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Introduction: The majority of available transcriptomics-related cancer 
prognosis studies strive to define one collection of biomarkers that can be 
used to predict high-risk patients. However, using a single biomarker profile 
could restrict its strength and applicability to diverse groups of patients. In 
order to fill this gap, we discuss the prospect of determining several, discrete 
sets of prognostic biomarkers in Skin Cutaneous Melanoma (SKCM). Our 
search identifies various genes including CREG1, PCGF5 and VPS13C whose 
expression pattern depicts significant correlations with overall survival (OS) in 
SKCM patients.
Methods: We developed machine learning-based prognostic models using 
SKCM gene expression data to predict 1-, 3-, and 5-year overall survival. 
Advanced feature selection approaches were applied to identify prognostic 
biomarkers. The primary biomarker set consisted of 20 genes selected using 
state-of-the-art feature selection techniques. Machine learning classifiers were 
trained to distinguish high-risk from low-risk patients using these biomarkers. 
The process was systematically repeated to identify seven independent 
biomarker sets, each containing 20 unique genes without overlap. Model 
performance was evaluated using AUC and Cohen's Kappa metrics on an 
independent test dataset. Validation was further performed using the GEO 
dataset GSE65904, employing subsets of biomarkers from the primary and 
third sets.
Results: The primary biomarker-based prognostic model demonstrated strong 
predictive ability, achieving an AUC of 0.90 and a Kappa of 0.58 in identifying 
high-risk SKCM patients. A second independent 20-gene set, with no overlap 
with the first, produced an AUC of 0.89 and Kappa of 0.56. Across all seven 
biomarker sets, performance ranged from 0.84 to 0.91 (AUC) and 0.48 to 0.64 
(Kappa). Notably, the fifth biomarker set yielded the highest performance with 
an AUC of 0.91 and Kappa of 0.64. External validation confirmed the predictive 
utility of selected biomarkers where genes from the primary set achieved an AUC 
of 0.83 on GSE65904. While genes from the third set achieved an AUC of 0.86 
on the same dataset.
Discussion: Our results show that only one gene-expression signature is 
not sufficient to predict SKCM prognosis. Alternatively, high-risk patients can 
be accurately predicted using multiple independent biomarker sets providing 
flexibility in both clinical and computational practices. The high similarity in the 
results of all seven sets (AUC 0.84-0.91; Kappa 0.48-0.64) signifies the stability 
and strength of the method. The external validation of these biomarkers with 
GEO data also helps to confirm the reliability of these biomarkers and hints at
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their potential wider applicability. This work facilitates transparency by ensuring 
that all the data and code is publicly accessible (https://github.com/raghavagps/
skcm_prognostic_biomarker), which also promotes future developments in 
creating multi-signature prognostic tools in melanoma.

KEYWORDS

skin cutaneous melanoma, overall survival, survival analysis, machine learning, 
prognostic biomarker 

Introduction

Skin Cutaneous Melanoma accounts for around 3%–5% of 
all malignancies and is a very aggressive tumor that arises from 
melanocyte cells and primarily affects the skin. However, it can also 
occur in mucous membranes and internal organs (Wang et al., 2022; 
Sinagra and Sciume, 2020). The third most frequent type of skin 
cancer, skin cutaneous melanoma, affects 6.8%–20% of cases (Wang 
and Liu, 2021). According to projections, there will be 2,001,140 new 
cases of cancer and 611,720 cancer-related fatalities in the US in 
2024. Additionally, there will likely be over 8,000 deaths and 100,640 
new cases of SKCM (Siegel et al., 2024). Globally, the incidence 
of melanoma continues to rise, driven primarily by environmental 
factors, particularly excessive ultraviolet (UV) radiation exposure, 
which plays a central role in melanoma carcinogenesis (Tracey and 
Vij, 2019). Human skin color is primarily determined by the amount 
of melanin, with darker skin containing larger melanocytes that 
produce more melanin, offering protection against UV radiation 
(Kaidbey et al., 1979; Aoude et al., 2014).

SKCM can originate from benign melanocytic nevi, including 
dysplastic, acquired, or congenital forms, or may develop 
independently. In recent years, both its prevalence and mortality 
rates have risen significantly. Surgical excision remains the most 
effective treatment, highlighting the importance of early diagnosis 
and intervention (Merighi et al., 2009; Kardynal and Olszewska, 
2014; Christodoulou et al., 2021; Seitz et al., 2021). Advances in 
genomic analysis and high-throughput technologies have provided 
deeper insights into melanoma biology, improving detection 
and treatment strategies (Scatena et al., 2021). The malignant 
transformation of melanocytes is driven by genetic alterations, 
particularly in the BRAF and NRAS genes (Guan et al., 2015) shown 
in Figure 1. These mutations are central to melanoma development 
and progression, influencing tumor behavior and patient response 
to therapies (Garman et al., 2017). Despite significant progress 
in uncovering the genetic underpinnings of melanoma, late-stage 
diagnosis remains a major obstacle, limiting the effectiveness of 
treatments such as surgery, immunotherapy, and targeted therapies
(He and Wang, 2023).

Recent studies have focused on identifying invasion-related 
biomarkers for individualized treatment and prognosis prediction 
in SKCM. One such study analyzed 124 invasion-associated 

Abbreviations: SKCM, Skin Cutaneous Melanoma; OS, Overall survival; 
IAGS, Invasion-associated genes; TCGA The Cancer Genome Atlas; 
FRG,Ferroptosis-related gene; DGIdb, Drug Gene Interaction Database; 
ML, Machine Learning; AUROC, Area Under the Receiver Operating 
Characteristic.

genes (IAGS) and selected 20 prognostic genes to develop a gene 
expression-based model (Yang et al., 2023). Similarly, another 
study used transcriptome data from TCGA to find a predictive 
signature based on m6A-related lncRNAs (Lin et al., 2024). 
Another study developed a 10 ferroptosis-related gene (FRG) 
signature for predicting overall survival in SKCM (Ping et al., 
2022). Additionally, eight immune-related lncRNA signatures 
were identified as a prognostic model for melanoma and 
validated using Kaplan-Meier analysis (Xiao et al., 2021). In 
recent studies, a prognostic signature comprising seven NLR-
related genes was identified using LASSO-Cox analysis. This 
signature effectively stratified SKCM patients into high and low-
risk groups, demonstrating a strong correlation with overall 
survival outcomes. Additionally, it revealed distinct immune 
microenvironment patterns characterized by the activation of 
inflammatory and interferon pathways and showed potential for 
predicting responses to immune checkpoint blockade therapy 
(Geng et al., 2023). A chemokine-related 14-gene prognostic 
model was developed, revealing distinct immune characteristics 
and stratification between low- and high-risk groups. This model 
demonstrates potential in predicting immunotherapy outcomes 
and chemotherapy efficacy and aiding clinical decision-making 
for SKCM patients (Ding et al., 2023). While these studies 
provide valuable insights, they typically focus on a limited 
set of biomarkers within a specific context, as shown in the
Supplementary Table S1.

Previous studies have mostly focused on pathway-related 
biomarkers. To the best of our knowledge, these methods typically 
identify only a single set of biomarkers. Moreover, they usually select 
prognostic biomarkers from a limited subset of data, such as genes 
related to invasion, immune response, or lncRNAs. In this study, we 
take a novel approach by attempting to generate biomarker sets from 
all available genes rather than focusing on just a subset. Additionally, 
we select a secondary set from the remaining genes after identifying 
an initial set of biomarkers. This process is repeated, leading to the 
identification of seven distinct sets of prognostic biomarkers. The 
pipeline of the study is shown in Figure 2.

Methodology

Data collection

Transcriptomic profiling and clinical data were retrieved 
from The Cancer Genome Atlas (TCGA), a major cancer 
research database (Yan et al., 2022) using the TCGAbiolinks 
package from BiocManager in R. The retrieved expression data, 

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1624329
https://github.com/raghavagps/skcm_prognostic_biomarker
https://github.com/raghavagps/skcm_prognostic_biomarker
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Malik et al. 10.3389/fbinf.2025.1624329

FIGURE 1
Diagram illustrating the progression of melanoma. UV radiation exposure leads to genetic alterations in melanocytes, causing an increase in genetic 
abnormalities. Melanocytes transform into nevi and then into melanoma. This melanoma spreads from the primary tumor site to distant organs via 
lymph nodes, showing the metastasis process.

FIGURE 2
Flowchart depicting an analytical process using TCGA-SKCM clinical information with 287 samples and 23,010 features. It divides data into training 
(80%) and testing (20%) datasets, undergoes correlation and gene enrichment analysis. Feature selection uses methods like RFE, SVC-L1, SelectKBest, 
and SFS. Machine learning models applied include CatBoost, RF, ET, and XGB. CatBoost model achieves the best classification with an AUC of 0.91. 
Survival analysis, univariate and Lasso analysis follow with a lambda of 0.03. Seven sets of twenty prognostic biomarkers are identified.

which included 473 samples and 60,660 genes, was normalized to 
Transcripts Per Kilobase Million (TPM) values before downstream 
analysis using R script. The new dataset GSE65904, comprising 214 
samples, was used to confirm the prognostic value of the selected 
biomarker sets. 

Preprocessing of data

We first removed duplicate features and filtered out genes 
with more than 50% zero expression values. Using the caret 

package in R, low-variance features were removed to retain only 
informative genes, leaving 23,009 genes for further analysis. 
The gene expression data were then merged with clinical data 
to identify a cohort of 287 patients with available survival 
information. For the GEO dataset with available Disease-Specific 
Survival (DSS) times, 210 samples were selected. Among the seven 
predefined biomarker sets, 15 genes overlapped with the primary 
set, 10 with the second set, and 12 with the third set. For each 
overlapping subset, predictive models were trained and validated 
using the same cross-validation and hyperparameter tuning
strategy.
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Z-score scaling

In order to ensure that each feature has a mean of 0 and a 
standard deviation of 1, this transformation standardizes the data 
by subtracting the mean of each feature and dividing it by its 
standard deviation. By standardizing the data size, this technique 
makes it possible to compare features more accurately (Tihagam and 
Bhatnagar, 2023). 

Statistical methods

Correlation analysis
The associations between gene expression and OS time 

were evaluated using Pearson correlation analysis in Base R. 
False Discovery Rate (FDR) correction was applied using the 
Benjamini–Hochberg method to account for multiple hypothesis 
testing. Genes with a p-value and FDR <0.05 were considered 
significant, providing insights into their potential impact on SKCM 
patient survival (Ma and Xie, 2024). Positively correlated genes 
were further analyzed using Gene Ontology (GO) (Wang and 
Yang, 2022) and Reactome pathway analysis (Fabregat et al., 
2017) to identify enriched biological processes and pathways 
relevant to melanoma progression, utilizing the gseapy package
in Python. 

Survival analysis

Patients were divided into high- and low-risk groups based on 
the median overall survival (OS) time. Univariate Cox regression 
analysis was conducted using the Cox proportional hazards model 
(Yang R.-H. et al., 2021). Significant genes were selected based 
on p-values <0.05 using the survival package in R. Subsequently, 
LASSO regression analysis (Huang et al., 2022) was performed 
using the glmnet package in R to identify prognostic genes, 
with an optimal lambda value of 0.03. Depending on the
formula:

Riskscore =
n

∑
1

genei∗ expression(genei)

Identified prognostic genes were then analyzed using the Drug 
Gene Interaction Database (DGIdb) (Cannon et al., 2024) to 
predict potential therapeutic agents based on known drug-gene 
interactions.

AI-based methods

We employed various feature selection techniques to identify 
relevant genes for the prognostic model. Overall survival time was 
categorized into four classes: Class 0 (0–1 year), Class 1 (one to three 
years), Class 2 (three to five years), and Class 3 (>5 years). 

Feature selection techniques

To identify the most relevant features for the prognostic 
model, we applied several established feature selection methods, 

FIGURE 3
Venn diagram showing selected features from SVC-L1, RFE, and IAGS. 
SVC-L1 has 17 unique features, RFE has 17 unique features, and IAGS 
has 20 unique features. Three features overlap between 
SVC-L1 and RFE.

including Linear Support Vector Classification with L1 penalty 
(SVC-L1), Recursive Feature Elimination (RFE), Sequential Feature 
Selection (SFS), and SelectKBest. These methods have been 
successfully employed in similar studies (Ma and Huang, 2008; 
Kamkar et al., 2016; Jiang et al., 2023). 

Identification of the primary set of 
biomarkers

We utilized a variety of feature selection techniques, starting 
with the Recursive Feature Elimination algorithm (Darst et al., 
2018), which recursively ranks features based on their relevance 
and selects the optimal subset. In the second method, SelectKBest, 
we applied the f_classif evaluation function to identify the K 
most relevant features. We also used Linear Support Vector 
Classification with L1 regularization, which selects features 
by penalizing less important ones, achieving sparsity, and 
improving model performance (Bhalla et al., 2019). Specifically, 
we obtained the absolute values of SVC-L1 coefficients and used 
the mean coefficient value as a threshold to select features with 
importance scores above the mean. Sequential Feature Selection 
was employed to add or remove features to optimize performance 
sequentially. These techniques helped identify a robust initial 
biomarker set for further analysis using the Scikit-learn package
(Pedregosa et al., 2011). 

Identification of additional biomarker sets

For the secondary biomarker set, features identified in the 
primary set were excluded before applying the SVC-L1 method 
to ensure the independence of the sets. In the case of the 
third biomarker set, invasion-associated genes, along with features 
previously identified through RFE and SVC-L1 in earlier analyses, 
were systematically removed prior to the selection process. This 
process is visualized in Figures 3, 4, where the Venn diagram 
highlights the common and distinct features across the biomarker 
sets and invasion-associated genes. This approach facilitated the 
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FIGURE 4
Venn diagram illustrating the overlap of selected features among three 
methods: SVC-L1, RFE, and IAGS. SVC-L1 contains 18 unique features, 
RFE contains 18 unique features, and IAGS has 20 unique features. The 
overlap between SVC-L1 and RFE has 2 features in common.

identification of non-overlapping and distinct biomarker sets for 
further analysis.

ML models

Class imbalance was addressed using the Synthetic Minority 
Over-sampling Technique (SMOTE), which was applied due to 
the severity of class imbalance in the dataset. The original class 
distribution was: Class 0 (0–1 year): 29 patients, Class 1 (one 
to three years): 110 patients, Class 2 (three to five years): 50 
patients, and Class 3 (>5 years): 98 patients. After applying SMOTE, 
each class was balanced to 110 patients, resulting in a total of
440 samples.

To evaluate model robustness and prevent overfitting, stratified 
five-fold cross-validation was performed with an 80:20 train-
test split, where one sample from every five-sample block 
was held out as an independent test set, and the remaining 
samples used for training; this process was repeated to ensure 
every sample served as a test case. This split yielded 352 
samples in the training set and 88 samples in the test set, 
with each class represented by approximately 22 patients in 
the test set.

Multiple machine learning algorithms including Multi-Layer 
Perceptron (MLP), Decision Tree (DT), Extreme Gradient Boosting 
(XGB), Support Vector Machine (SVM), Extra Trees Classifier (ET), 
Random Forest (RF), k-Nearest Neighbors (KNN), Light Gradient 
Boosting Machine (LightGBM), Categorical Boosting (CatBoost), 
Adaptive Boosting (AdaBoost), and Logistic Regression (LR) were 
trained and compared on different feature sets to identify robust 
prognostic biomarkers. Hyperparameters for each model were 
optimized using grid search within a 5-fold cross-validation on 
the training set to prevent overfitting. Among the models tested, 
CatBoost achieved the best performance. The hyperparameters for 
CatBoost were set as (iterations = 800, depth = 12, learning_rate 
= 0.2, random_state = 42, cat_features = [], and verbose = 1). This 
model was then applied to the selected feature sets, and performance 
was evaluated on the independent test set using accuracy, AUC, and 
other relevant metrics. 

Ensemble models

We used a voting classifier by utilizing multiple base classifiers, 
i.e., RF, ET, and LightGBM, to make individual predictions. We used 
hard voting, where the majority of the votes from the classifiers 
determined the final class prediction. This method helps aggregate 
the strengths of different models to achieve better generalization. 
We also applied a stacking classifier and trained several different 
base models, including ET and RF. The predictions of these base 
models were used as inputs to LR as a meta-model, which was 
trained to combine the base model outputs and make the final 
prediction. We tried catBoost as a meta-model and RF, ET, and XGB 
as base models. This two-level architecture leverages the strengths 
of multiple models by allowing the meta-model to learn how to best 
combine their predictions.

Results

Correlation analysis

Our univariate Cox regression analysis identified 4,324 genes 
significantly associated with overall survival time. After applying 
FDR correction using the Benjamini–Hochberg method, 2,667 
genes remained statistically significant confirming that our findings 
are robust. We selected the top genes with the most significant 
positive and negative correlations, as shown in Table 1. Specifically, 
the genes CREG1 and PCGF5 exhibited positive correlations with 
OS with correlation coefficients of 0.40 and 0.38, respectively. 
Conversely, the genes AC008687.4 and TTYH2 showed negative 
correlations with OS, with coefficients of −0.23 and −0.23, 

TABLE 1  List of top genes with strongest positive and negative 
correlation with overall survival time, including correlation coefficients, 
p-values and FDR value.

Gene Coef p-value FDR Type of 
correlation

CREG1 0.40 3.63E-12 8.35E-08

Positive

PCGF5 0.38 4.47E-11 5.14E-07

VPS13C 0.36 2.06E-10 1.58E-06

CPD 0.35 1.17E-09 6.73E-06

BBX 0.35 1.64E-09 7.56E-06

LRRK2 0.34 2.36E-09 8.02E-06

AC008687.4 −0.23 8.28E-05 0.00348

Negative

TTYH2 −0.23 0.00010 0.00403

G6PC3 −0.21 0.00025 0.00683

BOK −0.21 0.00033 0.00818

GSTP1 −0.21 0.00043 0.00958

NUDT8 −0.20 0.00049 0.01037
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FIGURE 5
Heatmap displaying correlation values between various gene expressions, ranging from −0.4 to 1. Red indicates positive correlation; blue indicates 
negative correlation. Dendrograms on top and left organize the genes based on similarity.

respectively. A positive correlation suggests that higher expression 
levels of these genes are associated with longer survival, whereas a 
negative correlation indicates that higher expression levels are linked 
to poorer survival outcomes. The Pearson correlation coefficient (r) 
was used to quantify these associations.

We selected the top genes positively and negatively correlated 
with overall survival and visualized the relationships among these 
genes using a heatmap. The heatmap displays pairwise Pearson 
correlation coefficients between gene expression levels across all 
samples. Strong positive correlations (red) indicate genes with 
similar expression patterns, whereas strong negative correlations 
(blue) indicate genes with opposite expression patterns. Numbers in 
each cell represent the correlation coefficient (r). This visualization 
allows identification of clusters of co-expressed genes that may 
be involved in related biological pathways influencing patient 
prognosis shown in Figure 5. Afterward, we selected 50 positively 
correlated genes with high expression levels for enrichment 
analysis. Significant Gene Ontology (GO) terms included 590 
biological processes (BP), 79 cellular components (CC), and no 
molecular functions (MF). Notable BP enrichments included 
'lipid translocation’ (p = 0.00002) and 'phospholipid translocation’ 
(p = 0.00006), while CC analysis highlighted 'mitochondrial 
outer membrane’ (p = 0.0002) and 'organelle outer membrane’ 
(p = 0.0004) are shown in Figure 6. Molecular function analysis 
revealed significant enrichment in ‘cysteine-type endopeptidase 
inhibitor activity’ (p = 0.001) and ‘protein serine/threonine kinase 
activity’ (p = 0.001). Additionally, 246 Reactome pathways were 

identified, with significant enrichment in pathways such as 'Ion 
Transport By P-type ATPases’ (p = 0.0003) and 'Ion Channel 
Transport’ (p = 0.0009). The top 5 GO (BP) terms and Reactome 
pathways are shown in Figure 7.

Survival analysis

Univariate Cox regression analysis was performed to evaluate 
the association between gene expression and overall survival. 
Patients were divided into two groups based on the median OS time, 
categorizing them into low-risk (G1) and high-risk (G2) groups 
for each gene. A total of 4,324 genes were identified as statistically 
significant (p-value <0.01). Among these, 1,264 genes had a hazard 
ratio (HR) greater than 1, indicating a potential risk, while 3,060 
genes had an HR less than 1, suggesting a protective effect. The top 
genes with HR values are highlighted in Figure 8, while a detailed 
summary of these findings is presented in Table 2.

Subsequently, LASSO Cox regression analysis was performed 
to identify the most predictive genes for survival outcomes. Using 
cross-validation, the optimal lambda value was determined to be 
0.03, which minimized the cross-validation error. This analysis 
retained 17 genes (ATP11A, B2M, BISPR, CIB2, CYTL2, GBP1P1, 
GBP2, GCA, HEXD, HLA.DQB1, KLRC1, LRRK2.DT, MCOLN2, 
SLC2A5, TTYH2, WIPF1, XCL2) with non-zero coefficients, 
indicating their significant contribution to OS prediction. Among 
these, four genes were identified as risk factors, and 13 genes 
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FIGURE 6
Dot plot illustrating gene ontology (GO) terms against the gene ratio, with adjusted p-values indicated by color. Larger dots represent terms with higher 
gene ratios. The gradient legend on the right ranges from blue to red, signifying p-values from 0.01692 to 0.08709.

FIGURE 7
Dot plot illustrating gene ontology (GO) terms against the gene ratio, 
with adjusted p-values indicated by color. Larger dots represent terms 
with higher gene ratios. The gradient legend on the right ranges from 
blue to red, signifying p-values from 0.0776 to 0.2847.

were identified as beneficial factors shown in Table 3. Additionally 
we identified 17 drugs targeting five of the selected genes, most 
of which act as inhibitors. Detailed information is provided
in Supplementary Table S9.

Machine learning models
To mine important genomic and epigenomic features, 

we used well-established feature selection methods like SVC-
L1 (Guyon et al., 2002), SelecKBest (Pedregosa et al., 2011), 

RFE (Panda and Priyadarshi, 2022) and SFS (Esener et al., 
2015). Subsequently, prediction models have been developed 
implementing several machine learning techniques like ExtraTrees 
(Geurts et al., 2006; Geeitha et al., 2024).

Various feature selection methods, including RFE, SFS, 
and SelectKBest with sets of 10, 20, 50, and 100 genes, were 
applied to identify different biomarker sets. Each set was 
evaluated for predictive performance, and the SVC-L1-selected 
features consistently showed the best performance. This set 
was therefore used for downstream analyses as detailed in 
the Supplementary Tables S2–8. The selected biomarkers were 
then used to train and evaluate multiple machine-learning 
models. Performance was assessed using metrics such as 
accuracy, area under the curve (AUC), specificity, sensitivity, and 
Matthew’s correlation coefficient (MCC). Among the models, the 
CatBoost algorithm emerged as the best-performing approach. 
It achieved an AUC of 0.90 and an MCC of 0.58 on 20 features 
selected by SVC-L1 based on feature importance, as shown in
Table 4.

For the secondary biomarker set, the CatBoost model achieved 
an AUC of 0.89, as detailed in Table 5. Similarly, for the third 
biomarker set, CatBoost demonstrated an AUC of 0.87. Consistent 
performance was observed across the fourth (AUC: 0.85), sixth 
(AUC: 0.84), and seventh (AUC: 0.89) biomarker sets. Notably, the 
highest performance was achieved with the fifth biomarker set, 
where CatBoost attained an AUC of 0.91 and an MCC of 0.64, 
underscoring its superior predictive capability with this selection of 
biomarkers.

The classification performance of the CatBoost model was 
initially evaluated on the primary set, where it achieved outstanding 
results with AUC values of 0.99 for Class 0, 0.83 for Class 1, 
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FIGURE 8
Forest plot displaying hazard ratios and 95% confidence intervals for various genes, each labeled with p-values. Red dots represent hazard ratios, with 
blue lines indicating confidence intervals. The x-axis presents hazard ratios ranging from 0.0 to 3.0.

TABLE 2  Hazard ratio (HR)-based genes associated with overall survival time.

Gene G1 G2 Beta coef HR p-value CI_low CI_high Concor-dance Log-rank p-value

EAF2 144 143 −0.996 0.37 1.24E-08 0.26 0.52 0.62 8.83E-09

TRIM22 144 143 −0.983 0.37 5.64E-08 0.26 0.53 0.61 3.12E-08

TRBV30 144 143 −0.978 0.38 3.34E-08 0.27 0.53 0.62 1.72E-08

GPR171 144 143 −0.970 0.38 3.61E-08 0.27 0.54 0.62 2.03E-08

SAMD3 144 143 −0.942 0.39 9.47E-08 0.28 0.55 0.61 5.69E-08

OCA2 144 143 0.830 2.29 2.00E-06 1.63 3.23 0.60 1.72E-06

GSTP1 144 143 0.806 2.24 3.66E-06 1.59 3.15 0.60 3.63E-06

CS 144 143 0.760 2.14 1.79E-05 1.51 3.03 0.60 1.04E-05

PMPCA 144 143 0.750 2.12 1.44E-05 1.51 2.97 0.59 1.28E-05

FOXM1 144 143 0.702 2.02 5.84E-05 1.43 2.84 0.59 4.78E-05

0.93 for Class 2, and 0.84 for Class 3. Subsequently, the model 
was tested on the additional set for seven distinct biomarker sets, 
with AUC values reported for each class. For the secondary set 
of biomarkers, the model achieved AUC values of 0.99 for Class 
0, 0.77 for Class 1, 0.90 for Class 2, and 0.90 for Class 3. In the 
third set of biomarkers, the AUC values were 0.98 for Class 0, 0.80 
for Class 1, 0.93 for Class 2, and 0.73 for Class 3. The fourth set 
of biomarkers recorded AUC values of 0.80, 0.85, 0.90, and 0.87 
for Classes 0, 1, 2, and 3, respectively. Similarly, the fifth set of 

biomarkers showed strong performance with AUC values of 0.99 
for Class 0, 0.85 for Class 1, 0.91 for Class 2, and 0.90 for Class 3. 
The sixth set of biomarkers achieved AUC values of 0.92 for Class 
0, 0.75 for Class 1, 0.90 for Class 2, and 0.77 for Class 3. Finally, 
the seventh set of biomarkers demonstrated AUC values of 0.95 
for Class 0, 0.82 for Class 1, 0.93 for Class 2, and 0.85 for Class 
3. These results, shown in Table 6, and the corresponding AUC 
curve presented in Figure 9, highlight the robust performance of the 
CatBoost model across multiple biomarkers sets, with variations in 
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TABLE 3  This table contains 17 prognosis-related genes in skin 
cutaneous melanoma.

Gene Coef

ATP11A 0.035

B2M −0.037

BISPR −0.028

CIB2 0.005

CYTL1 0.082

GBP1P1 −0.020

GBP2 −0.015

GCA −0.016

HEXD −0.042

HLA.DQB1 −0.033

KLRC1 −0.028

LRRK2.DT −0.036

MCOLN2 −0.018

SLC2A5 −0.001

TTYH2 0.049

WIPF1 −0.020

XCL2 −0.005

AUC values reflecting differences in the predictive potential of the
biomarker sets.

The AUC values in Table 6 illustrate the predictive performance 
of the best-performing model across seven biomarker sets for 
survival classes (0–1 year, 1–3 years, 3–5 years, and >5 years). For 
Class 0 (0–1 year survival), the AUC values are consistently high, 
ranging from 0.90 to 0.99, with the primary, secondary, and fifth 
biomarker sets achieving the highest AUC (0.99). This indicates 
exceptional accuracy in identifying patients with the shortest 
survival times, highlighting these biomarker sets as highly effective 
for predicting high-risk patients who may require immediate clinical 
intervention. For Class 1 (one to three years survival), the AUC 
values are moderate, ranging from 0.75 to 0.85, with the fifth 
biomarker set demonstrating the highest predictive accuracy (0.85) 
and the sixth set performing the least effectively (0.75). These results 
suggest moderate success in predicting mid-range survival groups, 
indicating room for improvement in this category.

For Class 2 (three to five years survival), the AUC values are 
consistently high across all biomarkers sets, ranging from 0.88 
to 0.93, with the primary, third, and seventh sets achieving the 
highest AUC (0.93). This consistency demonstrates the robustness 
of these sets in predicting intermediate survival times, making them 
promise for accurate prognostic stratification in this group. For 

Class 3 (>5 years survival), the AUC values show more variation, 
ranging from 0.73 to 0.90. The secondary and fifth biomarker sets 
achieve the highest performance (0.90), while the third set shows the 
lowest (0.73), indicating that while some sets are effective for long-
term survival prediction, others may lack the necessary features to 
differentiate this class accurately.

Overall, the primary biomarker set stands out for its exceptional 
performance across all classes, particularly for Class 0 and Class 2 
(AUC = 0.99 and 0.93, respectively), making it the most reliable 
set for survival prediction. The fifth biomarker set demonstrates 
high performance, particularly for Classes 0 and 3 (AUC = 0.99 
and 0.90), showing its potential for identifying high-risk and 
long-term survivors. The results reveal that the highest predictive 
accuracy is observed for Class 0, suggesting the model excels in 
identifying high-risk patients. Moderate performance for Class 1 
indicates challenges in predicting mid-range survival groups, while 
high accuracy for Class 2 and variable performance for Class 
3 highlights the model’s strengths. These findings emphasize the 
potential of these biomarker sets in predicting survival outcomes 
in SKCM patients, with the primary and fifth sets showing the best
performance. 

Ensemble models

The Voting and Stacking classifiers were applied to the 20 
prognostic genes from the primary set. The Voting classifier 
combined RF, ET, and LightGBM, achieved an AUC of 0.87 and an 
MCC of 0.56. The Stacking classifier was evaluated using Logistic 
Regression as the meta-model with RF and ET as base models and 
CatBoost as the meta-model with RF, ET, and XGB as base models. 
These stacking models achieved AUC values of 0.88, with MCC 
scores of 0.61. The results are summarized in Table 7.

The best existing method, which focused on IAGS, achieved 
an AUC of 0.88. In our study, four out of seven biomarker sets 
performed even better, with AUC values higher than 0.88. This 
demonstrates that our approach is more effective in identifying 
prognostic biomarkers with higher accuracy. 

Validation on a new dataset

The best-performing model in our study, CatBoost was 
used to evaluate the prognostic potential of the selected 
biomarkers. Using the primary biomarker set, which included 
15 matched genes, the model achieved an AUC of 0.85 on 
the training set and 0.83 on the test set, indicating strong 
predictive performance. Class-wise AUCs for this model were: 
Class 0 (AUC = 0.76), Class 1 (AUC = 0.77), Class 2 (AUC 
= 0.93), and Class 3 (AUC = 0.85). Similarly, using the third 
biomarker set with 12 overlapping genes, the model achieved 
an AUC of 0.85 on training and 0.86 on testing. Class-wise 
AUCs for this set were: Class 0 (AUC = 0.79), Class 1 (AUC 
= 0.78), Class 2 (AUC = 0.90), and Class 3 (AUC = 0.97), 
further highlighting the robustness and reliability of the selected
biomarkers. To provide biological context for our biomarker 
gene sets, we conducted Reactome pathway enrichment analysis, 
identifying significantly enriched pathways—including ȁCRNA 
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TABLE 4  Performance measures of the 20 mRNA genes (Primary set of biomarkers) selected through SVC-L1 for classification of survival categories in 
train and test datasets.

For the primary set of biomarkers

Train Test

Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa MCC

RF 0.67 0.88 0.67 0.67 0.57 0.56 0.66 0.86 0.66 0.65 0.55 0.55

SVM 0.66 0.86 0.66 0.67 0.56 0.55 0.65 0.85 0.65 0.64 0.54 0.53

ET 0.73 0.91 0.73 0.73 0.65 0.64 0.7 0.87 0.7 0.69 0.61 0.61

XGB 0.66 0.86 0.66 0.67 0.55 0.55 0.66 0.84 0.66 0.65 0.55 0.55

KNN 0.6 0.81 0.6 0.61 0.48 0.47 0.57 0.79 0.57 0.58 0.44 0.42

LightGBM 0.68 0.88 0.68 0.68 0.58 0.58 0.67 0.86 0.67 0.66 0.56 0.56

GB 0.58 0.78 0.58 0.58 0.44 0.44 0.58 0.78 0.58 0.57 0.44 0.44

Adaboost 0.59 0.79 0.59 0.61 0.45 0.45 0.66 0.79 0.66 0.67 0.55 0.55

Catboost 0.65 0.89 0.65 0.65 0.54 0.53 0.68 0.90 0.68 0.68 0.58 0.58

Polymerase I Promoter Opening,” ȁPackaging of Telomere Ends,” 
ȁPost-translational Protein Modification,” and ȁMetabolism of 
Proteins” which are biologically relevant to melanoma, with detailed 
results for all seven biomarker sets presented in Supplementary 
Figures S1-S7, where bubble color denotes adjusted p-values and 
bubble size indicates the number of enriched genes.

Discussion

Melanoma is the most lethal and deadliest form of skin cancer 
(Lombard et al., 2019). The prognosis is often poor due to early 
metastasis, which remains the primary cause of death in affected 
individuals (Sun et al., 2019). Therefore, early detection of SKCM 
and effective stratification of risk assessment are crucial for timely 
treatment and the improvement of survival rates. As one of the 
most immunogenic tumors, the role of immune regulation and 
the potential of immunotherapy in SKCM have consistently been 
central to research and clinical discussions (Marzagalli et al., 2019). 
We utilized the TCGA dataset to identify potential prognostic 
biomarkers for SKCM. Through in silico analyses of gene expression 
profiles from TCGA, we aimed to uncover key genes associated 
with patient survival, disease progression, and therapeutic 
response, ultimately enhancing the prognostic accuracy for SKCM
patients.

Our study takes a comprehensive approach, focusing on a 
broad range of genes rather than targeting specific types or 
pathways. This strategy aims to identify distinct sets of biomarkers 
associated with overall survival in SKCM. All available genes 
were analyzed using statistical and machine-learning methods to 
uncover meaningful prognostic biomarkers. Based on the median 
OS time, a cohort of 287 patients with available survival data was 
divided into high- and low-risk groups. In our analysis, genes 
correlated with OS time were first identified. Pearson correlation 

analysis revealed several genes with significant correlations to OS, 
including CREG1 and PCGF5, which showed positive correlations, 
and AC008687.4 and TTYH2, which demonstrated negative 
correlations. Next, the top 50 positively correlated genes were 
selected for further exploration. These genes were enriched 
in various biological processes and pathways, including lipid 
translocation and phospholipid translocation. Reactome pathway 
analysis further revealed their involvement in key pathways 
such as 'Ion Transport By P-type ATPases’ and 'Ion Channel 
Transport.'

Our univariate Cox regression analysis revealed a substantial 
number of genes significantly associated with OS time, with a 
total of 4324 genes found to have p-values below 0.01. Among 
these, 1,264 genes were identified with a hazard ratio (HR > 1), 
indicating potential risk factors, while 3,060 genes were associated 
with HR < 1, suggesting a protective effect on survival. These results 
emphasize the complexity of SKCM’s molecular landscape, where 
multiple genes may promote or inhibit tumor progression and 
patient survival. The gene list was further refined to 17 genes 
with non-zero coefficients by applying LASSO Cox regression. 
The identification of risk and beneficial factors among the 17 
selected genes is another key finding of our study. Four of these 
genes were classified as risk factors, while the remaining 13 genes 
were classified as beneficial factors. This classification not only 
underscores the diverse nature of the molecular drivers of SKCM 
but also offers potential biomarkers for therapeutic targeting. 
For instance, CYTL1 expression was progressively upregulated in 
normal skin, nevi or malignant nevi, and melanoma (Tao et al., 
2023). Similarly, B2M (Beta-2-Microglobulin) is associated with 
worse OS and disease-specific survival (DSS) in SKCM, acting 
as a hazardous factor by contributing to tumor progression and 
immune evasion (Zhang H. et al., 2021). GBP2 was downregulated 
in SKCM and Low GBP2 expression was positively correlated 
with poor prognosis of SKCM (Ji et al., 2021). The Expressions of 
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TABLE 5  Performance measures for a distinct set of biomarkers (from secondary to seventh set) selected through SVC- L1.

For the Secondary sets of biomarkers

Train Test

Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa MCC

RF 0.67 0.87 0.67 0.67 0.56 0.56 0.61 0.86 0.61 0.61 0.49 0.48

SVM 0.70 0.87 0.70 0.69 0.60 0.60 0.61 0.85 0.61 0.59 0.49 0.48

ET 0.75 0.91 0.75 0.76 0.67 0.67 0.67 0.89 0.67 0.66 0.56 0.56

XGB 0.66 0.85 0.66 0.66 0.55 0.54 0.61 0.84 0.61 0.60 0.49 0.48

KNN 0.59 0.82 0.59 0.60 0.47 0.46 0.51 0.78 0.51 0.49 0.36 0.35

LightGBM 0.69 0.88 0.69 0.69 0.59 0.58 0.66 0.85 0.66 0.65 0.55 0.55

GB 0.57 0.78 0.57 0.57 0.42 0.42 0.57 0.79 0.57 0.56 0.43 0.42

MLP 0.69 0.86 0.69 0.68 0.59 0.58 0.64 0.84 0.64 0.62 0.52 0.52

AdaBoost 0.59 0.79 0.59 0.61 0.46 0.45 0.60 0.76 0.60 0.60 0.47 0.47

CatBoost 0.66 0.89 0.66 0.65 0.56 0.55 0.68 0.89 0.68 0.66 0.58 0.58

For the third set of Biomarkers

Train Test

Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa MCC

RF 0.66 0.87 0.66 0.67 0.56 0.55 0.64 0.84 0.64 0.64 0.52 0.52

SVM 0.65 0.85 0.65 0.65 0.54 0.53 0.63 0.84 0.63 0.61 0.51 0.50

ET 0.72 0.91 0.72 0.73 0.62 0.62 0.66 0.87 0.66 0.64 0.55 0.55

XGB 0.61 0.84 0.61 0.60 0.48 0.48 0.61 0.82 0.61 0.62 0.50 0.48

KNN 0.57 0.81 0.57 0.6 0.44 0.42 0.48 0.73 0.48 0.48 0.33 0.30

LightGBM 0.63 0.86 0.63 0.63 0.51 0.51 0.64 0.85 0.64 0.63 0.52 0.52

GB 0.52 0.75 0.52 0.53 0.37 0.36 0.6 0.77 0.6 0.60 0.47 0.47

MLP 0.67 0.83 0.67 0.67 0.57 0.56 0.63 0.8 0.63 0.60 0.51 0.50

AdaBoost 0.54 0.78 0.54 0.58 0.40 0.39 0.58 0.77 0.58 0.63 0.46 0.44

CatBoost 0.66 0.89 0.66 0.67 0.56 0.55 0.66 0.87 0.66 0.68 0.56 0.55

For the fourth set of Biomarkers

Train Test

Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa MCC

RF 0.66 0.86 0.66 0.66 0.55 0.55 0.53 0.82 0.53 0.53 0.38 0.38

SVM 0.66 0.84 0.66 0.66 0.55 0.54 0.60 0.79 0.60 0.60 0.47 0.47

ET 0.68 0.89 0.68 0.69 0.58 0.58 0.58 0.84 0.58 0.57 0.44 0.44

XGB 0.61 0.82 0.61 0.61 0.48 0.48 0.57 0.82 0.57 0.57 0.43 0.42

(Continued on the following page)
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TABLE 5  (Continued) Performance measures for a distinct set of biomarkers (from secondary to seventh set) selected through SVC- L1.

For the Secondary sets of biomarkers

Train Test

KNN 0.50 0.78 0.50 0.55 0.35 0.33 0.49 0.75 0.49 0.46 0.33 0.32

LightGBM 0.61 0.84 0.61 0.61 0.49 0.48 0.56 0.81 0.56 0.55 0.41 0.41

GB 0.54 0.77 0.54 0.54 0.39 0.39 0.52 0.76 0.52 0.51 0.37 0.36

MLP 0.69 0.85 0.69 0.69 0.59 0.58 0.63 0.79 0.63 0.62 0.50 0.50

AdaBoost 0.54 0.75 0.54 0.54 0.39 0.38 0.42 0.71 0.42 0.41 0.23 0.23

CatBoost 0.67 0.88 0.67 0.67 0.56 0.56 0.60 0.85 0.60 0.61 0.48 0.47

For the fifth set of Biomarkers

Train Test

Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa MCC

RF 0.65 0.85 0.65 0.64 0.53 0.53 0.73 0.87 0.73 0.72 0.64 0.64

SVM 0.61 0.83 0.61 0.60 0.48 0.48 0.61 0.82 0.61 0.59 0.49 0.48

ET 0.71 0.90 0.71 0.72 0.62 0.62 0.69 0.89 0.69 0.68 0.59 0.59

XGB 0.61 0.83 0.61 0.60 0.48 0.48 0.61 0.85 0.61 0.62 0.49 0.48

KNN 0.56 0.78 0.56 0.56 0.42 0.42 0.51 0.75 0.51 0.50 0.36 0.35

LightGBM 0.64 0.85 0.64 0.64 0.53 0.52 0.64 0.86 0.64 0.63 0.52 0.52

GB 0.56 0.77 0.56 0.56 0.41 0.41 0.58 0.81 0.58 0.58 0.44 0.44

MLP 0.67 0.84 0.67 0.66 0.56 0.56 0.61 0.77 0.61 0.62 0.49 0.48

AdaBoost 0.66 0.89 0.66 0.64 0.55 0.54 0.73 0.91 0.73 0.72 0.64 0.64

CatBoost 0.65 0.85 0.65 0.64 0.53 0.53 0.73 0.87 0.73 0.72 0.64 0.64

For the sixth set of Biomarkers

Train Test

Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa MCC

RF 0.65 0.86 0.65 0.67 0.54 0.54 0.56 0.81 0.56 0.58 0.41 0.41

SVM 0.58 0.77 0.58 0.59 0.45 0.44 0.49 0.72 0.49 0.50 0.32 0.32

ET 0.69 0.89 0.69 0.70 0.59 0.59 0.65 0.84 0.65 0.66 0.53 0.53

XGB 0.60 0.83 0.60 0.60 0.47 0.47 0.55 0.79 0.55 0.57 0.40 0.39

KNN 0.63 0.85 0.63 0.65 0.52 0.51 0.60 0.81 0.60 0.64 0.47 0.47

LightGBM 0.56 0.80 0.56 0.55 0.41 0.41 0.61 0.79 0.61 0.61 0.49 0.48

GB 0.66 0.84 0.66 0.66 0.55 0.54 0.67 0.80 0.67 0.67 0.56 0.56

MLP 0.63 0.86 0.63 0.63 0.51 0.51 0.55 0.82 0.55 0.54 0.40 0.39

AdaBoost 0.65 0.86 0.65 0.67 0.54 0.54 0.56 0.81 0.56 0.58 0.41 0.41
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TABLE 5  (Continued) Performance measures for a distinct set of biomarkers (from secondary to seventh set) selected through SVC- L1.

For the Secondary sets of biomarkers

Train Test

CatBoost 0.65 0.86 0.65 0.67 0.54 0.54 0.56 0.81 0.56 0.58 0.41 0.41

For the seventh set of Biomarkers

Train Test

Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa MCC

RF 0.64 0.87 0.64 0.64 0.52 0.52 0.63 0.86 0.63 0.62 0.50 0.50

SVM 0.61 0.80 0.61 0.63 0.48 0.47 0.61 0.74 0.61 0.61 0.49 0.48

ET 0.70 0.89 0.70 0.70 0.60 0.59 0.65 0.87 0.65 0.64 0.53 0.53

XGB 0.63 0.85 0.63 0.63 0.50 0.50 0.55 0.83 0.55 0.53 0.40 0.39

KNN 0.56 0.80 0.56 0.56 0.43 0.42 0.47 0.75 0.47 0.45 0.30 0.29

LightGBM 0.66 0.86 0.66 0.66 0.54 0.54 0.59 0.83 0.59 0.59 0.46 0.45

GB 0.57 0.79 0.57 0.57 0.43 0.43 0.60 0.81 0.60 0.62 0.47 0.47

MLP 0.69 0.86 0.69 0.70 0.60 0.59 0.61 0.80 0.61 0.60 0.49 0.48

AdaBoost 0.65 0.89 0.65 0.64 0.54 0.53 0.64 0.89 0.64 0.63 0.52 0.52

CatBoost 0.56 0.80 0.56 0.56 0.43 0.42 0.47 0.75 0.47 0.45 0.30 0.29

TABLE 6  AUC for each class using the best-performing model on all seven sets of biomarkers.

Class Primary Secondary Third Fourth Fifth Sixth Seventh

0 0.99 0.99 0.98 0.90 0.99 0.92 0.95

1 0.83 0.77 0.80 0.80 0.85 0.75 0.82

2 0.93 0.90 0.93 0.88 0.91 0.90 0.93

3 0.84 0.90 0.73 0.82 0.90 0.77 0.85

HLA Class II (HLA-DQB1) genes were Upregulated in Cutaneous 
Melanoma (Chen et al., 2019). KLRC1 expression in SKCM is 
associated with immune cell infiltration, highlighting its role in 
immune surveillance and tumor microenvironment modulation 
(Kamiya et al., 2019). MCOLN2 (TRPML2) has not been extensively 
studied in SKCM. However, its upregulation in other cancers like 
prostate tumors and its association with poor prognosis suggests 
it might play a role in melanoma progression by potentially 
influencing tumor growth, invasion, or immune evasion (Li and 
Zhu, 2023) in three distinct malignancies that contained SKCM, 
SARC, and THCA, SLC2A5 acted as a protective factor (Liu et al., 
2024). WIPF1 upregulated in early melanoma (Zia et al., 2023). 
XCL2 shows high expression in SKCM (Xiong et al., 2020). The 
DGIdb database to predict drug targets and found 17 drugs acting 
on five key genes linked to survival outcomes. While these findings 
suggest potential therapeutic targets, clinical validation is needed to 

confirm their relevance. This exploratory analysis provides a basis 
for future research on the clinical applicability of the identified gene 
signature.The top 20 mRNA genes selected using SVC-L1 achieved 
an AUC of 0.91, indicating that machine-learning techniques can 
be effectively utilized for survival prediction in SKCM. These 
results are consistent with other machine learning-based studies 
in melanoma, which have demonstrated the utility of advanced 
algorithms, such as support vector machines and random forests, 
for identifying prognostic biomarkers (Bhalla et al., 2019). So, 
the primary set of biomarkers associated with skin cutaneous 
melanoma includes TEKT5, ZNF154, H2AC14, BX284668.6, 
MYCNOS, STUM, SERTM2, RPSAP18, REG4, PSCA, PAEP, 
ACTR3C, MSLN, MRPS18AP1, ISLR, IL37, IGLV3.16, H2BC11, 
GPR25, and MTND4P35. PSCA (Prostate Stem Cell Antigen) is 
upregulated in SKCM, as suggested by its positive correlation with 
genes related to RNA modifications, indicating an active role in the 
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FIGURE 9
ROC curve for the best model (CatBoost) comparing true positive rate against false positive rate. Four classes are shown: (a) Class 0 (AUC = 0.99, blue), 
Class 1 (AUC = 0.77, orange), Class 2 (AUC = 0.90, green), and Class 3 (AUC = 0.90, red). (b) Class 0 has an AUC of 0.99, Class 1 is 0.85, Class 2 is 0.91, 
and Class 3 is 0.90. (c) Class 0 has an AUC of 0.99, Class 1 is 0.83, Class 2 is 0.93, and Class 3 is 0.84. The dashed black line represents a random 
classifier.

TABLE 7  Performance on 20 genes selected using SVC-L1.

Combination of RF, ET and LightGBM

Train Test

   Classifier Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa MCC

   Voting 0.69 0.90 0.69 0.70 0.59 0.59 0.67 0.87 0.67 0.66 0.56 0.56

     LR as meta-model and RF, ET as base-models

   Stacking 0.74 0.91 0.74 0.74 0.66 0.65 0.70 0.88 0.70 0.70 0.61 0.61

     Catboost as meta-model and RF, ET, and XGB as base-models

  Stacking 0.69 0.89 0.69 0.71 0.59 0.59 0.64 0.88 0.64 0.64 0.52 0.52
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tumor’s biological processes (Wang et al., 2024). PAEP (Progestogen-
Associated Endometrial Protein) is upregulated and correlates with 
poor survival outcomes in SKCM (Yan et al., 2020). ACTR3C 
mutations, such as p. Gly58Arg or p.Gly58Glu, might alter protein 
function and affect key cellular processes such as cell signaling, 
motility, or adhesion, which are crucial in melanoma progression 
(Srinivasan et al., 2021). MSLN expression is downregulated in 
SKCM (Li et al., 2022). ISLR is also downregulated and negatively 
correlated with Tumor Mutation load (TMB) (Zhang C. et al., 2021). 
STUM is a biomarker for response to treatment with Nivolumab 
(immune checkpoint inhibitors) (Bannon et al., 2024). SERTM2 
gene alterations are frequently observed in melanoma, suggesting a 
potential role in tumor progression and immune evasion. These 
alterations may impact pathways related to melanoma growth, 
metastasis, and immune response modulation (Niu et al., 2024). 
Secondary biomarkers play a vital role in other cancers but are 
not directly related to SKCM (He et al., 2020; Jia et al., 2021; 
Larsson et al., 2022; Severgnini et al., 2022; Bisaccia et al., 2023). 
For the fifth set of biomarkers, we did not find any direct evidence 
of their specific role in SKCM. These genes are newly identified 
in our study and may serve as potential prognostic biomarkers 
(Yang W. et al., 2021; Ding et al., 2022; Fang et al., 2022). For Class 0 
(0–1 year survival), the AUC values were exceptionally high, ranging 
from 0.90 to 0.99, with the primary, secondary, and fifth biomarker 
sets achieving the highest AUC of 0.99. This suggests that these 
sets are highly effective in identifying high-risk patients with the 
shortest survival times, making them valuable for early-stage risk 
assessment and timely clinical intervention. In contrast, for Class 1 
(one to three years survival), the AUC values ranged from 0.75 to 
0.85, with the fifth biomarker set showing the best performance 
(AUC = 0.85). The moderate AUC for this class indicates that 
predicting mid-range survival times remains challenging, and 
further refinement of the biomarkers may be needed to improve 
accuracy in this group.

For Class 2 (three to five years survival), the AUC values 
were consistently high across all sets, ranging from 0.88 to 0.93, 
with the primary, third, and seventh sets achieving the highest 
AUC of 0.93. This highlights the robustness of these biomarker 
sets in predicting intermediate survival, making them useful 
for more accurate prognostic stratification. However, for Class 
3 (>5 years survival), the AUC values showed more variation, 
ranging from 0.73 to 0.90, with the secondary and fifth sets 
performing the best (AUC = 0.90). The lower performance for 
some sets in this class suggests that further refinement is needed 
to capture the specific molecular features associated with long-term 
survival.Overall, the primary and fifth biomarker sets showed better 
performance compared to the others and were particularly effective 
in predicting high-risk patients. The robustness of the selected 
biomarkers was further validated using the GSE65904 dataset, where 
CatBoost consistently demonstrated strong predictive performance 
on both the 15-gene and 12-gene sets. Notably, all survival classes 
showed significant AUCs, with Class 2 and Class 3 achieving 
particularly high values, highlighting the model’s ability to predict 
long-term survival outcomes. CatBoost’s superior performance 
is likely due to its capability to handle high-dimensional gene 
expression data, capture complex nonlinear interactions between 
genes, and reduce overfitting, making it a robust tool for prognostic 
modeling in cancer.

A key limitation of this study is its reliance on computational 
analysis of publicly available datasets, without experimental 
validation. Although the results are promising, they should be 
viewed as preliminary. Confirming the biological relevance of 
the identified biomarkers will require further validation in wet-
lab settings, such as gene expression profiling in independent 
patient samples.

Conclusion

This study identified seven distinct biomarker sets and 
developed a robust prognostic model for predicting overall survival 
in skin cutaneous melanoma (SKCM). Using machine learning 
techniques, the most relevant biomarkers associated with patient 
prognosis were selected. The model effectively classified patients 
into different survival categories based on OS time, supporting 
its potential use in clinical prognosis prediction. These findings 
demonstrate the value of multiple biomarker sets in understanding 
the prognostic landscape of SKCM. However, further validation 
and clinical studies are required to confirm their applicability in 
real-world settings.
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