 0.84 0.53 75.67 77.87 76.85 0.83 0.54
XGB 77.31 77.10 77.20 0.85 0.54 80.00 75.29 77.47 0.85 0.55
KNN 74.94 75.89 75.43 0.83 0.51 78.00 75.58 76.70 0.83 0.53
GNB 74.23 74.00 74.11 0.81 0.48 75.33 72.99 74.07 0.80 0.48
svC 77.71 77.55 77.63 0.86 0.55 78.33 76.72 77.47 0.85 0.55

#DT: Decision Tree; RF: Random Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naive Bayes; SVC:

Support Vector Classifier; AUC: Area under the receiver operating characteristic curve; MCC: Matthews correlation coefficient.

GBM.
5. Repurposing of FDA-approved drugs to target STAT3

We retrieved 1102 FDA-approved drug molecules from the Drug
Bank database to identify the potential drug candidates for the inhibi-
tion of the STAT3 pathway [40]. From the FDA-approved drugs, we
identified the PubChem CID (compound ID). Out of 1102 drugs, a total
of 842 drugs comprises the 2-D structures. Furthermore, we use SDF files
of 842 molecules, to identify the potential drug candidates. We used the
“Predict” module of our web server “STAT3In” (with default parameters,
i.e., Random Forest Threshold = 0.48). Our model predicts 19 potential
drug candidates for STAT3 inhibition. Numerous previous studies sup-
port our findings, showing that these drugs are inhibitors in diseases
linked with IL6/STATS3 activation [41-45]. We identify eight potential
drugs (warfarin, dexpanthenol, perindopril, tamoxifen, pentagastrin,
duloxetine, ledipasvir, and, olopatadine) that are effective to treat se-
vere diseases like tumor progression, angiogenesis, COVID-19 progres-
sion, and good to inhibit IL6/STAT3 pathway, as depicted in Table 5.

5.1. Webserver implementation

We developed a webserver STAT3In to classify STAT3 inhibitors and
non-inhibitors. The web server is hosted on a Linux (Ubuntu) machine
using an Apache HTTP server. The front-end of STAT3In is developed
using HTML, PHP, and JavaScript. However, the back-end is developed
using Python3.6 and Scikit library. We also used a responsive template
to make our website compatible with desktop, tablet, laptop, and
smartphones. We implemented the random forest model using hybrid
chemical descriptors as the input features, in the back-end of the server.
Three major modules are in the webserver, named as “Predict,” “Draw,”
and “Analog design”. The comprehensive description of each module is
presented below.

5.2. Predict

The predict module helps user to classify the uncharacterized

Table 5
Potential FDA-approved drug candidates predicted by our web server (STAT3In)
for STAT3 inhibition.

Drug
Bank ID

FDA-
Approved
Drugs

STAT3In
Prediction

Functions

DB00682

DB09357

DB00790

DB00675

DB00183

DB00476

DB09027

DB00768

Warfarin

Dexpanthenol

Perindopril

Tamoxifen

Pentagastrin

Duloxetine

Ledipasvir

Olopatadine

Inhibitor

Inhibitor

Inhibitor

Inhibitor

Inhibitor

Inhibitor

Inhibitor

Inhibitor

Inhibition of IL6/STAT3-dependent
fibrin production in severe listeriosis
[42].

Inhibition of LPS-induced neutrophils
influx, protein leakage, and release of
TNF-a and IL6 in bronchoalveolar
lavage fluid in acute lung injury [43].
It regulates the inflammatory
mediators, NF-xB/TNF-a/IL6, and
apoptosis in renal diseases [44] and
inhibit the activation of STAT3 [45].
ACE inhibitor perindopril-inhibited
tumor growth was associated with the
suppression of angiogenesis [46].
Treatment of ER-positive breast
cancer with tamoxifen by inhibiting
the IL6/STAT3 signal pathway,
inhibition of tumor growth and
angiogenesis [47,48]. Anticancer
drugs that have shown potential
activity in both MERS and SARS-CoV
[41].

Anti-malarial, anti-fungal, anti-
bacterial, and anti-inflammatory [49].
Inhibit overexpression of IL6 mRNA in
anxiety- and major depressive
disorder, anti-inflammatory action
against IL6 [50-52].

Anti-viral activity against COVID-19
[531, (sofosbuvir, and ledipasvir)
inhibited STAT3 protein levels to cure
HCV infections [54].

Inhibit CHMCs activation and release
of IL6, tryptase, and histamine and use
as anti-allergy drug [55].
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chemical compound as STAT3 inhibitor or non-inhibitor. The module
accepts chemical compounds in various formats, such as SDF, SMILES,
and MOL, from the users and also allows the user to select the desired
threshold. The users can enter either a single molecule, or multiple
molecules and can also upload a file consisting of multiple chemical
compounds. The output page provides the class(es) of the submitted
compound(s) as STAT3 inhibitor or non-inhibitor, along with their
machine learning score. The result is presented in comma-separated
value (CSV) format to search or sort the output table.

5.3. Draw

In this module, users can draw or alter the chemical molecule
structure and transfer it to the prediction model to classify the molecule
as a STAT3 inhibitor or non-inhibitor. We implemented Ketcher [56], an
open-source web-based chemical structure editor, to carry out the
interactive process. The users can select the threshold based on their
suitability. The output page shows the predicted class of the molecule in
the tabular form, downloadable in CSV format.

5.4. Analog design

In the analog design module, users can generate the analogs using a
combination of submitted scaffolds, building blocks, and linkers. We
implemented SmiLib [57] software to generate the analogs. Subse-
quently, the generated analogs are classified into STAT3 inhibitors or
non-inhibitors based on the selected threshold. The result page exhibits
the class of the generated analogs as inhibitors and non-inhibitors along
with their machine learning score in the tabular form, downloadable in
CSV format.

6. Discussion and conclusion

STATS3 is one of the most crucial transcription factors and oncogene
that plays a significant role in the onset and progression of the tumor.
STATS is identified as an excellent therapeutic target for various cancer
owing to its versatile regulatory pathways and biological roles in cancer
[58]. Moreover, many studies confirm that the IL6 concentration is
significantly severe in COVID-19 patients globally. Cytokine IL6 medi-
ates its effect via JAK/STAT3 pathway. Therefore, computation methods
are crucial to predict a potent chemical molecule to serve as a STAT3
inhibitor. Numerous methods were developed to exploit the
structure-activity of the chemical molecules and predict the potential
chemical molecule that can serve as an inhibitor, such as EGFRpred [31]
which predicts the EGFR inhibitor potential of a molecule. Using ma-
chine learning methods, DrugMint [25] predicts if a molecule is a po-
tential drug candidate.

In this study, we attempted to develop a computational method to
discriminate the STAT3 inhibitors from non-inhibitors. We observed a
high frequency of rings and a low frequency of R2NH, R3N, ROR groups
in STAT3 inhibitor compounds. We found the same trend in already
existing STAT3 drugs such as AZD-1480, Ruxolitinib, Napabucasin, and
STATS3 Inhibitor VII. We consider STAT3 inhibitors and non-inhibitors as
the positive and negative datasets to develop the prediction models.
Random forest-based models achieve maximum performance (AUC 0.87
with an accuracy of 78.55) on the validation dataset using hybrid de-
scriptors. Furthermore, we used 842 FDA-approved drugs, to identify
potential drug candidates against STAT3 activation. As revealed in
Table 5, we identify a few drugs that can inhibit IL6/STAT3 activation
and can be used as a drug candidate against cytokine storm [59,60]
associated with COVID-19. Using machine learning with minimal fea-
tures derived from chemical molecules, a webserver named STAT3In is
developed to predict and design the potential STAT3 inhibitors. We hope
that this method will aid researchers working in the field of cancer
therapy and infectious diseases, such as COVID-19.

Computers in Biology and Medicine 137 (2021) 104780
6.1. Limitation of the study

In the current study, we used state-of-the-art techniques to develop a
prediction tool and identify STAT3 inhibitor/non-inhibitor chemical
compounds. However, the models were built on the chemical com-
pounds tested only on a single cell line “human U3A fibrosarcoma”.
Ideally, the study should be performed on animal models or a wider
range of cell lines to develop a rigorous method. In the future, we hope
to design an upgraded version once we obtained a sufficient experi-
mentally validated data on IL-6/STAT3 inhibition.
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