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Introduction: The majority of available transcriptomics-related cancer
prognosis studies strive to define one collection of biomarkers that can be
used to predict high-risk patients. However, using a single biomarker profile
could restrict its strength and applicability to diverse groups of patients. In
order to fill this gap, we discuss the prospect of determining several, discrete
sets of prognostic biomarkers in Skin Cutaneous Melanoma (SKCM). Our
search identifies various genes including CREG1, PCGF5 and VPS13C whose
expression pattern depicts significant correlations with overall survival (OS) in
SKCM patients.

Methods: We developed machine learning-based prognostic models using
SKCM gene expression data to predict 1-, 3-, and 5-year overall survival.
Advanced feature selection approaches were applied to identify prognostic
biomarkers. The primary biomarker set consisted of 20 genes selected using
state-of-the-art feature selection techniques. Machine learning classifiers were
trained to distinguish high-risk from low-risk patients using these biomarkers.
The process was systematically repeated to identify seven independent
biomarker sets, each containing 20 unique genes without overlap. Model
performance was evaluated using AUC and Cohen's Kappa metrics on an
independent test dataset. Validation was further performed using the GEO
dataset GSE65904, employing subsets of biomarkers from the primary and
third sets.

Results: The primary biomarker-based prognostic model demonstrated strong
predictive ability, achieving an AUC of 0.90 and a Kappa of 0.58 in identifying
high-risk SKCM patients. A second independent 20-gene set, with no overlap
with the first, produced an AUC of 0.89 and Kappa of 0.56. Across all seven
biomarker sets, performance ranged from 0.84 to 0.91 (AUC) and 0.48 to 0.64
(Kappa). Notably, the fifth biomarker set yielded the highest performance with
an AUC of 0.91 and Kappa of 0.64. External validation confirmed the predictive
utility of selected biomarkers where genes from the primary set achieved an AUC
of 0.83 on GSE65904. While genes from the third set achieved an AUC of 0.86
on the same dataset.

Discussion: Our results show that only one gene-expression signature is
not sufficient to predict SKCM prognosis. Alternatively, high-risk patients can
be accurately predicted using multiple independent biomarker sets providing
flexibility in both clinical and computational practices. The high similarity in the
results of all seven sets (AUC 0.84-0.91; Kappa 0.48-0.64) signifies the stability
and strength of the method. The external validation of these biomarkers with
GEO data also helps to confirm the reliability of these biomarkers and hints at
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their potential wider applicability. This work facilitates transparency by ensuring
that all the data and code is publicly accessible (https://github.com/raghavagps/
skecm_prognostic_biomarker), which also promotes future developments in
creating multi-signature prognostic tools in melanoma.
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prognostic biomarker

Introduction

Skin Cutaneous Melanoma accounts for around 3%-5% of
all malignancies and is a very aggressive tumor that arises from
melanocyte cells and primarily affects the skin. However, it can also
occur in mucous membranes and internal organs (Wang et al., 2022;
Sinagra and Sciume, 2020). The third most frequent type of skin
cancer, skin cutaneous melanoma, affects 6.8%-20% of cases (Wang
and Liu, 2021). According to projections, there will be 2,001,140 new
cases of cancer and 611,720 cancer-related fatalities in the US in
2024. Additionally, there will likely be over 8,000 deaths and 100,640
new cases of SKCM (Siegel et al., 2024). Globally, the incidence
of melanoma continues to rise, driven primarily by environmental
factors, particularly excessive ultraviolet (UV) radiation exposure,
which plays a central role in melanoma carcinogenesis (Tracey and
Vij, 2019). Human skin color is primarily determined by the amount
of melanin, with darker skin containing larger melanocytes that
produce more melanin, offering protection against UV radiation
(Kaidbey et al., 1979; Aoude et al., 2014).

SKCM can originate from benign melanocytic nevi, including
dysplastic, acquired, or congenital forms, or may develop
independently. In recent years, both its prevalence and mortality
rates have risen significantly. Surgical excision remains the most
effective treatment, highlighting the importance of early diagnosis
and intervention (Merighi et al., 2009; Kardynal and Olszewska,
2014; Christodoulou et al., 2021; Seitz et al., 2021). Advances in
genomic analysis and high-throughput technologies have provided
deeper insights into melanoma biology, improving detection
and treatment strategies (Scatena et al, 2021). The malignant
transformation of melanocytes is driven by genetic alterations,
particularly in the BRAF and NRAS genes (Guan et al., 2015) shown
in Figure 1. These mutations are central to melanoma development
and progression, influencing tumor behavior and patient response
to therapies (Garman et al,, 2017). Despite significant progress
in uncovering the genetic underpinnings of melanoma, late-stage
diagnosis remains a major obstacle, limiting the effectiveness of
treatments such as surgery, immunotherapy, and targeted therapies
(He and Wang, 2023).

Recent studies have focused on identifying invasion-related
biomarkers for individualized treatment and prognosis prediction
in SKCM. One such study analyzed 124 invasion-associated

Abbreviations: SKCM, Skin Cutaneous Melanoma; OS, Overall survival;
IAGS, Invasion-associated genes; TCGA The Cancer Genome Atlas;
FRG,Ferroptosis-related gene; DGldb, Drug Gene Interaction Database;
ML, Machine Learning; AUROC, Area Under the Receiver Operating
Characteristic.
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genes (IAGS) and selected 20 prognostic genes to develop a gene
expression-based model (Yang et al, 2023). Similarly, another
study used transcriptome data from TCGA to find a predictive
signature based on m6A-related IncRNAs (Lin et al, 2024).
Another study developed a 10 ferroptosis-related gene (FRG)
signature for predicting overall survival in SKCM (Ping et al.,
2022). Additionally, eight immune-related IncRNA signatures
were identified as a prognostic model for melanoma and
validated using Kaplan-Meier analysis (Xiao et al, 2021). In
recent studies, a prognostic signature comprising seven NLR-
related genes was identified using LASSO-Cox analysis. This
signature effectively stratified SKCM patients into high and low-
risk groups, demonstrating a strong correlation with overall
survival outcomes. Additionally, it revealed distinct immune
microenvironment patterns characterized by the activation of
inflammatory and interferon pathways and showed potential for
predicting responses to immune checkpoint blockade therapy
(Geng et al, 2023). A chemokine-related 14-gene prognostic
model was developed, revealing distinct immune characteristics
and stratification between low- and high-risk groups. This model
demonstrates potential in predicting immunotherapy outcomes
and chemotherapy efficacy and aiding clinical decision-making
for SKCM patients (Ding et al, 2023). While these studies
provide valuable insights, they typically focus on a limited
set of biomarkers within a specific context, as shown in the
Supplementary Table S1.

Previous studies have mostly focused on pathway-related
biomarkers. To the best of our knowledge, these methods typically
identify only a single set of biomarkers. Moreover, they usually select
prognostic biomarkers from a limited subset of data, such as genes
related to invasion, immune response, or IncRNAs. In this study, we
take a novel approach by attempting to generate biomarker sets from
all available genes rather than focusing on just a subset. Additionally,
we select a secondary set from the remaining genes after identifying
an initial set of biomarkers. This process is repeated, leading to the
identification of seven distinct sets of prognostic biomarkers. The
pipeline of the study is shown in Figure 2.

Methodology
Data collection

Transcriptomic profiling and clinical data were retrieved
from The Cancer Genome Atlas (TCGA), a major cancer

research database (Yan et al, 2022) using the TCGAbiolinks
package from BiocManager in R. The retrieved expression data,
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Diagram illustrating the progression of melanoma. UV radiation exposure leads to genetic alterations in melanocytes, causing an increase in genetic
abnormalities. Melanocytes transform into nevi and then into melanoma. This melanoma spreads from the primary tumor site to distant organs via
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Flowchart depicting an analytical process using TCGA-SKCM clinical information with 287 samples and 23,010 features. It divides data into training
(80%) and testing (20%) datasets, undergoes correlation and gene enrichment analysis. Feature selection uses methods like RFE, SVC-L1, SelectKBest,
and SFS. Machine learning models applied include CatBoost, RF, ET, and XGB. CatBoost model achieves the best classification with an AUC of 0.91.
Survival analysis, univariate and Lasso analysis follow with a lambda of 0.03. Seven sets of twenty prognostic biomarkers are identified.

Univariate & Lasso
Analysis (A=0.03)

which included 473 samples and 60,660 genes, was normalized to
Transcripts Per Kilobase Million (TPM) values before downstream
analysis using R script. The new dataset GSE65904, comprising 214
samples, was used to confirm the prognostic value of the selected
biomarker sets.

Preprocessing of data

We first removed duplicate features and filtered out genes
with more than 50% zero expression values. Using the caret
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package in R, low-variance features were removed to retain only
informative genes, leaving 23,009 genes for further analysis.
The gene expression data were then merged with clinical data
to identify a cohort of 287 patients with available survival
information. For the GEO dataset with available Disease-Specific
Survival (DSS) times, 210 samples were selected. Among the seven
predefined biomarker sets, 15 genes overlapped with the primary
set, 10 with the second set, and 12 with the third set. For each
overlapping subset, predictive models were trained and validated
using the same cross-validation and hyperparameter tuning
strategy.
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Z-score scaling

In order to ensure that each feature has a mean of 0 and a
standard deviation of 1, this transformation standardizes the data
by subtracting the mean of each feature and dividing it by its
standard deviation. By standardizing the data size, this technique
makes it possible to compare features more accurately (Tihagam and
Bhatnagar, 2023).

Statistical methods

Correlation analysis

The associations between gene expression and OS time
were evaluated using Pearson correlation analysis in Base R.
False Discovery Rate (FDR) correction was applied using the
Benjamini-Hochberg method to account for multiple hypothesis
testing. Genes with a p-value and FDR <0.05 were considered
significant, providing insights into their potential impact on SKCM
patient survival (Ma and Xie, 2024). Positively correlated genes
were further analyzed using Gene Ontology (GO) (Wang and
Yang, 2022) and Reactome pathway analysis (Fabregat et al,
2017) to identify enriched biological processes and pathways
relevant to melanoma progression, utilizing the gseapy package
in Python.

Survival analysis

Patients were divided into high- and low-risk groups based on
the median overall survival (OS) time. Univariate Cox regression
analysis was conducted using the Cox proportional hazards model
(Yang R.-H. et al,, 2021). Significant genes were selected based
on p-values <0.05 using the survival package in R. Subsequently,
LASSO regression analysis (Huang et al., 2022) was performed
using the glmnet package in R to identify prognostic genes,
with an optimal lambda value of 0.03. Depending on the
formula:

n
Risk score = z genei * expression(genei)
1

Identified prognostic genes were then analyzed using the Drug
Gene Interaction Database (DGIdb) (Cannon et al., 2024) to
predict potential therapeutic agents based on known drug-gene
interactions.

Al-based methods

We employed various feature selection techniques to identify
relevant genes for the prognostic model. Overall survival time was
categorized into four classes: Class 0 (0-1 year), Class 1 (one to three
years), Class 2 (three to five years), and Class 3 (>5 years).

Feature selection techniques

To identify the most relevant features for the prognostic
model, we applied several established feature selection methods,
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Venn Diagram of Selected Features

17 3 17
SVC-L1 RFE IAGS
FIGURE 3

Venn diagram showing selected features from SVC-L1, RFE, and IAGS.
SVC-L1 has 17 unique features, RFE has 17 unique features, and IAGS
has 20 unique features. Three features overlap between

SVC-L1 and RFE.

including Linear Support Vector Classification with L1 penalty
(SVC-L1), Recursive Feature Elimination (RFE), Sequential Feature
Selection (SFS), and SelectKBest. These methods have been
successfully employed in similar studies (Ma and Huang, 2008;
Kamkar et al., 2016; Jiang et al., 2023).

Identification of the primary set of
biomarkers

We utilized a variety of feature selection techniques, starting
with the Recursive Feature Elimination algorithm (Darst et al.,
2018), which recursively ranks features based on their relevance
and selects the optimal subset. In the second method, SelectKBest,
we applied the f classif evaluation function to identify the K
most relevant features. We also used Linear Support Vector
Classification with L1 regularization, which selects features
by penalizing less important ones, achieving sparsity, and
improving model performance (Bhalla et al., 2019). Specifically,
we obtained the absolute values of SVC-L1 coeflicients and used
the mean coefficient value as a threshold to select features with
importance scores above the mean. Sequential Feature Selection
was employed to add or remove features to optimize performance
sequentially. These techniques helped identify a robust initial
biomarker set for further analysis using the Scikit-learn package
(Pedregosa et al., 2011).

Identification of additional biomarker sets

For the secondary biomarker set, features identified in the
primary set were excluded before applying the SVC-L1 method
to ensure the independence of the sets. In the case of the
third biomarker set, invasion-associated genes, along with features
previously identified through RFE and SVC-L1 in earlier analyses,
were systematically removed prior to the selection process. This
process is visualized in Figures 3, 4, where the Venn diagram
highlights the common and distinct features across the biomarker
sets and invasion-associated genes. This approach facilitated the
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Venn Diagram of Selected Features

SVC-L1
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FIGURE 4
Venn diagram illustrating the overlap of selected features among three

methods: SVC-L1, RFE, and IAGS. SVC-L1 contains 18 unique features,
RFE contains 18 unique features, and IAGS has 20 unique features. The
overlap between SVC-L1 and RFE has 2 features in common.

identification of non-overlapping and distinct biomarker sets for
further analysis.

ML models

Class imbalance was addressed using the Synthetic Minority
Over-sampling Technique (SMOTE), which was applied due to
the severity of class imbalance in the dataset. The original class
distribution was: Class 0 (0-1 year): 29 patients, Class 1 (one
to three years): 110 patients, Class 2 (three to five years): 50
patients, and Class 3 (>5 years): 98 patients. After applying SMOTE,
each class was balanced to 110 patients, resulting in a total of
440 samples.

To evaluate model robustness and prevent overfitting, stratified
five-fold cross-validation was performed with an 80:20 train-
test split, where one sample from every five-sample block
was held out as an independent test set, and the remaining
samples used for training; this process was repeated to ensure
every sample served as a test case. This split yielded 352
samples in the training set and 88 samples in the test set,
with each class represented by approximately 22 patients in
the test set.

Multiple machine learning algorithms including Multi-Layer
Perceptron (MLP), Decision Tree (DT), Extreme Gradient Boosting
(XGB), Support Vector Machine (SVM), Extra Trees Classifier (ET),
Random Forest (RF), k-Nearest Neighbors (KNN), Light Gradient
Boosting Machine (LightGBM), Categorical Boosting (CatBoost),
Adaptive Boosting (AdaBoost), and Logistic Regression (LR) were
trained and compared on different feature sets to identify robust
prognostic biomarkers. Hyperparameters for each model were
optimized using grid search within a 5-fold cross-validation on
the training set to prevent overfitting. Among the models tested,
CatBoost achieved the best performance. The hyperparameters for
CatBoost were set as (iterations = 800, depth = 12, learning_rate
= 0.2, random_state = 42, cat_features = [], and verbose = 1). This
model was then applied to the selected feature sets, and performance
was evaluated on the independent test set using accuracy, AUC, and
other relevant metrics.
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Ensemble models

We used a voting classifier by utilizing multiple base classifiers,
i.e, RE ET, and LightGBM, to make individual predictions. We used
hard voting, where the majority of the votes from the classifiers
determined the final class prediction. This method helps aggregate
the strengths of different models to achieve better generalization.
We also applied a stacking classifier and trained several different
base models, including ET and RE The predictions of these base
models were used as inputs to LR as a meta-model, which was
trained to combine the base model outputs and make the final
prediction. We tried catBoost as a meta-model and RE, ET, and XGB
as base models. This two-level architecture leverages the strengths
of multiple models by allowing the meta-model to learn how to best
combine their predictions.

Results
Correlation analysis

Our univariate Cox regression analysis identified 4,324 genes
significantly associated with overall survival time. After applying
FDR correction using the Benjamini-Hochberg method, 2,667
genes remained statistically significant confirming that our findings
are robust. We selected the top genes with the most significant
positive and negative correlations, as shown in Table 1. Specifically,
the genes CREGI and PCGF5 exhibited positive correlations with
OS with correlation coefficients of 0.40 and 0.38, respectively.
Conversely, the genes AC008687.4 and TTYH2 showed negative
correlations with OS, with coefficients of -0.23 and -0.23,

TABLE 1 List of top genes with strongest positive and negative
correlation with overall survival time, including correlation coefficients,
p-values and FDR value.

Gene Coef p-value FDR Type of
correlation
CREG1 0.40 3.63E-12 | 8.35E-08
PCGF5 0.38 447E-11 | 5.14E-07
VPS13C 0.36 2.06E-10 = 1.58E-06
Positive
CPD 0.35 1.17E-09 | 6.73E-06
BBX 0.35 1.64E-09 | 7.56E-06
LRRK2 0.34 2.36E-09 | 8.02E-06
AC008687.4 -0.23 8.28E-05 = 0.00348
TTYH2 -0.23 0.00010 | 0.00403
G6PC3 -0.21 0.00025 | 0.00683
Negative
BOK -0.21 0.00033 | 0.00818
GSTP1 -0.21 0.00043 | 0.00958
NUDTS -0.20 0.00049 | 0.01037
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FIGURE 5
Heatmap displaying correlation values between various gene expressions, ranging from —0.4 to 1. Red indicates positive correlation; blue indicates
negative correlation. Dendrograms on top and left organize the genes based on similarity.

respectively. A positive correlation suggests that higher expression
levels of these genes are associated with longer survival, whereas a
negative correlation indicates that higher expression levels are linked
to poorer survival outcomes. The Pearson correlation coefficient (r)
was used to quantify these associations.

We selected the top genes positively and negatively correlated
with overall survival and visualized the relationships among these
genes using a heatmap. The heatmap displays pairwise Pearson
correlation coefficients between gene expression levels across all
samples. Strong positive correlations (red) indicate genes with
similar expression patterns, whereas strong negative correlations
(blue) indicate genes with opposite expression patterns. Numbers in
each cell represent the correlation coefficient (r). This visualization
allows identification of clusters of co-expressed genes that may
be involved in related biological pathways influencing patient
prognosis shown in Figure 5. Afterward, we selected 50 positively
correlated genes with high expression levels for enrichment
analysis. Significant Gene Ontology (GO) terms included 590
biological processes (BP), 79 cellular components (CC), and no
molecular functions (MF). Notable BP enrichments included
lipid translocation’ (p = 0.00002) and 'phospholipid translocation’
(p =0.00006), while CC analysis highlighted 'mitochondrial
outer membrane’ (p =0.0002) and 'organelle outer membrane’
(p =0.0004) are shown in Figure 6. Molecular function analysis
revealed significant enrichment in ‘cysteine-type endopeptidase
inhibitor activity’ (p = 0.001) and ‘protein serine/threonine kinase
activity’ (p = 0.001). Additionally, 246 Reactome pathways were
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identified, with significant enrichment in pathways such as 'Ton
Transport By P-type ATPases’ (p = 0.0003) and 'Ton Channel
Transport’ (p = 0.0009). The top 5 GO (BP) terms and Reactome
pathways are shown in Figure 7.

Survival analysis

Univariate Cox regression analysis was performed to evaluate
the association between gene expression and overall survival.
Patients were divided into two groups based on the median OS time,
categorizing them into low-risk (G1) and high-risk (G2) groups
for each gene. A total of 4,324 genes were identified as statistically
significant (p-value <0.01). Among these, 1,264 genes had a hazard
ratio (HR) greater than 1, indicating a potential risk, while 3,060
genes had an HR less than 1, suggesting a protective effect. The top
genes with HR values are highlighted in Figure 8, while a detailed
summary of these findings is presented in Table 2.

Subsequently, LASSO Cox regression analysis was performed
to identify the most predictive genes for survival outcomes. Using
cross-validation, the optimal lambda value was determined to be
0.03, which minimized the cross-validation error. This analysis
retained 17 genes (ATP11A, B2M, BISPR, CIB2, CYTL2, GBP1P1,
GBP2, GCA, HEXD, HLA.DQBI, KLRC1, LRRK2.DT, MCOLN?2,
SLC2A5, TTYH2, WIPF1, XCL2) with non-zero coeflicients,
indicating their significant contribution to OS prediction. Among
these, four genes were identified as risk factors, and 13 genes
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Dot plot illustrating gene ontology (GO) terms against the gene ratio, with adjusted p-values indicated by color. Larger dots represent terms with higher
gene ratios. The gradient legend on the right ranges from blue to red, signifying p-values from 0.01692 to 0.08709.
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FIGURE 7
Dot plot illustrating gene ontology (GO) terms against the gene ratio,

with adjusted p-values indicated by color. Larger dots represent terms
with higher gene ratios. The gradient legend on the right ranges from
blue to red, signifying p-values from 0.0776 to 0.2847.

were identified as beneficial factors shown in Table 3. Additionally
we identified 17 drugs targeting five of the selected genes, most
of which act as inhibitors. Detailed information is provided
in Supplementary Table S9.

Machine learning models

To mine important genomic and epigenomic features,
we used well-established feature selection methods like SVC-
L1 (Guyon et al, 2002), SelecKBest (Pedregosa et al, 2011),
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RFE (Panda and Priyadarshi, 2022) and SFS (Esener et al,
2015). Subsequently, prediction models have been developed
implementing several machine learning techniques like ExtraTrees
(Geurts et al., 2006; Geeitha et al., 2024).

Various feature selection methods, including RFE, SFS,
and SelectKBest with sets of 10, 20, 50, and 100 genes, were
applied to identify different biomarker sets. Each set was
evaluated for predictive performance, and the SVC-L1-selected
features consistently showed the best performance. This set
was therefore used for downstream analyses as detailed in
the Supplementary Tables S2-8. The selected biomarkers were
then used to train and evaluate multiple machine-learning
models. Performance was assessed using metrics such as
accuracy, area under the curve (AUC), specificity, sensitivity, and
Matthew’s correlation coefficient (MCC). Among the models, the
CatBoost algorithm emerged as the best-performing approach.
It achieved an AUC of 0.90 and an MCC of 0.58 on 20 features
selected by SVC-L1 based on feature importance, as shown in
Table 4.

For the secondary biomarker set, the CatBoost model achieved
an AUC of 0.89, as detailed in Table 5. Similarly, for the third
biomarker set, CatBoost demonstrated an AUC of 0.87. Consistent
performance was observed across the fourth (AUC: 0.85), sixth
(AUC: 0.84), and seventh (AUC: 0.89) biomarker sets. Notably, the
highest performance was achieved with the fifth biomarker set,
where CatBoost attained an AUC of 0.91 and an MCC of 0.64,
underscoring its superior predictive capability with this selection of
biomarkers.

The classification performance of the CatBoost model was
initially evaluated on the primary set, where it achieved outstanding
results with AUC values of 0.99 for Class 0, 0.83 for Class 1,
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FIGURE 8
Forest plot displaying hazard ratios and 95% confidence intervals for various genes, each labeled with p-values. Red dots represent hazard ratios, with
blue lines indicating confidence intervals. The x-axis presents hazard ratios ranging from 0.0 to 3.0.

TABLE 2 Hazard ratio (HR)-based genes associated with overall survival time.

Cl_high Concor-dance Log-rank p-value
EAF2 144 143 -0.996 0.37 1.24E-08 0.26 0.52 0.62 8.83E-09
TRIM22 144 143 ~0.983 037 5.64E-08 0.26 0.53 0.61 3.12E-08
TRBV30 144 143 -0.978 0.38 3.34E-08 027 0.53 0.62 1.72E-08
GPR171 144 143 ~0.970 0.38 3.61E-08 027 0.54 0.62 2.03E-08
SAMD3 144 143 ~0.942 0.39 9.47E-08 0.28 0.55 0.61 5.69E-08
0OCA2 144 143 0.830 229 2.00E-06 1.63 323 0.60 1.72E-06
GSTP1 144 143 0.806 2.24 3.66E-06 1.59 3.15 0.60 3.63E-06
cs 144 143 0.760 2.14 1.79E-05 1.51 3.03 0.60 1.04E-05
PMPCA 144 143 0.750 2.12 1.44E-05 1.51 2.97 0.59 1.28E-05
FOXM1 144 143 0.702 2.02 5.84E-05 143 2.84 0.59 4.78E-05

0.93 for Class 2, and 0.84 for Class 3. Subsequently, the model
was tested on the additional set for seven distinct biomarker sets,
with AUC values reported for each class. For the secondary set
of biomarkers, the model achieved AUC values of 0.99 for Class
0, 0.77 for Class 1, 0.90 for Class 2, and 0.90 for Class 3. In the
third set of biomarkers, the AUC values were 0.98 for Class 0, 0.80
for Class 1, 0.93 for Class 2, and 0.73 for Class 3. The fourth set
of biomarkers recorded AUC values of 0.80, 0.85, 0.90, and 0.87
for Classes 0, 1, 2, and 3, respectively. Similarly, the fifth set of
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biomarkers showed strong performance with AUC values of 0.99
for Class 0, 0.85 for Class 1, 0.91 for Class 2, and 0.90 for Class 3.
The sixth set of biomarkers achieved AUC values of 0.92 for Class
0, 0.75 for Class 1, 0.90 for Class 2, and 0.77 for Class 3. Finally,
the seventh set of biomarkers demonstrated AUC values of 0.95
for Class 0, 0.82 for Class 1, 0.93 for Class 2, and 0.85 for Class
3. These results, shown in Table 6, and the corresponding AUC
curve presented in Figure 9, highlight the robust performance of the
CatBoost model across multiple biomarkers sets, with variations in
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TABLE 3 This table contains 17 prognosis-related genes in skin
cutaneous melanoma.

ATPI1A 0.035
B2M —-0.037
BISPR -0.028
CIB2 0.005
CYTL1 0.082
GBP1P1 -0.020
GBP2 -0.015
GCA -0.016
HEXD —-0.042
HLA.DQBI1 -0.033
KLRC1 —-0.028
LRRK2.DT —-0.036
MCOLN2 -0.018
SLC2A5 -0.001
TTYH2 0.049
WIPF1 -0.020
XCL2 -0.005

AUC values reflecting differences in the predictive potential of the
biomarker sets.

The AUC values in Table 6 illustrate the predictive performance
of the best-performing model across seven biomarker sets for
survival classes (0-1 year, 1-3 years, 3-5 years, and >5 years). For
Class 0 (0-1 year survival), the AUC values are consistently high,
ranging from 0.90 to 0.99, with the primary, secondary, and fifth
biomarker sets achieving the highest AUC (0.99). This indicates
exceptional accuracy in identifying patients with the shortest
survival times, highlighting these biomarker sets as highly effective
for predicting high-risk patients who may require immediate clinical
intervention. For Class 1 (one to three years survival), the AUC
values are moderate, ranging from 0.75 to 0.85, with the fifth
biomarker set demonstrating the highest predictive accuracy (0.85)
and the sixth set performing the least effectively (0.75). These results
suggest moderate success in predicting mid-range survival groups,
indicating room for improvement in this category.

For Class 2 (three to five years survival), the AUC values are
consistently high across all biomarkers sets, ranging from 0.88
to 0.93, with the primary, third, and seventh sets achieving the
highest AUC (0.93). This consistency demonstrates the robustness
of these sets in predicting intermediate survival times, making them
promise for accurate prognostic stratification in this group. For
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Class 3 (>5 years survival), the AUC values show more variation,
ranging from 0.73 to 0.90. The secondary and fifth biomarker sets
achieve the highest performance (0.90), while the third set shows the
lowest (0.73), indicating that while some sets are effective for long-
term survival prediction, others may lack the necessary features to
differentiate this class accurately.

Overall, the primary biomarker set stands out for its exceptional
performance across all classes, particularly for Class 0 and Class 2
(AUC = 0.99 and 0.93, respectively), making it the most reliable
set for survival prediction. The fifth biomarker set demonstrates
high performance, particularly for Classes 0 and 3 (AUC = 0.99
and 0.90), showing its potential for identifying high-risk and
long-term survivors. The results reveal that the highest predictive
accuracy is observed for Class 0, suggesting the model excels in
identifying high-risk patients. Moderate performance for Class 1
indicates challenges in predicting mid-range survival groups, while
high accuracy for Class 2 and variable performance for Class
3 highlights the model’s strengths. These findings emphasize the
potential of these biomarker sets in predicting survival outcomes
in SKCM patients, with the primary and fifth sets showing the best
performance.

Ensemble models

The Voting and Stacking classifiers were applied to the 20
prognostic genes from the primary set. The Voting classifier
combined RE, ET, and LightGBM, achieved an AUC of 0.87 and an
MCC of 0.56. The Stacking classifier was evaluated using Logistic
Regression as the meta-model with RF and ET as base models and
CatBoost as the meta-model with RF, ET, and XGB as base models.
These stacking models achieved AUC values of 0.88, with MCC
scores of 0.61. The results are summarized in Table 7.

The best existing method, which focused on IAGS, achieved
an AUC of 0.88. In our study, four out of seven biomarker sets
performed even better, with AUC values higher than 0.88. This
demonstrates that our approach is more effective in identifying
prognostic biomarkers with higher accuracy.

Validation on a new dataset

The best-performing model in our study, CatBoost was
used to evaluate the prognostic potential of the selected
biomarkers. Using the primary biomarker set, which included
15 matched genes, the model achieved an AUC of 0.85 on
the training set and 0.83 on the test set, indicating strong
predictive performance. Class-wise AUCs for this model were:
Class 0 (AUC = 0.76), Class 1 (AUC = 0.77), Class 2 (AUC
= 0.93), and Class 3 (AUC = 0.85). Similarly, using the third
biomarker set with 12 overlapping genes, the model achieved
an AUC of 0.85 on training and 0.86 on testing. Class-wise
AUCs for this set were: Class 0 (AUC = 0.79), Class 1 (AUC
= 0.78), Class 2 (AUC = 0.90), and Class 3 (AUC = 0.97),
further highlighting the robustness and reliability of the selected
biomarkers. To provide biological context for our biomarker
gene sets, we conducted Reactome pathway enrichment analysis,
identifying significantly enriched pathways—including ACRNA
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TABLE 4 Performance measures of the 20 mRNA genes (Primary set of biomarkers) selected through SVC-L1 for classification of survival categories in

train and test datasets.

For the primary set of biomarkers

Train Test

Models AUC Sens Spec Kappa MCC Acc | AUC Sens Spec Kappa MCC
RF 0.67 0.88 0.67 0.67 0.57 0.56 0.66 0.86 0.66 0.65 0.55 0.55
SVM 0.66 0.86 0.66 0.67 0.56 0.55 0.65 0.85 0.65 0.64 0.54 0.53
ET 0.73 091 0.73 0.73 0.65 0.64 0.7 0.87 0.7 0.69 0.61 0.61
XGB 0.66 0.86 0.66 0.67 0.55 0.55 0.66 0.84 0.66 0.65 0.55 0.55
KNN 0.6 0.81 0.6 0.61 0.48 0.47 0.57 0.79 0.57 0.58 0.44 0.42
LightGBM 0.68 0.88 0.68 0.68 0.58 0.58 0.67 0.86 0.67 0.66 0.56 0.56
GB 0.58 0.78 0.58 0.58 0.44 0.44 0.58 0.78 0.58 0.57 0.44 0.44
Adaboost 0.59 0.79 0.59 0.61 0.45 0.45 0.66 0.79 0.66 0.67 0.55 0.55
Catboost 0.65 0.89 0.65 0.65 0.54 0.53 0.68 0.90 0.68 0.68 0.58 0.58

Polymerase I Promoter Opening,” dPackaging of Telomere Ends,’
aPost-translational Protein Modification,” and a@Metabolism of
Proteins” which are biologically relevant to melanoma, with detailed
results for all seven biomarker sets presented in Supplementary
Figures S1-S7, where bubble color denotes adjusted p-values and
bubble size indicates the number of enriched genes.

Discussion

Melanoma is the most lethal and deadliest form of skin cancer
(Lombard et al., 2019). The prognosis is often poor due to early
metastasis, which remains the primary cause of death in affected
individuals (Sun et al., 2019). Therefore, early detection of SKCM
and effective stratification of risk assessment are crucial for timely
treatment and the improvement of survival rates. As one of the
most immunogenic tumors, the role of immune regulation and
the potential of immunotherapy in SKCM have consistently been
central to research and clinical discussions (Marzagalli et al., 2019).
We utilized the TCGA dataset to identify potential prognostic
biomarkers for SKCM. Through in silico analyses of gene expression
profiles from TCGA, we aimed to uncover key genes associated
with patient survival, disease progression, and therapeutic
response, ultimately enhancing the prognostic accuracy for SKCM
patients.

Our study takes a comprehensive approach, focusing on a
broad range of genes rather than targeting specific types or
pathways. This strategy aims to identify distinct sets of biomarkers
associated with overall survival in SKCM. All available genes
were analyzed using statistical and machine-learning methods to
uncover meaningful prognostic biomarkers. Based on the median
OS time, a cohort of 287 patients with available survival data was
divided into high- and low-risk groups. In our analysis, genes
correlated with OS time were first identified. Pearson correlation
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analysis revealed several genes with significant correlations to OS,
including CREG1 and PCGF5, which showed positive correlations,
and ACO008687.4 and TTYH2, which demonstrated negative
correlations. Next, the top 50 positively correlated genes were
selected for further exploration. These genes were enriched
in various biological processes and pathways, including lipid
translocation and phospholipid translocation. Reactome pathway
analysis further revealed their involvement in key pathways
such as Ton Transport By P-type ATPases and 'Ton Channel
Transport.'

Our univariate Cox regression analysis revealed a substantial
number of genes significantly associated with OS time, with a
total of 4324 genes found to have p-values below 0.01. Among
these, 1,264 genes were identified with a hazard ratio (HR > 1),
indicating potential risk factors, while 3,060 genes were associated
with HR < 1, suggesting a protective effect on survival. These results
emphasize the complexity of SKCM’s molecular landscape, where
multiple genes may promote or inhibit tumor progression and
patient survival. The gene list was further refined to 17 genes
with non-zero coefficients by applying LASSO Cox regression.
The identification of risk and beneficial factors among the 17
selected genes is another key finding of our study. Four of these
genes were classified as risk factors, while the remaining 13 genes
were classified as beneficial factors. This classification not only
underscores the diverse nature of the molecular drivers of SKCM
but also offers potential biomarkers for therapeutic targeting.
For instance, CYTLI expression was progressively upregulated in
normal skin, nevi or malignant nevi, and melanoma (Tao et al,,
2023). Similarly, B2M (Beta-2-Microglobulin) is associated with
worse OS and disease-specific survival (DSS) in SKCM, acting
as a hazardous factor by contributing to tumor progression and
immune evasion (Zhang H. et al., 2021). GBP2 was downregulated
in SKCM and Low GBP2 expression was positively correlated
with poor prognosis of SKCM (Ji et al., 2021). The Expressions of
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TABLE 5 Performance measures for a distinct set of biomarkers (from secondary to seventh set) selected through SVC- L1.

For the Secondary sets of biomarkers

Train
Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa | MCC

RF 0.67 0.87 0.67 0.67 0.56 0.56 0.61 0.86 0.61 0.61 0.49 0.48
SVM 0.70 0.87 0.70 0.69 0.60 0.60 0.61 0.85 0.61 0.59 0.49 0.48
ET 0.75 0.91 0.75 0.76 0.67 0.67 0.67 0.89 0.67 0.66 0.56 0.56
XGB 0.66 0.85 0.66 0.66 0.55 0.54 0.61 0.84 0.61 0.60 049 | 048
KNN 0.59 0.82 0.59 0.60 0.47 0.46 0.51 0.78 0.51 0.49 0.36 0.35
LightGBM 0.69 0.88 0.69 0.69 0.59 0.58 0.66 0.85 0.66 0.65 0.55 | 0.55
GB 0.57 0.78 0.57 0.57 0.42 0.42 0.57 0.79 0.57 0.56 0.43 0.42
MLP 0.69 0.86 0.69 0.68 0.59 0.58 0.64 0.84 0.64 0.62 0.52 0.52
AdaBoost 0.59 0.79 0.59 0.61 0.46 0.45 0.60 0.76 0.60 0.60 0.47 0.47
CatBoost 0.66 0.89 0.66 0.65 0.56 0.55 0.68 0.89 0.68 0.66 0.58 0.58

For the third set of Biomarkers

Train Test
Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa | MCC

RF 0.66 0.87 0.66 0.67 0.56 0.55 0.64 0.84 0.64 0.64 0.52 0.52
SVM 0.65 0.85 0.65 0.65 0.54 0.53 0.63 0.84 0.63 0.61 0.51 0.50
ET 0.72 091 0.72 0.73 0.62 0.62 0.66 0.87 0.66 0.64 0.55 0.55
XGB 0.61 0.84 0.61 0.60 0.48 0.48 0.61 0.82 0.61 0.62 0.50 0.48
KNN 0.57 0.81 0.57 0.6 0.44 0.42 0.48 0.73 0.48 0.48 0.33 0.30
LightGBM 0.63 0.86 0.63 0.63 0.51 0.51 0.64 0.85 0.64 0.63 0.52 0.52
GB 0.52 0.75 0.52 0.53 0.37 0.36 0.6 0.77 0.6 0.60 0.47 0.47
MLP 0.67 0.83 0.67 0.67 0.57 0.56 0.63 0.8 0.63 0.60 0.51 0.50
AdaBoost 0.54 0.78 0.54 0.58 0.40 0.39 0.58 0.77 0.58 0.63 0.46 | 0.44
CatBoost 0.66 0.89 0.66 0.67 0.56 0.55 0.66 0.87 0.66 0.68 0.56 0.55

For the fourth set of Biomarkers

Train Test
Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa | MCC
RF 0.66 0.86 0.66 0.66 0.55 0.55 0.53 0.82 0.53 0.53 038 | 0.38
SVM 0.66 0.84 0.66 0.66 0.55 0.54 0.60 0.79 0.60 0.60 047 | 047
ET 0.68 0.89 0.68 0.69 0.58 0.58 0.58 0.84 0.58 0.57 044 | 0.44
XGB 0.61 0.82 0.61 0.61 0.48 0.48 0.57 0.82 0.57 0.57 043 | 042

(Continued on the following page)
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TABLE 5 (Continued) Performance measures for a distinct set of biomarkers (from secondary to seventh set) selected through SVC- L1.

For the Secondary sets of biomarkers

Train
KNN 0.50 0.78 0.50 0.55 0.35 0.33 0.49 0.75 0.49 0.46 033 | 032
LightGBM 0.61 0.84 0.61 0.61 0.49 0.48 0.56 0.81 0.56 0.55 041 | 0.41
GB 0.54 0.77 0.54 0.54 0.39 0.39 0.52 0.76 0.52 0.51 037 | 036
MLP 0.69 0.85 0.69 0.69 0.59 0.58 0.63 0.79 0.63 0.62 0.50 | 0.50
AdaBoost 0.54 0.75 0.54 0.54 0.39 0.38 0.42 0.71 0.42 0.41 023 | 023
CatBoost 0.67 0.88 0.67 0.67 0.56 0.56 0.60 0.85 0.60 0.61 048 | 047

For the fifth set of Biomarkers

Train Test
Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa | MCC

RF 0.65 0.85 0.65 0.64 0.53 0.53 0.73 0.87 0.73 0.72 0.64 | 0.64
SVM 0.61 0.83 0.61 0.60 0.48 0.48 0.61 0.82 0.61 0.59 0.49 0.48
ET 0.71 0.90 0.71 0.72 0.62 0.62 0.69 0.89 0.69 0.68 0.59 0.59
XGB 0.61 0.83 0.61 0.60 0.48 0.48 0.61 0.85 0.61 0.62 0.49 0.48
KNN 0.56 0.78 0.56 0.56 0.42 0.42 0.51 0.75 0.51 0.50 0.36 0.35
LightGBM 0.64 0.85 0.64 0.64 0.53 0.52 0.64 0.86 0.64 0.63 0.52 0.52
GB 0.56 0.77 0.56 0.56 0.41 0.41 0.58 0.81 0.58 0.58 0.44 | 0.44
MLP 0.67 0.84 0.67 0.66 0.56 0.56 0.61 0.77 0.61 0.62 0.49 0.48
AdaBoost 0.66 0.89 0.66 0.64 0.55 0.54 0.73 0.91 0.73 0.72 0.64 | 0.64
CatBoost 0.65 0.85 0.65 0.64 0.53 0.53 0.73 0.87 0.73 0.72 0.64 | 0.64

For the sixth set of Biomarkers

Train Test

Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa | MCC
RF 0.65 0.86 0.65 0.67 0.54 0.54 0.56 0.81 0.56 0.58 041 | 041
SVM 0.58 0.77 0.58 0.59 0.45 0.44 0.49 0.72 0.49 0.50 032 | 032
ET 0.69 0.89 0.69 0.70 0.59 0.59 0.65 0.84 0.65 0.66 0.53 | 0.53
XGB 0.60 0.83 0.60 0.60 0.47 0.47 0.55 0.79 0.55 0.57 040 | 0.39
KNN 0.63 0.85 0.63 0.65 0.52 0.51 0.60 0.81 0.60 0.64 047 | 047
LightGBM 0.56 0.80 0.56 0.55 0.41 0.41 0.61 0.79 0.61 0.61 049 | 048
GB 0.66 0.84 0.66 0.66 0.55 0.54 0.67 0.80 0.67 0.67 0.56 | 0.56
MLP 0.63 0.86 0.63 0.63 0.51 0.51 0.55 0.82 0.55 0.54 040 | 0.39
AdaBoost 0.65 0.86 0.65 0.67 0.54 0.54 0.56 0.81 0.56 0.58 0.41 0.41

(Continued on the following page)
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TABLE 5 (Continued) Performance measures for a distinct set of biomarkers (from secondary to seventh set) selected through SVC- L1.

For the Secondary sets of biomarkers

Train

CatBoost 0.65 ‘ 0.86 ‘ 0.65 0.67 0.54 ‘ 0.54 0.56 ‘ 0.81 ‘ 0.56 0.58 ‘ 0.41 0.41
For the seventh set of Biomarkers
Train Test
Models Acc AUC Sens Spec Kappa MCC Acc AUC Sens Spec Kappa | MCC

RF 0.64 0.87 0.64 0.64 0.52 0.52 0.63 0.86 0.63 0.62 0.50 | 0.50
SVM 0.61 0.80 0.61 0.63 0.48 0.47 0.61 0.74 0.61 0.61 0.49 0.48
ET 0.70 0.89 0.70 0.70 0.60 0.59 0.65 0.87 0.65 0.64 0.53 | 0.53
XGB 0.63 0.85 0.63 0.63 0.50 0.50 0.55 0.83 0.55 0.53 0.40 0.39
KNN 0.56 0.80 0.56 0.56 0.43 0.42 0.47 0.75 0.47 0.45 0.30 0.29
LightGBM 0.66 0.86 0.66 0.66 0.54 0.54 0.59 0.83 0.59 0.59 0.46 0.45
GB 0.57 0.79 0.57 0.57 0.43 0.43 0.60 0.81 0.60 0.62 0.47 0.47
MLP 0.69 0.86 0.69 0.70 0.60 0.59 0.61 0.80 0.61 0.60 0.49 0.48
AdaBoost 0.65 0.89 0.65 0.64 0.54 0.53 0.64 0.89 0.64 0.63 0.52 0.52
CatBoost 0.56 0.80 0.56 0.56 0.43 0.42 0.47 0.75 0.47 0.45 0.30 | 0.29

0 0.99 0.99 0.98 0.90 0.99 0.92 0.95
1 0.83 0.77 0.80 0.80 0.85 0.75 0.82
2 0.93 0.90 0.93 0.88 0.91 0.90 0.93
3 0.84 0.90 0.73 0.82 0.90 0.77 0.85

HLA Class IT (HLA-DQB1) genes were Upregulated in Cutaneous
Melanoma (Chen et al, 2019). KLRC1 expression in SKCM is
associated with immune cell infiltration, highlighting its role in
immune surveillance and tumor microenvironment modulation
(Kamiya etal., 2019). MCOLN2 (TRPML2) has not been extensively
studied in SKCM. However, its upregulation in other cancers like
prostate tumors and its association with poor prognosis suggests
it might play a role in melanoma progression by potentially
influencing tumor growth, invasion, or immune evasion (Li and
Zhu, 2023) in three distinct malignancies that contained SKCM,
SARC, and THCA, SLC2A5 acted as a protective factor (Liu et al.,
2024). WIPF1 upregulated in early melanoma (Zia et al., 2023).
XCL2 shows high expression in SKCM (Xiong et al., 2020). The
DGIdb database to predict drug targets and found 17 drugs acting
on five key genes linked to survival outcomes. While these findings
suggest potential therapeutic targets, clinical validation is needed to
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confirm their relevance. This exploratory analysis provides a basis
for future research on the clinical applicability of the identified gene
signature.The top 20 mRNA genes selected using SVC-L1 achieved
an AUC of 0.91, indicating that machine-learning techniques can
be effectively utilized for survival prediction in SKCM. These
results are consistent with other machine learning-based studies
in melanoma, which have demonstrated the utility of advanced
algorithms, such as support vector machines and random forests,
for identifying prognostic biomarkers (Bhalla et al., 2019). So,
the primary set of biomarkers associated with skin cutaneous
melanoma includes TEKT5, ZNF154, H2AC14, BX284668.6,
MYCNOS, STUM, SERTM2, RPSAP18, REG4, PSCA, PAEP,
ACTR3C, MSLN, MRPS18AP1, ISLR, IL37, IGLV3.16, H2BCl11,
GPR25, and MTND4P35. PSCA (Prostate Stem Cell Antigen) is
upregulated in SKCM, as suggested by its positive correlation with
genes related to RNA modifications, indicating an active role in the
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FIGURE 9
ROC curve for the best model (CatBoost) comparing true positive rate against false positive rate. Four classes are shown: (a) Class 0 (AUC = 0.99, blue),
Class 1 (AUC = 0.77, orange), Class 2 (AUC = 0.90, green), and Class 3 (AUC = 0.90, red). (b) Class 0 has an AUC of 0.99, Class 1 is 0.85, Class 2 is 0.91,
and Class 3 is 0.90. (c) Class 0 has an AUC of 0.99, Class 1 is 0.83, Class 2 is 0.93, and Class 3 is 0.84. The dashed black line represents a random
classifier.

TABLE 7 Performance on 20 genes selected using SVC-L1.
Combination of RF, ET and LightGBM

Train ‘ Test
Classifier Acc | AUC Sens Spec Kappa MCC | Acc | AUC  Sens Spec
Voting 0.69 0.90 0.69 0.70 0.59 0.59 0.67 0.87 0.67 0.66 0.56 0.56
LR as meta-model and RF, ET as base-models
Stacking 0.74 0.91 0.74 0.74 0.66 0.65 0.70 0.88 0.70 0.70 0.61 0.61
Catboost as meta-model and RF, ET, and XGB as base-models
Stacking 0.69 0.89 0.69 0.71 0.59 0.59 0.64 0.88 0.64 0.64 0.52 0.52
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tumor’s biological processes (Wang et al., 2024). PAEP (Progestogen-
Associated Endometrial Protein) is upregulated and correlates with
poor survival outcomes in SKCM (Yan et al, 2020). ACTR3C
mutations, such as p. Gly58Arg or p.Gly58Glu, might alter protein
function and affect key cellular processes such as cell signaling,
motility, or adhesion, which are crucial in melanoma progression
(Srinivasan et al,, 2021). MSLN expression is downregulated in
SKCM (Li et al., 2022). ISLR is also downregulated and negatively
correlated with Tumor Mutation load (TMB) (Zhang C. et al., 2021).
STUM is a biomarker for response to treatment with Nivolumab
(immune checkpoint inhibitors) (Bannon et al., 2024). SERTM2
gene alterations are frequently observed in melanoma, suggesting a
potential role in tumor progression and immune evasion. These
alterations may impact pathways related to melanoma growth,
metastasis, and immune response modulation (Niu et al., 2024).
Secondary biomarkers play a vital role in other cancers but are
not directly related to SKCM (He et al, 2020; Jia et al, 2021;
Larsson et al., 2022; Severgnini et al., 2022; Bisaccia et al., 2023).
For the fifth set of biomarkers, we did not find any direct evidence
of their specific role in SKCM. These genes are newly identified
in our study and may serve as potential prognostic biomarkers
(Yang W. et al., 2021; Ding et al., 2022; Fang et al., 2022). For Class 0
(0-1year survival), the AUC values were exceptionally high, ranging
from 0.90 to 0.99, with the primary, secondary, and fifth biomarker
sets achieving the highest AUC of 0.99. This suggests that these
sets are highly effective in identifying high-risk patients with the
shortest survival times, making them valuable for early-stage risk
assessment and timely clinical intervention. In contrast, for Class 1
(one to three years survival), the AUC values ranged from 0.75 to
0.85, with the fifth biomarker set showing the best performance
(AUC = 0.85). The moderate AUC for this class indicates that
predicting mid-range survival times remains challenging, and
further refinement of the biomarkers may be needed to improve
accuracy in this group.

For Class 2 (three to five years survival), the AUC values
were consistently high across all sets, ranging from 0.88 to 0.93,
with the primary, third, and seventh sets achieving the highest
AUC of 0.93. This highlights the robustness of these biomarker
sets in predicting intermediate survival, making them useful
for more accurate prognostic stratification. However, for Class
3 (>5 years survival), the AUC values showed more variation,
ranging from 0.73 to 0.90, with the secondary and fifth sets
performing the best (AUC = 0.90). The lower performance for
some sets in this class suggests that further refinement is needed
to capture the specific molecular features associated with long-term
survival.Overall, the primary and fifth biomarker sets showed better
performance compared to the others and were particularly effective
in predicting high-risk patients. The robustness of the selected
biomarkers was further validated using the GSE65904 dataset, where
CatBoost consistently demonstrated strong predictive performance
on both the 15-gene and 12-gene sets. Notably, all survival classes
showed significant AUCs, with Class 2 and Class 3 achieving
particularly high values, highlighting the model’s ability to predict
long-term survival outcomes. CatBoost’s superior performance
is likely due to its capability to handle high-dimensional gene
expression data, capture complex nonlinear interactions between
genes, and reduce overfitting, making it a robust tool for prognostic
modeling in cancer.
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A key limitation of this study is its reliance on computational
analysis of publicly available datasets, without experimental
validation. Although the results are promising, they should be
viewed as preliminary. Confirming the biological relevance of
the identified biomarkers will require further validation in wet-
lab settings, such as gene expression profiling in independent
patient samples.

Conclusion

This study identified seven distinct biomarker sets and
developed a robust prognostic model for predicting overall survival
in skin cutaneous melanoma (SKCM). Using machine learning
techniques, the most relevant biomarkers associated with patient
prognosis were selected. The model effectively classified patients
into different survival categories based on OS time, supporting
its potential use in clinical prognosis prediction. These findings
demonstrate the value of multiple biomarker sets in understanding
the prognostic landscape of SKCM. However, further validation
and clinical studies are required to confirm their applicability in
real-world settings.
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