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Abstract: One of the fundamental challenges in designing drug molecule against a disease target or pro-
tein is to predict binding affinity between target and drug or small molecule. In this review, our focus 
will be on advancement in the field of protein-small molecule interaction. This review has been divided 
into four major sections. In the first section, we will cover software developed for protein structure pre-
diction. This will include prediction of binding pockets and post-translation modifications in proteins. In 
the second section, we will discuss software packages developed for predicting small-molecule interact-
ing residues in a protein. Advances in the field of docking particularly advancement in the knowledge-
based force fields will be discussed in the third part of the review. This section will also cover the 
method developed for predicting affinity between protein and drug molecules. The fourth section of the 
review will describe miscellaneous techniques used for designing drug molecules, like pharmacophore 
modelling. Our major emphasis in this review will be on computational tools that are available free for 
academic use 

Keywords: Protein-small molecule interaction, Structure Prediction, Docking, Pharmacophore, Molecular Dynamics, Post 
Translational Modifications. 

1. INTRODUCTION 

There are millions of premature deaths per year 
worldwide, despite tremendous advances in the area of drug 
discovery. The traditional process of drug development is a 
costly, time consuming and complicated process that attrib-
uted to the high rate of failure of drug discovery process. In 
the era of Omics, where thousands of disease-associated 
pathogens have been already sequenced; Computer Aided 
Drug Designing (CADD) has emerged as the powerful tech-
nique for drug discovery [1-3]. One of the major challenges 
in the area of rational drug design or CADD is to identify 
drug targets. Fortunately, due to advancement in the field of 
computational biology, 3000-10000 modified proteins that 
are responsible for the cause of disease have been already 
identified [4]. Furthermore, among these proteins, nearly 400 
proteins have been targeted by pharmaceutical industries for 
therapeutic purposes. Broadly, these proteins belong to G-
Protein Coupled Receptors (GPCRs), nuclear receptors, ion 
channels, and enzymes [5]. Majority of the proteins performs 
their functions when a protein or small molecules (cofactor, 
substrate, etc.) binds to them and the interaction takes place. 
These interactions are of diverse nature, need careful investi- 
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gation and cannot be overlooked since they play a significant 
role in various processes (cellular, biological and physiologi-
cal) taking place in the cell. The most important role in this 
interaction is carried out by the size of the protein interface, 
which determines the stability, and specificity of the interac-
tions. Other factors which governed these interactions are 
nature of residue and experimental conditions like pI, tem-
perature, ionic strength, etc. [6-9]. These interactions are 
involved in many disease pathogenesis too for e.g. In prions 
diseases [10], Alzheimer’s cervical cancer [11], bacterial 
infection [12], etc. and that’s why targeting Protein-Protein 
Interactions (PPIs), or protein-small molecule interaction is 
the current choice for developing novel therapeutic mole-
cules [13]. 

In contrast, advances in the field of CADD have acceler-
ated the drug discovery processes. This CADD approach is 
capable of maintaining extensive data to identify the relation 
between target and small molecule for designing better 
therapeutic compounds. Moreover, Quantitative Structure-
Activity Relationship (QSAR) based models are developed 
to understand ligand and small molecules biological activity. 
Furthermore, ligand and structure-based approaches were 
performed by virtual screening using energy calculations to 
calculate binding affinity, conformational state, etc. Interest-
ingly, machine-learning techniques are widely used for de-
veloping QSAR models, methods for predicting ADME (ab-
sorption, distribution, metabolism, and excretion) properties 
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of molecules and prediction of binding affinity. Also, these 
techniques are used to design software for docking, molecu-
lar dynamics simulation, and for pocket finding with novel 
scoring functions [14-18]. 

In this review, we have discussed freely available compu-
tational tools developed for understanding protein-small 
molecule interaction vital for computer-aided drug de-
sign/discovery. As shown in Fig. (1), these tools have been 
categories in following six classes; i) prediction of protein 
structure, ii) pocket finders, iii) identification of protein in-
teracting residues, iv) pharmacophore based tools, v) mo-
lecular docking and vi) prediction of post-translational modi-
fication. Each class has the number of tools for nearly same 
activity. Thus we have mentioned most widely used tools for 
each class in Fig. (1). This will facilitate readers in using 
suggested tools for their scientific activity if they are not 
confident which tool they should use. 

2. PROTEIN MODELLING 

Broadly, computer-aided drug design can be classified 
into two categories; (i) receptor-based drug design and (ii) 
ligand-based drug design. In case of receptor-based drug 
design, one needs to have the tertiary structure of receptor or 
target protein. Thus receptor-based drug design is also called 
structure-based drug design. There is a paradigm shift in the 
field of structure-based drug discovery in past decades; 
which has reduced the cost and time of drug discovery proc-
ess [19-22]. Determination of the tertiary structure of protein 
or drug target is one of the essential requirements for the 
structure-based drug design. Experimental techniques (e.g., 

X-ray crystallography, NMR) are commonly used for deter-
mining the protein structure of a protein. Protein Data Bank 
(PDB) that maintains the experimentally determined protein 
structures has grown over the years. The present release of 
PDB contains more than one hundred thousand proteins 
structure solved by X-ray crystallography at high resolution. 
Despite, tremendous progresses in the field of structure de-
termination, still there are millions of proteins whose se-
quence is known, but the structure is unknown. This gap is 
increasing at an increasing rate due to advancement in se-
quencing techniques. Thus, there is a need to develop meth-
ods for predicting tertiary structure of proteins from their 
amino acid sequence. The structure prediction of the protein 
is not only crucial for the structure-based drug design, but it 
is also essential to understand the function of proteins [23]. 
In this section, we will review advancement in the field 
computational biology particularly methods developed for 
predicting tertiary structure of proteins [24, 25]. In Table 1, 
we have listed selected standalone software and web server 
commonly used by the scientific community and is freely 
available for public use. As shown, in Table 1, these meth-
ods are based on different approaches. Broadly one can clas-
sify these methods based on following categories; i) homol-
ogy or comparative modelling, ii) threading-based approach 
and iii) Ab initio or de novo modelling [26]. 

These methods utilize different aspects for protein struc-
ture prediction which involves secondary structure, disor-
dered region, structures superimposition, template serach, 
sequence alignment, solvent accessibility, ancestor relation-
ship, residue-residue contact, loop modelling, three- 

Fig. (1). Shows major categories of freely available computational tools reviewed in this paper and popular tools in each category. 
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Table 1. List of web servers and standalone software for predicting tertiary structure of proteins and are freely available for public 

use.  

Name of Tool 

 [Reference] 

Description of Tool  

[Web Link] 

PHYRE2#  

[30] 

It uses HMM technique for tertiary structure prediction. 

[http://www.sbg.bio.ic.ac.uk/phyre2/] 

CPHModels# 

[31] 

It is based on secondary structure-guided profile alignment and exposure prediction. 

[http://www.cbs.dtu.dk/services/CPHmodels/] 

SWISS MODEL# 
[32] 

A fully automated protein structure homology-modelling server. 
[https://swissmodel.expasy.org/] 

I-TASSER### 
[33] 

Prediction of protein tertiary structure using threading approach. 
[http://zhanglab.ccmb.med.umich.edu/I-TASSER/] 

EsyPred3D# 

[34] 

It obtains the alignment using neural network technique and final model is built using MODELLER. 

[http://www.unamur.be/sciences/biologie/urbm/bioinfo/esypred/] 

(PS)2# 
[35] 

Protein tertiary structure prediction using comparative modelling. 
[http://ps2v3.life.nctu.edu.tw/] 

AS2TS# 
[36] 

Homology-based approach for predicting protein structure directly based on amino acid sequence. 
[http://proteinmodel.org/AS2TS/AS2TS/as2ts.html] 

RaptorX# 
[37] 

Nonlinear scoring function for predicting the structure of non-homologous proteins. 
[http://raptorx.uchicago.edu/StructurePrediction/predict/] 

IntFOLD-TS # 

[38] 

It uses single-template local consensus fold recognition approach for tertiary structure prediction. 

[http://www.reading.ac.uk/bioinf/IntFOLD/IntFOLD3_form.html] 

Robetta# 
[39] 

Comparative and de novo methods are used for prediction. 
[http://robetta.bakerlab.org/] 

ModWeb# 
[40] 

Structure prediction using the template-based algorithm. 
[https://modbase.compbio.ucsf.edu/modweb/] 

GDFuzz3D### 

[41] 

Prediction of the tertiary structure using 2D contacts map. 

[http://iimcb.genesilico.pl/gdserver/GDFuzz3D/] 

CABS-Fold# 
[42] 

It uses molecular simulation for structure prediction. 
[http://biocomp.chem.uw.edu.pl/CABSfold/] 

MULTICOM# 
[43] 

Utilize information from multiple sources for building models. 
[http://sysbio.rnet.missouri.edu/multicom_cluster/] 

Bhageerath-H# 
[44] 

Ab Initio and homology-based approach for structure prediction. 
[http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp] 

eTASSER### 

[45] 

A template-based approach for protein structure prediction. 

[http://brylinski.cct.lsu.edu/ethread] 

MUFOLD# 
[46] 

Combination of multiple methods for predicting tertiary structure. 
[http://mufold.org/prediction.php] 

QUARK# 
[47] 

Algorithm for ab initio protein folding and structure prediction. 
[http://zhanglab.ccmb.med.umich.edu/QUARK/] 

GalaxyWEB# 

[48] 

Structure prediction using template-based modelling.  

[http://galaxy.seoklab.org/] 

GENO3D# 
[49] 

Tertiary structure prediction using homology modelling. 
[https://geno3d-prabi.ibcp.fr/] 

MODELLER### 
[50] 

Performs comparative modeling of given protein sequence based on its alignment to one or more protein. 
[https://salilab.org/modeller/] 

# Web Server; ## Standalone software; ### Web Server and Standalone Software. 
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dimensional (3D) model evaluation, identification and its 
refinement [27,28]. In spite of these advancements in the 
field, there are certain limitations of these methods, which 
need to be addressed. For example, identification of the suit-
able template, refinement of the template closer to native 
structure, and prediction of structures for larger proteins 
[29]. One of the major challenges for a user is to select best 
or most appropriate method among the available methods. 
Fortunately, CASP (Critical Assessment of Structure Predic-
tion) organize a worldwide competition for evaluating the 
performance of protein structure prediction. Methods such as 
I-TASSER, ROSETTA, MULTICOM, QUARK, were found 
to perform better than other methods in recent CASP12 ex-
periments for structure prediction [27]. For the detailed in-
formation, we advise users to visit CASP12 site to under-
stand the current state of the art in protein structure predic-
tion. 

Although a large number of methods have been devel-
oped for predicting the tertiary structure of protein, predic-
tion of the tertiary structure with precision is still a challenge 
in the absence of template/homology. In order to overcome 
these limitations, a number of tools have been developed to 
predict elements of protein structure. These elements are 
important for designing drug as well as for understanding 
function of proteins. One such element is protein secondary 
structure which plays a vital role in predict protein backbone 
because protein 3D structures are classified into their struc-
tural folds based on how their secondary structure element 
(helix and sheets) are folded [51, 52]. Thus secondary struc-
ture can be used for predicting the tertiary structure of the 
protein as well as the class of proteins [53]. Features like 
PSSM profile, single residue feature, or feature of 
neighbouring residues have been used for improving the per-
formance of methods in the past. However, one limit im-
posed on secondary structure prediction method is the arbi-
trary definition of three states (helix, sheet, and coil) of sec-
ondary structure [54]. We can address this question by in-
corporating the increasing knowledge of sequence and struc-
tural data, sophisticated techniques like deep learning, etc. 
Some of the widely used secondary structure prediction tools 
used are PSIPRED, and DeepCNF. Similarly, a different 
method has been developed for predicting protein surface 
accessibility. In Table 2, we list major software developed 
by the scientific community for predicting crucial structural 
component of proteins. These software packages or servers 
include methods developed for predicting; i) regular secon-
dary structure (e.g., Helix, Sheet), ii) irregular structures in a 
protein (e.g., Beta-turn, Alpha-turns), and iii) surface acces-
sibility of proteins. 

Identification of cavity/surface/region on the protein, 
which interacts with other molecules is essential for under-
standing the function of a protein. This cavity or pocket on a 
protein structure can be used to design a drug that can modu-
late protein function. In case this pocket is involved in pro-
tein-protein interaction, the drug can be designed to inhibit 
protein-protein interaction. Similarly, in case of substrate 
binding pocket, the drug can be designed to inhibit binding 
of substrate in binding pockets. Thus, identification of bind-
ing sites or pockets is the most crucial step in drug discov-
ery. In the past, large number of software has been devel-
oped for predicting pockets on a protein (Table 3). Broadly, 

these software can be classified into three categories; i) iden-
tification of binding pocket in experimentally determined 
protein structures, ii) prediction of pockets in predicted pro-
tein structures, and iii) prediction of binding pockets from 
protein amino acid sequence. These pockets are mainly 
hydrophobic in nature, possess a variety of hydrogen donors 
and acceptors [79, 80]. Experimental techniques for pocket 
identification on the surface of the target molecule are com-
plicated, costly and time-consuming. Thus, in silico tech-
niques are used as an alternate technique for identification of 
binding sites or pocket. These methods are based on several 
features like evolutionary sequence conservation, Voronoi 
tessellation algorithm, and properties of neighbour residues 
for identifying the pockets/ligand binding sites on the pro-
teins [17, 81]. However, there are several issues, which are 
still needs to be answered to identify the correct pocket on 
the proteins. These issues include ranking the optimal 
pocket, detection of pocket in the absence of ligands, and 
quality of the pocket since scoring function depends on the 
quality of pocket [17]. Some of the widely used pocket de-
tection software includes FPocket, LIGSITEcsc, and 
CASTp. In Table 3, we enlist major software, which is avail-
able free for academic uses. 

Post-Translation Modifications (PTMs) refer to the pro-
teins covalent modification; present in almost all proteins 
and play an important role in cellular processes. PTMs are 
the chemical modified protein obtained after translation and 
performs different functions [106]. It occurs on the amino 
acid side chains or at the protein's C- or N-termini. PTMs 
also provide stability to protein by protecting it from enzyme 
degradation. In the past number of force fields have been 
developed (e.g., GROMOS 45a3 & 54a7) to model or simu-
late protein containing PTMs [107]. PTMs have been widely 
used as a potential drug target since they modulate the pro-
tein function. PTMs have been found to have a profound 
effect on protein stability, activity, and its pharmacokinetics. 
Thus, characterization of these PTMs and their role in bio-
logical function has become a crucial step in drug develop-
ment. For example, transcription factor RUNX1 is an excel-
lent candidate for targeted therapy in cancer. This protein is 
associated with PTMs like phosphorylation, acetylation, 
methylation, and ubiquitination [108, 109]. Thus, one of the 
significant challenges in the field of protein modelling is to 
identify different types of PTMs in a protein. Numerous 
methods have been developed to predict the wide range of 
PTMs that include phosphorylation, glycosylation, methyla-
tion, acetylation (Table 4). Above methods are developed 
using features like evolutionary information, substrate pri-
mary sequence, and different types of interactions between 
protein-phospholipid). These methods are used to predict 
modification sites on proteins based on sophisticated tech-
niques like Artificial Neural Network (ANN), Support Vec-
tor Machines (SVM), and Random Forest (RF). Once PTMs 
are identified on a protein, next challenge is to simulate it. 
Existing methods have their own limitations like dataset used 
for training; most of the phosphorylation site prediction 
methods are based on the same type of kinases datasets. 
Also, most of these methods take an only sequence-based 
feature, which lacks incorporation of experimental data 
[110]. In the past number of web servers have been devel-
oped for modeling and simulations of proteins/peptides 
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Table 2. Standalone software and web servers developed for predicting important component of protein structure like secondary 

structure, surface accessibility. 

Name of Tool 

[Reference] 

Description of Tool 

[Web Link] 

APPSP2### 

[55] 

A combination of nearest neighbour and neural network for secondary structure prediction. 

[http://webs.iiitd.edu.in/raghava/apssp2/] 

YASPIN# 

[56] 

Hidden Neural Network based approach for prediction. 

[http://www.ibi.vu.nl/programs/yaspinwww/] 

CFSSP# 
[57] 

Predict secondary structure using Chou Fasman Algorithm. [http://www.biogem.org/tool/chou-fasman/] 

PSIPRED### 
[58] 

Utilize the evolutionary information in the form of alignment profile for prediction. 
[http://bioinf.cs.ucl.ac.uk/psipred/] 

Jpred4# 

[59] 

It predicts secondary structure using Jnet algorithm. 

[http://www.compbio.dundee.ac.uk/jpred/] 

DSC# 
[60] 

It uses simple and linear statistical method for prediction. 
[https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_dsc.html] 

PREDATOR# 
[61] 

This method is based on recognition of potentially hydrogen-bonded residues in a single amino acid sequence. 
[https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_predator.html] 

GOR V# 
[62] 

A statistical method that utilizes evolutionary information. 
[http://gor.bb.iastate.edu/] 

NetSurfP### 

[63] 

Predicts secondary structure as well as surface accessibility. 

[http://www.cbs.dtu.dk/services/NetSurfP/] 

Porter# 
[64] 

It uses recurrent neural network algorithm for prediction. 
[http://distill.ucd.ie/porter/] 

SCRATCH# 
[65] 

Model based on machine learning technique using evolutionary information. 
[http://scratch.proteomics.ics.uci.edu/index.html] 

SOPMA# 

[66] 

Utilize alignment profile of protein family for prediction.  

[https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html] 

ALPHAPRED### 
[67] 

Prediction of alpha turns using neural network. 
[http://webs.iiitd.edu.in/raghava/alphapred/] 

BetaTPred### 
[68] 

Statistical-based method for predicting Beta Turns.  
[http://webs.iiitd.edu.in/raghava/betatpred/] 

BetaTPred2### 
[69] 

Uses neural network and multiple sequence alignment for predicting beta turns in a protein. 
[http://webs.iiitd.edu.in/raghava/betatpred2/] 

BetaTPred3### 

[70] 

Propensity based method for predicting beta turns. 

[http://webs.iiitd.edu.in/raghava/betatpred3/] 

Bhairpred### 
[71] 

Method for prediction of beta hairpin in a protein. 
[http://webs.iiitd.edu.in/raghava/bhairpred/] 

BTEVAL### 
[72, 73] 

Evaluation of beta turn predictions methods. 
[http://webs.iiitd.edu.in/raghava/bteval/] 

Gammapred### 

[74] 

Method for predicting gamma turns in proteins using neural network algorithm. 

[http://webs.iiitd.edu.in/raghava/gammapred/] 

AcconPRED## 
[75] 

Solvent surface accessibility area prediction method. 
[http://ttic.uchicago.edu/~majianzhu/AcconPred_package_v1.00.tar.gz] 

RVPnet### 
[76] 

Prediction of real valued accessible surface area.  
[http://www.netasa.org/rvp-net/] 

(Table 2) contd…. 
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Name of Tool 

[Reference] 

Description of Tool 

[Web Link] 

SARpred# 
[77] 

ANN-method to predict real value of surface accessibility. 
[http://www.abren.net/asaview/] 

SANN### 
[78] 

KNN-based prediction of solvent accessibility. 
[http://lee.kias.re.kr/~newton/sann/] 

DeepCNF## 
[16] 

Deep learning-based method for predicting secondary structure element of protein. 
[http://raptorx.uchicago.edu/download/] 

# Web Server; ## Standalone software; ### Web Server and Standalone Software. 

Table 3. List of software and web servers developed for predicting binding pockets on the surface of a protein. 

Name of Tool 

[Reference] 

Description of Tool  

[Web Link] 

PockDrug# 
[82] 

It uses physio-chemical and geometry based descriptors to find the pocket. 
[http://pockdrug.rpbs.univ-paris-diderot.fr/] 

SURFNET## 
[83] 

It uses PDB 3D coordinates to generate molecular surfaces and gaps. 
[http://www.ebi.ac.uk/thornton-srv/software/SURFNET/] 

Q-siteFinder# 
[84] 

Locate energetically favourable binding sites in a protein. 
[http://www.bioinformatics.leeds.ac.uk/qsitefinder] 

CASTp# 

[85] 

Identification of surface accessible pockets and interior inaccessible cavities in a protein. 

[http://sts.bioe.uic.edu/castp/] 

PASS## 
[86] 

It utilizes geometry to characterize regions of buried volume in proteins.  
[http://www.ccl.net/cca/software/UNIX/pass/overview.html] 

LIGSITEcsc### 
[87] 

LIGSITEcsc is based on the notion of surface-solvent-surface events and the degree of conservation of the involved surface resi-
dues. 

[http://projects.biotec.tu-dresden.de/pocket/] 

bSiteFinder# 

[88] 

Predicts binding sites on a protein using multiple techniques.  

[http://binfo.shmtu.edu.cn/bsitefinder/] 

AutoSite### 
[89] 

It identifies binding pockets using energetic aspects.  
[http://adfr.scripps.edu/AutoDockFR/autosite.html] 

KVFinder## 
[90] 

A method for cavity prospection and spatial characterization.  
[http://lnbio.cnpem.br/facilities/bioinformatics/software-2/] 

AlloPred### 
[91] 

It predicts protein allosteric pockets using normal mode perturbation analysis.  
[http://www.sbg.bio.ic.ac.uk/allopred/home] 

MSPocket## 

[92] 

An orientation independent approach to predict surface pockets on proteins. 

[http://projects.biotec.tu-dresden.de/MSPocket/] 

MDPocket## 
[93] 

 

Method for protein cavities prediction and characterization based on molecular dynamics trajectories. 
[http://fpocket.sourceforge.net/] 

GalaxySite# 

[94] 

It uses molecular docking for predicting binding sites. 

[http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=SITE] 

POVME## 

[95] 

A method for determining the pocket shape and volume characteristics. 

[http://rocce-vm0.ucsd.edu/data/sw/hosted/POVME/] 

MolSite## 
[96] 

It uses protein-ligand docking for predicting pockets. 
[http://presto.protein.osaka-u.ac.jp/myPresto4/index.php?lang=en] 

LigandRFs## 
[97] 

Prediction of protein pockets using random forest classifier. 
[https://sfb.kaust.edu.sa/pages/software.aspx] 

(Table 3) contd…. 
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Name of Tool 

[Reference] 

Description of Tool  

[Web Link] 

Phosfinder# 
[98] 

Find phosphate binding motifs using structural comparison algorithm 
[http://phosfinder.bio.uniroma2.it/] 

LigPlot# 
[99] 

Generates 2D representations of protein-ligand complexes.  
[http://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/] 

3DLigandSite# 
[100] 

Utilizes protein-structure prediction to find ligand binding sites. 
[http://www.sbg.bio.ic.ac.uk/~3dligandsite/] 

DrosteP## 
[101] 

A method for evaluating the conservation of pockets detected on the protein surface by CastP. 
[http://www1.na.icb.cnr.it/project/drosteppy/] 

PocketAnnotate# 

[102] 

A pipeline for annotation of the binding site on a protein. 

[http://proline.biochem.iisc.ernet.in/pocketannotate/] 

PocketDepth# 
[103] 

Depth based algorithm for identification of ligand binding site. 
[http://proline.physics.iisc.ernet.in/pocketdepth/] 

PocketMatch# 
[104] 

It compares binding sites in two protein structures. 
[http://proline.physics.iisc.ernet.in/pocketmatch/] 

PocketAlign# 

[105] 

It aligns binding sites in protein structures. 

[http://proline.physics.iisc.ernet.in/pocketalign/] 

FPocket## 
[17] 

Pocket detection method based on Voronoi tessellation algorithm. 
[http://fpocket.sourceforge.net/] 

# Web Server; ## Standalone software; ### Web Server and Standalone Software. 

containing different types of PTMs [111-113]. Some of the 
recent and widely used methods include NetPhos, PPRED 
for predicting phosphorylation; GlycoEP, GlycoPP, Glyco-
Mod for predicting glycosylation sites; MeMo for predicting 
methylation sites; UbPred for ubiquitination. 

3. SMALL MOLECULE INTERACTING RESIDUES 
IN A PROTEIN 

Small molecules can be defined as the natural molecules 
which are present in the biological subject or artificially syn-
thesized chemical (drug) and carry out important biological 
functions when interacts with their respective target. Small 
molecules are of different types such as cofactors (ATP, 
GTP, and NAD), nutrients which trigger operons, plant hor-
mones, vitamins, steroids, cyclic nucleotides, etc. These 
molecules apart from being substrate and product of many 
biochemical reactions also regulate the function of various 
proteins. Binding of phosphate ions (PO43-) with protein 
enzymes results in protein phosphorylation which can either 
make the enzyme active or non-active [153]. Likewise, 
haemoglobin function of carrying and transporting oxygen 
via blood is very much dependent on its interaction with 
metal iron ions (Fe3+) [154]. Thus, identification of native 
binding sites is required to predict these interactions. 

Several computational methods have been designed in 
the last two decades for identifying ligand binding sites on 
their target molecule, which can be broadly classified into 
two categories [155]. First is the sequence-based methods 
which use the information only from protein sequence. Some 
of these features include knowledge of residue’s conserved 
during evolution, predicted local structure properties (e.g., 
secondary structure, relative solvent accessibility, dihedral 
angles), position and segment specific score of residue con-

servation [156-160]. Second is the structure based or tem-
plate based method where structural properties of the pro-
tein-ligand complex are exploited as a feature to predict the 
binding site of the ligand onto given target or protein [161, 
162]. Several attempts have been made to improve the accu-
racy of the correct binding site by combining different struc-
tural methods as well as sequence method [163, 164]. These 
methods have been widely used in drug designing by target-
ing a number of proteins associated with various diseases. 
One such example is the identification of inhibitors against 
the transforming growth factor-β-1 receptor kinase 
[165,166]. Incorporation of various omics data with sequenc-
ing technologies, and a combination of experimental data 
with computational methods would likely be improved dock-
ing. [167, 168]. Table 5 contains the list of tools designed for 
predicting protein-small molecule interaction. 

4. PROTEIN-SMALL MOLECULE DOCKING 

Docking is an important tool in the field of drug discov-
ery that predicts the receptor-ligand interactions by estimat-
ing its binding affinity [189]. It provides an alternative to 
experimental assays, which are costly and time-consuming. 
This is the reason that number of docking publications has 
increased sharply over the past decade Fig. (2). There is 
tremendous progress in the field of protein-ligand docking 
specifically in the field of virtual screening and fragment-
based drug design [190]. One of the possible reasons to this 
is the advancement in the field of Molecular Dynamics 
(MD), which is used to understand the structure-function 
relationship between macromolecules. Molecular interac-
tions between these macromolecules are the basis of biologi-
cal functions [191]. MD simulation has a wide range of ap-
plications such as modelling a protein structure, understand-
ing allosteric, etc. MD simulation minimizes the complex 
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Table 4. Different software and web servers developed by the scientific community for predicting post-translation modification of 

amino acids in a protein. 

Name of Tool 

 [Reference] 

Description of Tool  

[Web Link] 

Tools for predicting phosphorylation 

NetPhos#  

[114] 

Predicts phosphorylation sites of serine, threonine or tyrosine (K-specific and K-independent) in eukaryotic proteins. 

[http://www.cbs.dtu.dk/services/NetPhos/] 

Scansite# 

[115] 

Scanning of motifs phosphorylated by specific protein kinases.  

[http://scansite.mit.edu] 

PhosphoSitePlus# 
[116] 

Predicts the structure and function of experimentally determined PTMs in man and mouse (K-specific) 
[https://www.phosphosite.org/homeAction.action] 

GPS### 
[117] 

Predicts phosphorylation sites (K-specific) in protein kinases. 
[http://gps.biocuckoo.org/online.php] 

KinasePhos# 

[118] 

Predicts kinase specific phosphorylation sites (K-specific).  

[http://kinasephos2.mbc.nctu.edu.tw] 

PhosphoELM# 
[119] 

A database of serine, threonine and tyrosine phosphorylation sites present in the protein. 
[http://phospho.elm.eu.org] 

PPRED# 
[120] 

Predicts phosphorylation sites using evolutionary information. 
[http://biomecis.uta.edu/~ashis/res/ppred/] 

 Prediction of glycosylation 

bigPI# 

[121] 

It predicts GPI-anchored modification sites in a protein. 

[http://mendel.imp.ac.at/gpi/gpi_server.html] 

O-GlycBase# 
[122] 

A database of glycoproteins with O-linked glycosylation sites. 
[http://www.cbs.dtu.dk/databases/OGLYCBASE/] 

GlycoMod# 
[123] 

Prediction of oligosaccharide structures that occur on proteins. 
[http://web.expasy.org/glycomod/] 

YinOYang# 

[124] 

ANN method to predict O-ß-GlcNAc sites in a eukaryotic protein. 

[http://www.cbs.dtu.dk/services/YinOYang/] 

GlyProt# 
[125] 

This tool predicts spatially accessible N-glycosylation sites in a protein. 
[http://www.glycosciences.de/glyprot/] 

GPP# 
[126] 

A tool for predicting N- and O-linked glycosylation sites in a protein.  
[http://comp.chem.nottingham.ac.uk/glyco/] 

NGlycPred# 
[127] 

Prediction of N-linked glycosylation sites at N-X-T/S sequence.  
[https://exon.niaid.nih.gov/nglycpred/] 

GlycoPP### 

[128] 

N- and O-linked glycosylation sites in a prokaryotic protein. 

[http://webs.iiitd.edu.in/raghava/glycopp/] 

ProGlycProt 
[129] 

A database of experimentally characterized prokaryotic glycoproteins 
[http://www.proglycprot.org/] 

GlycoEP 
[130] 

Prediction of N-, O- and C-glycosites in a eukaryotic protein.  
[http://webs.iiitd.edu.in/raghava/glycoep/] 

NetOGlyC# 

[131] 

ANN-based prediction of mucin type GalNAc O-glycosylation sites.  

[http://www.cbs.dtu.dk/services/NetOGlyc/] 

GlycoMine# 
[132] 

Predicts N-, C- and O-linked glycosylation sites in a human protein. 
[http://www.structbioinfor.org/Lab/GlycoMine/webserver] 

 

(Table 4) contd…. 
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Name of Tool 

 [Reference] 

Description of Tool  

[Web Link] 

Prediction of miscellaneous PTM sites 

PS-SNO# 

[133] 

Predicting S-nitrosylation sites using a modified GPS algorithm. 

[http://sno.biocuckoo.org/online.php] 

iSNO-PseAAC# 
[134] 

Composition-based method for predicting cysteine S-nitrosylation. 
[http://app.aporc.org/iSNO-PseAAC/] 

PMes# 
[135] 

Prediction of methylation sites using enhanced feature encoding. 
[http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx] 

MethK# 

[136] 

Identification of lysine (K) methylation sites in histone proteins. 

[http://csb.cse.yzu.edu.tw/MethK/] 

iMethyl-PseAAC# 
[137] 

Identifying methylation sites (R or K) on a protein.  
[http://www.jci-bioinfo.cn/iMethyl-PseAAC] 

PSSMe# 
[138] 

Predicting species-specific methylation sites in a protein.  
[http://bioinfo.ncu.edu.cn/PSSMe.aspx] 

NetAcet# 
[139] 

Predicting N-terminal acetylation in eukaryotes using ANN. 
[http://www.cbs.dtu.dk/services/NetAcet/] 

ASEB# 

[140] 

A method for predicting KAT-specific acetylation sites in a protein. 

[http://bioinfo.bjmu.edu.cn/huac/] 

PSKacePred# 
[141] 

Position specific analysis and lysine (K) acetylation prediction. 
[http://bioinfo.ncu.edu.cn/inquiries_PSKAcePred.aspx] 

CSS-Palm# 
[142] 

Prediction of palmitoylation site using clustering and scoring. 
[http://csspalm.biocuckoo.org/online.php] 

SeqPalm# 

[143] 

S-palmitoylation sites prediction in proteins.  

[http://lishuyan.lzu.edu.cn/seqpalm/] 

Myristoylator# 
[144] 

Predicting N-terminal myristoylation sites in a protein sequence. 
[http://web.expasy.org/myristoylator/] 

PrePS# 
[145] 

Predicting prenylation motifs in the given protein sequence. 
[http://mendel.imp.ac.at/sat/PrePS/] 

SUMOhydro# 

[146] 

Sumoylation site prediction tool based on hydrophobic features. 

[http://protein.cau.edu.cn/others/SUMOhydro/] 

GPS-SUMO# 

[147] 

Sumoylation site and sumoylation motifs in a given protein sequence. 

[http://sumosp.biocuckoo.org/online.php] 

JASSA# 
[148] 

Prediction of sumoylation site and SUMO interacting motifs. 
[http://www.jassa.fr] 

pSumo-CD# 
[149] 

Covariant discriminant algorithm for predicting sumoylation site. 
[http://www.jci-bioinfo.cn/pSumo-CD] 

UbPred### 

[150] 

In silico method for identification and analysis of ubiquitination sites in proteins. 

[http://www.ubpred.org] 

UbiProber# 
[151] 

Species-specific ubiquitination sites prediction in the proteins. 
[http://bioinfo.ncu.edu.cn/ubiprober.aspx] 

iUbiq-Lys# 
[152] 

Ubiquitination site prediction using evolutionary information. 
[http://www.jci-bioinfo.cn/iUbiq-Lys] 

# Web Server; ## Standalone software; ### Web Server and Standalone Software. 

free energy and tries to bring it to stable state [192-194]. All 
atoms receptor flexibility into docking was introduced using 
MD simulations which measured its effect on docking accu-
racy by cross-docking [195]. The obtained stable complex, 

which contained flexible side chains and multiple flexible 
backbone segments. In contrast, accuracy was found reduced 
in complexes, which have flexible loops, and entirely 
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Table 5. List of computational methods developed for predicting ligand interacting residues in a protein.  

Name of Tool 

[Reference] 

Description of Tool 

[Web Link] 

ATPint### 
[169] 

Prediction of ATP interacting residues in a protein. 
[http://webs.iiitd.edu.in/raghava/atpint/] 

TargetATPsite## 
 [170] 

A template-free method for predicting residues in ATP binding sites.  
[http://www.csbio.sjtu.edu.cn:8080/TargetATPsite/]  

ATPsite# 

[171] 

Sequence-based method for predicting ATP-binding residues. 

[http://biomine.ece.ualberta.ca/ATPsite/] 

GTPbinder### 
[172] 

Prediction of GTP binding residue in a protein sequence. 
[http://webs.iiitd.edu.in/raghava/gtpbinder/] 

NADbinder### 
[173] 

Prediction of NAD interacting residues in a protein. 
[http://webs.iiitd.edu.in/raghava/nadbinder/] 

FADPred### 
[174] 

A method for predicting FAD interacting residues in a protein. 
[http://webs.iiitd.edu.in/raghava/fadpred/] 

ProtChemSI### 

[175] 

A database of protein-chemical structural interaction derived from PDB.  

[http://pcidb.russelllab.org/] 

STITCH## 
[176] 

A database containing information of known and predicted interactions between proteins and chemicals. 
[http://stitch.embl.de/] 

3did### 
[177] 

A database of 3-D structural templates for domain-domain and domain-peptide interaction. 
[http://3did.irbbarcelona.org/] 

firestar# 

[178] 

Predicting ligand-binding residues in protein structure. 

[http://firedb.bioinfo.cnio.es/Php/FireStar.php] 

metaDBSite# 
[179] 

A meta web server for DNA-binding sites prediction.  
[http://projects.biotec.tu-dresden.de/metadbsite/] 

PepSite# 
[180] 

Predict peptide binding sites on protein surfaces. 
[http://pepsite2.russelllab.org/] 

Pprint### 
[181] 

A method for predicting RNA-binding residues in a protein. 
[http://webs.iiitd.edu.in/raghava/pprint/] 

VitaPred### 

[182] 

Prediction of vitamin-interacting residue in a protein sequence. 

[http://webs.iiitd.edu.in/raghava/vitapred/] 

SiteHound## 
 [183] 

Identification of ligand binding site in protein structure. 
[http://scbx.mssm.edu/sitehound/] 

webPDBinder## 
[184] 

Prediction of small ligand binding sites in protein structures. 
[http://cbm.bio.uniroma2.it/pdbinder/] 

3DLigandSite# 

[185] 

Prediction of ligand-binding sites in a protein structure. 

[http://www.sbg.bio.ic.ac.uk/3dligandsite/] 

ConCavity### 
[186] 

Prediction of ligand-binding sites using evolutionary conservation. 
 [http://compbio.cs.princeton.edu/concavity/] 

FTSite# 
[187] 

Detection of ligand binding site on unbound protein structures. 
[http://ftsite.bu.edu] 

BioLip# 

[188] 

A semi-manually curated database for ligand-protein interactions. 

[http://zhanglab.ccmb.med.umich.edu/BioLiP/] 

# Web Server; ## Standalone software; ### Web Server and Standalone Software. 

flexible targets due to the increased noise that affects scoring 
function. 

Broadly protein-ligand has two major challenges, first the 
generation of potential docking poses of the receptor-ligand 

complexes, and secondly, the scoring schemes to rank poten-
tial docking poses. Docking methods rely on scoring 
schemes to identify best docking pose that have a maximum 
binding affinity with the receptor. In the past, numerous 
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methods for generating docking pose using a wide range of 
algorithms have been developed [14, 196, 197]. Similarly, a 
number of strategies have been developed to rank docking 
pose based affinity or binding between protein and ligand 
[198, 199]. In Table 6, we have listed number of commonly 
used software for docking and virtual screening based on 
binding affinity between receptor and drug molecules. Some 
of the widely used protein-small molecule docking software 
includes AutoDock, AutoDock Vina, HADDOCK, and 
PatchDock. These docking methods have been found to per-
form exceptionally well in docking ligands to their active 
site, like AutoDock Vina can dock small ligand with very 
high accuracy in comparison to other software [200]. Devel-
opment of new scoring functions has shown that we can im-
prove the scoring, docking and virtual screening comparison 
to old state of art methods [15]. However, there are specific 
challenges still needs to be tackled in this field. One of those 
challenges associated with docking involves representation 
of receptor, structural waters, side chain protonation, flexi-
bility, ligand representation [201]. Another problem associ-
ated with docking tools is that computational method being 
used to generate receptor ensembles, create docking ligand 
databases or even creating individual ligand against large 
ensembles are expensive [202]. Normal mode analysis is an 
alternative to MD to generate receptor ensembles [203]. Ad-
ditionally, an Elastic Network Model (ENM) method that 
signifies its importance more efficiently than MD in the 
identification of local conformational changes in side chains 
and the movement of the protein backbone [204]. 

5. MISCELLANEOUS TECHNIQUES 

In addition to techniques described above, a number of 
miscellaneous techniques have been developed for designing 
drugs that include QSAR, pharmacophore, etc. [239-245]. 
QSAR is defined as the study of physio-chemical properties 
or molecular features/descriptors (two-dimensional (2D) 
descriptors, 3D descriptors or different fingerprints) of a 
chemical that correlate these molecular features with its bio-
logical activity. QSAR models can be classified into classifi-
cation models or regression models. Classification model 
classifies the new chemical based on its molecular descrip-

tors whereas regression model predicts the activity of a given 
new chemical [246, 247]. In this section, we will only cover 
methods that are based on pharmacophore modelling. In last 
few years, the pharmacophore is evolved as one of the most 
successful approaches in the field of drug discovery. The 
principle of pharmacophore based docking is defined as the 
molecular features of a ligand responsible for being recog-
nized by the protein [248, 249]. A pharmacophore model can 
be obtained or generated in two different manners (i) Ligand-
based pharmacophore modelling and (ii) Structure-based 
pharmacophore modelling. In the ligand-based pharma-
cophore modelling, the pharmacophore generation involves 
two major steps, (a) Conformational space which generates 
conformational flexibility in the ligand, and (b) alignment of 
the multiple ligands that determined essential features re-
sponsible for their bioactivity. In case of structure-based 
pharmacophore modelling, a 3D structure of a macromolecu-
lar target and their ligand is required. This involved a spatial 
relationship in between protein and ligand based on chemical 
features. In the past, a wide range of web server and software 
have been developed for designing drug molecules using 
pharmacophore modelling (Table 7) [250-253]. However, 
pharmacophore based methods still require improvement in 
various fields like correct pharmacophore generation, pre-
dicting perfect ligand binding propensities, [254], lack of 
thorough characterization and in-depth study of ADME 
properties. ADME property is one of the key property which 
needs to be studied in depth for any pharmacophore based 
drug. They are critical in supporting drug discovery and drug 
development processes for the production of effective and 
safer biotherapeutics [255]. LigandScout, ZincPharmer, 
LiSiCA are some of the widely used tools. A complete list of 
tools for pharmacophore based drug discovery is given in 
Table 7. 

6. SUGGESTED WORKFLOW FOR CADD 

The authors have suggested the following workflow to a 
user for initiating the drug discovery process and effectively 
use different tools (Fig. 3). A user should have protein se-
quence and small molecule as an input. The CADD approach 

 

Fig. (2). Bar chart shows cumulative number of docking publications from the year 2008 to 2017; obtained by searching keyword docking in 
PubMed. 
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Table 6. Docking tools categorized based on features, algorithms, scoring functions, availability with URLs. 

Name of Tool 

 [Reference] 

Description of Tool  

[Web Link] 

Autodock Vina##  
[205] 

It is a Monte Carlo based docking software.  
 [http://vina.scripps.edu] 

Autodock### 
[206] 

Genetic Algorithm based docking software for docking small molecules. 
 [http://autodock.scripps.edu] 

BSP-SLIM# 
 [207] 

Blind low-resolution ligand-protein docking approach. 
[https://zhanglab.ccmb.med.umich.edu/BSP-SLIM/] 

COPICAT# 
[208] 

SVM based method for predicting interactions between proteins & ligands. 
[http://copicat.dna.bio.keio.ac.jp] 

DAIM## 
[209] 

Fragment-based docking suite. 
 [http://www.biochem-caflisch.uzh.ch/download/] 

DARWIN###  
[210] 

Prediction of the interaction between a protein and ligand. 
 [http://darwin.cirad.fr/product.php] 

Dock Blaster# 
 [211] 

A web server for virtual screening using structure-based ligand discovery. 
[http://blaster.docking.org/] 

DockingServer# 
[212] 

Integrates a number of computational chemistry software for docking. 
[https://www.dockingserver.com/] 

DockoMatic## 
 [213] 

Automate the creation and management of AutoDock screening jobs. 
[https://sourceforge.net/projects/dockomatic/] 

DockVision### 
 [214] 

Docking package including algorithms like Monte Carlo, Genetic algorithm, and database screening docking algorithms. 
[http://dockvision.sness.net/overview/overview.html] 

FINDSITE(X)# 
[215] 

A server for modelling GPCR and virtual screening of small-molecules.  
[http://cssb.biology.gatech.edu/skolnick/webservice/gpcr/index.html] 

FITTED 1.0##  
[216] 

A suite of programs to perform flexible protein-ligands docking. 
[http://www.fitted.ca] 

Fleksy## 
 [217] 

Program for flexible and induced fit docking. 
[http://www.cmbi.ru.nl/software/fleksy/] 

FLIPDock##  
[218] 

Genetic algorithm based software to performs flexible protein-ligand docking. 
[http://flipdock.scripps.edu] 

GalaxyDock##  
 [219] 

Protein-ligand docking program that allows flexibility. 
[http://galaxy.seoklab.org/softwares/galaxydock.html] 

GEMDOCK##  
[220] 

Generic evolutionary method for performing flexible ligand docking. [http://gemdock.life.nctu.edu.tw/dock/] 

GFscore# 
[221] 

A general non-linear consensus scoring function for docking. 
[ http://gfscore.cnrs-mrs.fr] 

GlamDock##  
 [222] 

Monte-Carlo based software for protein-ligand docking. [http://www.chil2.de/Glamdock.html] 

GPCRautomodel# 
[223] 

It automates modelling of GPCR and its interaction with small ligands. 
[http://genome.jouy.inra.fr/GPCRautomdl/cgi-bin/welcome.pl] 

HADDOCK### 
 [224] 

It is a docking software for flexible as well as rigid protein-ligand docking. 
[http://haddock.science.uu.nl/services/HADDOCK2.2/] 

HYBRID## 
[225] 

This docking program is similar to FRED.  
[https://docs.eyesopen.com/oedocking/hybrid.html] 

iScreen# 
[226] 

A server for virtual screening and de novo drug design. 
[http://iscreen.cmu.edu.tw/intro.php] 

(Table 6) contd…. 
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Name of Tool 

 [Reference] 

Description of Tool  

[Web Link] 

MS-DOCK##  
 [227] 

Rigid docking protocol, which generates multiple-conformation for virtual ligand screening. 
 [http://dock.compbio.ucsf.edu/Contributed_Code/multiconfdock.htm]  

ParaDockS## 
[228] 

It performs docking for small drug-like molecules to a rigid receptor. [https://github.com/cbaldauf/paradocks] 

Pardock# 
[229] 

An automatic server for rigid protein-ligand docking. 
[http://www.scfbio-iitd.res.in/dock/pardock.jsp] 

PatchDock### 
[230] 

Docking software designed for protein-small molecule docking. 
[https://bioinfo3d.cs.tau.ac.il/PatchDock/] 

PLANTS##  

[231] 

ACO-based search engine for flexible protein side chains. 

[http://www.tcd.uni-konstanz.de/research/plants.php] 

PLATINUM# 
[232] 

Calculation of hydrophobic properties of molecules receptor-ligand complexes.  
[http://model.nmr.ru/platinum/] 

Pose & Rank# 
[233] 

In silico software for scoring protein-ligand complexes. 
[https://modbase.compbio.ucsf.edu/poseandrank/]  

POSIT## 

[234] 

It is a structure based docking software best suited for pose prediction. 

[https://docs.eyesopen.com/oedocking/posit_usage.html] 

SiMMap# 
[235] 

It recognizes interaction between protein pockets and compound moieties. 
[http://simfam.life.nctu.edu.tw] 

Surflex-Dock##  
 [236] 

Docking program based on target active site for generating putative poses of molecules. 
[http://www.biopharmics.com/downloads.html] 

SwissDock# 

[237] 

Docking software for predicting interactions between protein and its ligand. 

[http://www.swissdock.ch] 

VinaMPI##  

[238] 

Massively parallel message-passing interface for virtual docking using Autodock Vina. 

[https://github.com/mokarrom/mpi-vina] 

# Web Server; ## Standalone software; ### Web Server and Standalone Software. 

Table 7. List of pharmacophore-based tools. 

Name of Tool 

[Reference] 

Description of Tool 

[Web Link] 

Pharmer##  

[256] 

A new computational approach to search the pharmacophore. 

[http://smoothdock.ccbb.pitt.edu/pharmer/] 

PharmaGist#  

[257] 

Freely available web server for pharmacophore detection. [http://bioinfo3d.cs.tau.ac.il/PharmaGist/] 

LigandScout## 
[258] 

Tool that derives 3D pharmacophores from structural data of macromolecule/ligand complexes. 
[http://en.bio-soft.net/3d/LigandScout.html] 

CoLibri##  
 [259] 

Compound collections used as virtual screening library. [https://www.biosolveit.de/CoLibri/]  

DecoyFinder##  
 [260] 

A graphical tool which helps in finding sets of decoy molecules for a given group of active ligands. 
[http://urvnutrigenomica-ctns.github.io/DecoyFinder/] 

MOLA## 

[261] 

Free software for virtual screening using AutoDock4/Vina in a computer cluster using non-dedicated multi-platform com-

puters. 
[http://esa.ipb.pt/biochemcore/index.php/ds/m] 

NNScore##  
[262] 

Neural network-based scoring function for the characterization of protein-ligand complexes. 
[http://rocce-vm0.ucsd.edu/data/sw/hosted/nnscore/] 

(Table 7) contd…. 
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Name of Tool 

[Reference] 

Description of Tool 

[Web Link] 

DockoMatic##* 
[263] 

GUI application that is intended to ease and automate the creation and management of AutoDock jobs for HTS of 
ligand/receptor interactions. [https://sourceforge.net/projects/dockomatic/]  

Shape-it ## 
[264] 

Free open-source shape-based alignment tool by representing molecules as a set of atomic Gaussians. 
[https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html] 

GMA ##  
[265] 

Combined 2D/3D approach for the fast superposition of flexible chemical structures. 
[http://www.chil2.de/Gma.html]  

Pharao## 
[266] 

Pharmacophore-based tool to align small molecules. 
[http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/align-it/1.0.4/align-it.html#align-it] 

AutoclickChem### 

 [267] 

Performs in silico click-chemistry reactions. 

[http://nbcr-222.ucsd.edu/autoclickchem/library_1.php] 

CATS  
[268] 

It is used to perform chemical similarity searching in a collection of small molecules. 
[http://www.cadd.ethz.ch/software/catslight2.html] 

LiSiCA##  
[269] 

Ligand-based virtual screening software. 
 [http://insilab.org/lisica/] 

LigPrep 2.5## 

[270] 

Performs 2D to 3D structure conversions. [https://www.schrodinger.com/ligprep] 

ACPC## 
[271] 

The software uses autocorrelation of partial charges for virtual ligand screening.  
[https://github.com/UnixJunkie/ACPC/blob/master/README.md] 

ChemCom## 
[272] 

This is a tool searches and compares chemical libraries. [http://bioinformatics.org/chemcom/]  

React2D## 

[273] 

Creates a library of molecules by combining fragment libraries based on user-defined chemical reaction. 

[http://molecularforecaster.com/products.html#react] 

BALLOON## 

[274] 

Free command-line program that creates 3D atomic coordinates from molecular connectivity via distance geometry and 

conformer ensembles using a multi-objective genetic algorithm. 
[http://web.abo.fi/fak/mnf/bkf/research/johnson/software.php.]  

Epik## 
[275] 

Enumerates ligand protonation states and tautomers in biological conditions. [https://www.schrodinger.com/Epik]  

SwissSimilarity#  

[276] 

Complete package for virtual screening of pharmacophores and their prediction.  

[http://www.swisssimilarity.ch/]  

Aggregator Advisor#  
[277] 

It identifies the molecule which shows aggregation.  
[http://advisor.bkslab.org/] 

ZincPharmer#  
[278] 

It searches the pharmacophore using ZINC database. [http://zincpharmer.csb.pitt.edu/] 

pepMmsMIMIC#  
[279] 

It performs multi search when a 3D structure of peptide is given among 17 million conformers present in MmsINC database.  
[http://mms.dsfarm.unipd.it/pepMMsMIMIC/] 

ShaEP## 

[280] 

It aligns two rigid 3D molecular structures and computes similarity index for the overlay.  

[http://users.abo.fi/mivainio/shaep/index.php] 

# Web Server; ## Standalone software; ### Web Server and Standalone Software. 

can be divided into two parts, (i) Sequence-based approach 
or (ii) Structure-based approach. In sequence-based ap-
proach, a user can directly predict the interacting residue 
using protein sequence. Various methods have been devel-
oped in the past which implement such kind of methodology 
(e.g., ATPint, NADbinder). These methods derive features 
directly from the sequence and apply machine learning tech-
niques for predicting small molecule interacting residues in a 
given protein sequence. Another approach is the structure-

based approach, where a user needs to predict the structure 
of the protein by using different techniques like hierarchical 
approach (where firstly secondary structure is predicted, 
which is followed by super-secondary structure prediction 
and finally tertiary structure prediction), comparative model-
ing or ab initio method. Predicted tertiary is then refined 
using MD techniques. After this, surface accessibility and 
pocket prediction are done to find the putative binding site 
for small molecule or a drug. After pocket prediction user 
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needs to do virtual screening or pharmacophore based 
modeling for selecting the putative ligand which can interact 
with the protein. After ligand identification, docking is per-
formed followed by ranking using various scoring schemes 
to find the native protein-ligand complex, which can be used 
for drug designing. A user needs to take care of different 
parameters before docking experiment is performed such as 
pre-processing of protein and ligand molecule (removal of 
water molecules, heteroatoms, steric clashes, the inclusion of 
ions, charges, etc.) since these parameters can have a power-
ful impact on the docking results. 

CONCLUDING REMARKS 

Considerable progress and advancement have been made 
in the field of protein-small molecule interaction based drug 
designing; still, there are many challenges, which are needs 
to be addressed. One of the biggest challenges is obtaining a 
high-quality tertiary structure of protein or macromolecule to 
which small molecule binds or interacts. Various computa-
tional algorithms have been developed to model protein 
structure since the number of the experimentally obtained 
structure is very less (< 1%) [281]. Over the years’ research-
ers have developed many algorithms to model protein secon-
dary and tertiary structures which are evaluated and ranked 
by CASP. Moreover, the software, web servers and algo-
rithms developed for sequence alignment, homology model-
ing, fold recognition, ab initio, residue-residue contact, and 
fusion techniques would likely to participate in CASP. Be-
sides, molecular docking is one of the crucial areas in drug 
designing and has two major challenges first, docking bind-
ing affinity calculation and second pose prediction. Predict-
ing the native pose of the complex among the number of 
poses generated after docking process is one of an important 
issue and needs attention. There are many scoring functions, 
which rank these docked poses; however, they are not accu-
rate enough to identify the native pose of the complex, which 
can be taken further for drug designing. The other issue as-
sociated with the molecular docking is predicting the com-
plex stability generated by the docking. Likewise, pharma- 
 

cophore tools are still unable to address the issue of model-
ing ligand flexibility, molecular alignment of the ligands, 
and selection of right training dataset for building pharma-
cophore model. 

In this review, we have collected and compiled the tools, 
which are related to structure-based drug design. These tools 
are categorized into four main parts, protein structure predic-
tion and pocket finding, pharmacophore prediction, PTMs 
finders, and molecular docking.  

Although considerable advancement has been observed 
in the structure-based drug designing with the evident of 
knowledge-based scoring function, there are certain limita-
tions associated with these tools which revealed another 
challenge in the field of drug discovery and identification of 
lead molecule by the virtual screening process. 
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