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A Highly Accurate Model for Screening Prostate Cancer

Using Propensity Index Panel of Ten Genes
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HIGHLIGHTS

� Application of machine learning techniques to identify biomarkers for PRAD cancer.
� Development of highly accurate models for classifying prostate cancer versus a normal sample.
� Introduction of the propensity index concept for enhancing model performance.
� Identification of top 10 genes using feature selection techniques.

ABSTRACT

Prostate-specific antigen (PSA) is a key biomarker commonly used to screen patients for
prostate cancer. A significant number of unnecessary biopsies are performed every year due
to poor accuracy of PSA-based biomarkers. In this study, we aim to identify alternate
biomarkers based on gene expression that can be used to screen prostate cancer with higher
accuracy. Our proposed machine learning model was trained and then tested on gene exp-
ression profiles of 500 prostate cancer and 51 normal samples in a 70:30 ratio. Numerous
feature selection techniques have been used in this study to identify potential biomarkers.
These identified genes have been used to develop various machine learning models for dis-
tinguishing between prostate cancer samples and healthy controls. Our logistic regression-
based model achieved the highest area under the curve (AUC) of 0.91 with accuracy of
82.42% on the validation dataset. We introduced a new approach called propensity index,
where expression of the gene is converted into propensity. Our propensity-based approach
significantly improved the performance of classification models and achieved an AUC of
0.99 with accuracy of 96.36% on the validation dataset. We also identified and ranked bio-
marker genes that can be used to distinguish prostate cancer patients from healthy indi-
viduals with high accuracy. It was observed that single-gene-based biomarkers can only
achieve accuracy of around 90%. In this study, we achieved the best performance using a
panel of 10 genes; a random forest model using the propensity index was used. With rapid
advancement, we hope that our proposed gene panel will be implemented for identifying and
screening of prostate cancer, avoiding biopsy procedures.
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1. BACKGROUND

Prostate Adenocarcinoma (PRAD) is the second most prevalent cancer diagnosed in men around

the world (Rawla, 2019). With recent advancements in health care, patients with prostate cancer are

undergoing clinical biopsy procedures for proper diagnosis and management of the disease. A better under-

standing of the molecular mechanisms responsible for the onset of prostate carcinogenesis would help in

exploring novel therapeutic methods.

In the literature, the prostate-specific antigen (PSA) test is a widely used test for detecting prostate cancer

at a clinically significant stage for better treatment outcomes (Kirby, 2016). Higher PSA levels could

indicate benign prostatic enlargement at an early stage. Due to false-positive prediction by this test, it leads

to overdiagnosis and many unnecessary biopsies (Mengual et al., 2015). In one of the studies, serological

FSCN1 levels were quantified to identify correlation with the disease, but were not found to be significant

among both groups (Tǎtaru et al., 2021).

Recently, two urine-based RNA biomarkers, prostate cancer antigen 3 (PCA3) (Hessels et al., 2003) and

fusion of two genes TMPRSS2:ERG (Laxman et al., 2006), have also been reported, which can be used to

distinguish between men with early-stage disease and men in high-risk stages. Studies have reported the

molecular mechanisms involved in development of PRAD, such as fusion of the members of the E26

transformation-specific family of transcription factors with androgen-regulated promoters (e.g., TMPRSS2)

(Tomlins et al., 2009) and occurrence of point mutations of TP53, FOXA1, PTEN, and SPOP genes

(Barbieri et al., 2012).

PCA3 (originally named as differential display code 3) is a urine-based biomarker that is widely used for

prostate cancer detection (Bussemakers, 1999). Apart from genomic changes, epigenetic level changes have

also been reported in cases of prostate cancer such as GSTP1 hypermethylation in up to 70% of cases

(Brooks et al., 1998; Ferro et al., 2017).

In one study, researchers claimed to identify a three-gene panel (HOXC6, TDRD1, and DLX1) as a

promising tool to identify men with prostate cancer even though they have been reported to have low serum

PSA (sPSA) values (Leyten et al., 2015). Researchers proposed a method, SelectMDx, which analyzes

RNA-based biomarkers, HOXC6 and DLX1, through reverse transcription to reduce the need for an initial

biopsy test (Haese et al., 2019). This method is applied on post-digital rectal examination (DRE) patients

and measures the HOXC6 and DLX1 mRNA levels (Carlsson and Roobol, 2017).

In one study, researchers proposed the ConfirmMDx method, which is a tissue-based epigenetic test

developed in a study of 350 men with negative biopsy or repeat biopsy in the last two years (Partin et al.,

2014). The test builds on a ‘‘field effect’’ phenomenon (Stewart et al., 2013). Due to limited data and

availability of samples, this method is not regularly recommended in clinical practice.

In recent studies on better clinical management of cancer, the use of machine learning techniques has

contributed to early detection of cancer (Camacho et al., 2018; Tătaru et al., 2021). There is need to identify

reliable biomarkers for screening of prostate cancer to avoid unnecessary biopsies (Cucchiara et al., 2018).

This motivated us to design this study for identifying biomarkers for screening prostate cancer patients with

high precision.

In this study, we aimed to identify gene expression-based biomarkers that distinguish between prostate

cancer patients and healthy controls. To select relevant features, we introduce single-gene-based feature

selection techniques such as mean, significance difference in mean, and area under the curve (AUC). These

techniques allow us to rank genes based on their classification efficiency. We selected the top 10 genes

using each feature selection technique.

We implemented seven machine learning techniques to develop prediction models using selected gene

features for identification of prostate cancer patients. To improve performance, we proposed a propensity

index-based approach for developing prediction models using propensity instead of expression of genes.

This propensity index method significantly improved the performance of models.

1306 JAIN ET AL.

D
ow

nl
oa

de
d 

by
 G

aj
en

dr
a 

R
ag

ha
va

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

19
/2

6.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



2. METHODS

2.1. Dataset

We downloaded the GDC TCGA prostate cancer (PRAD) dataset using the Xena Browser (https://

xenabrowser.net/datapages/), which contains the gene expression profiles of 500 prostate cancer samples

and 51 normal samples. It contains expression of 20,530 genes for each sample. In this study, fragments per

kilobase of transcript per million mapped reads (FPKM) values of RNA transcripts are used as quantifi-

cation values. Due to large variation in FPKM values, we normalized values using log2 after addition of 1.0

as a constant number to each of the FPKM values.

2.2. Feature selection techniques

In this study, we used three types of feature selection techniques based on mean, significance difference

in mean, and AUC. We applied these approaches to identify genes whose expression could be used to easily

distinguish between prostate and nonprostate subjects. We extracted the top 10 genes using these feature

selection approaches from a list of 20,530 gene identifiers. A brief description of each technique is given.

2.2.1. Mean-based approach. In this approach, we calculated the mean expression of each gene for

prostate cancer patients as well as for healthy samples. Then, we computed the difference in mean exp-

ression between prostate cancer and healthy samples for each gene. If the difference is high, it means that

the gene can be used to distinguish between the two types of samples. We ranked genes based on the

difference in mean and selected the top genes with the maximum difference.

The following formula has been used for computing the difference in mean for a given gene:

Dg = Mean PCg

� �
+ Mean NPCg

� ��� �� (1)

where Dg represents the difference in mean for gene g, PCg represents the expression of gene g in prostate

cancer samples, and NPCg represents the expression of gene g in nonprostate cancer samples.

Gene identifiers were sorted in decreasing order of the absolute difference in mean values. The top 10

gene identifiers with the highest mean difference between prostate cancer and nonprostate cancer samples

were selected from the sorted list.

2.2.2. Significance difference in mean. In this approach, we compute the level of significance in

mean expression of a gene in prostate and nonprostate cancer samples. In addition to mean, we also com-

pute the standard deviation in expression of a gene in prostate and nonprostate cancer samples.

The following formula is used to compute significance difference in mean for a given gene:

SDg =
Mean PCg

� �
+ Mean NPCg

� ��� ��

STD PCg

� �
+ STD NPCg

� � (2)

where SDg represents the significance difference in mean expression of gene g in prostate and nonprostate

cancer samples; PCg represents the expression of gene g in prostate cancer samples; NPCg represents the

expression of gene g in nonprostate cancer samples; STD represents the standard deviation; STD(PCg)

represents the standard deviation in expression of gene g in prostate cancer samples; and STD(NPCg)

represents the standard deviation in expression of gene g in nonprostate cancer samples.

The genes are sorted in decreasing order of SDg, that is, the value calculated by dividing mean by

standard deviation. The top 10 gene identifiers with the highest difference between prostate and nonprostate

cancer samples were selected from the sorted list.

2.2.3. Area under the curve. In this feature selection technique, we compute the discrimination power

of each gene in terms of AUC (or AUC-receiver operating characteristic curve [ROC]). First of all, we

calculated the mean expression of each gene ID for prostate cancer and noncancer data. The classification of

samples is performed based on whether the expression of a given gene is above or below the threshold value.

Second, different threshold values are used to compute the AUC from the curve between the true-

positive rate and false-positive rate. This process is performed for all genes in the dataset. Finally, the top

10 genes were selected, having maximum discrimination power in terms of AUC (Fig. 1).
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2.2.4. Propensity index matrix. In this study, we coined the concept of the propensity index matrix

for feature extraction from gene expression. In this method, we computed the range of gene expression for a

given gene in our dataset and the difference was divided into 10 equal bins. For samples in each bin, we

compute the propensity score for prostate and nonprostate cancer.

In the next step, we replaced the expression value of a gene by a propensity score based on the bin it

belongs to. A new dataset is created using the propensity index score, which is provided as an input file in

machine learning techniques for classification models.

2.3. Application of machine learning techniques

In this study, we applied seven different machine learning techniques for developing classification

models. These techniques are support vector machine, K-nearest neighbor, decision tree, random forest

(RF), linear regression, Gaussian Naive Bayes, and XGBoost machine learning. These techniques have

been implemented using the Python library, scikit-learn.

2.4. Evaluation of models

In this study, we used cross-validation techniques to evaluate the performance of our models. We ran-

domly divided our dataset into two datasets in the ratio of 70:30, where 70% of data are used for training

and 30% are used for validation. We trained and tested our models on the training dataset using a fivefold

cross-validation technique, where four folds are used as the training dataset and the remaining one fold

as the testing dataset.

This process of dividing training and testing datasets is repeated five times. The performance evaluation

of developed models on the testing dataset is called internal validation. To optimize the performance of our

models on the training dataset, we optimized parameters. For the final optimized model, the best perfor-

mance in internal validation was used to test an independent or validation dataset.

To measure the performance of our models, we used standard parameters commonly used to measure the

performance of classification models. Both threshold-dependent and threshold-independent parameters are

reported to evaluate the performance. We computed sensitivity, specificity, accuracy, and Matthews cor-

relation coefficient (MCC) as threshold-dependent parameters using the following equations:

Sensitivity =
TP

TP + FN
· 100 (4)

Specificity =
TN

TN + FP
· 100 (5)

Accuracy =
TP + TN

TP + FP + TN + FN
· 100 (6)

FIG. 1. List of genes selected based on different feature selection techniques; top 10 genes from each technique.
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MCC =
TP · TNð Þ - FP · FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þ

p (7)

where FP is false positive, FN is false negative, TP is true positive, and TN is true negative.

The area under the receiver operating characteristic curve, commonly known as AUC or ROC, is

reported as a standard parameter for threshold-independent measures.

3. RESULTS

We developed classification models for classifying prostate and nonprostate cancer samples using seven

machine learning techniques. First, we identified 10 genes (DLX1, SEMG1, PCA3, SEMG2, ZIC2,

SLC45A2, HOXC6, TDRD1, PIK3C2G, and AQP2) using mean-based feature selection techniques. These

selected genes were used to build machine learning techniques based on classification models. The per-

formance of all models is evaluated on training and validation datasets.

As shown in Table 1, our logistic regression-based model achieved the maximum AUC of 0.91 on the

training as well as validation dataset.

Second, we extracted the top 10 genes (EPHA10, NKX2-3, LOC100128675, APOBEC3C, DLX1,

PPARGC1A, TMLHE, HOXC6, MED21, and C1orf190) using significance difference in mean-based feature

selection techniques. These top 10 genes were used to build classification models using machine learning

techniques. The performance of these models was evaluated on training and validation/testing datasets.

As shown in Table 2, our support vector machine (SVM)-based model achieved the highest AUC of 0.92

on the training dataset and AUC of 0.89 on the validation dataset.

Finally, we used the AUC-based approach for feature selection, where the top 10 genes were selected

based on their performance. These genes (DLX2, APOBEC3C, EFNB1, QSOX2, HPN, SGEF, HOXC6,

PLP2, NDRG2, and DLX1) showed the highest performance in terms of AUC when we used the threshold-

based model for prediction. As shown in Table 3, our K-means nearest neighbor (KNN)-based model

obtained the maximum AUC of 0.92 on the training dataset and AUC of 0.91 on the testing dataset.

3.1. Models based on the propensity index

In this study, we added a new concept for developing classification models. Instead of using expression of a

gene as input, we used propensity of a gene as input. To convert expression of a gene to the propensity index of a

gene, we divide the range of expression into 10 bins. In the next step, we compute the propensity index for each

bin. Finally, expression of a gene is converted into a propensity score based on the expression in a given bin.

We developed classification models using the top 10 genes selected using mean-based feature selection

techniques. As shown in Supplementary Table S1, we obtained the maximum AUC of 1.0 on the training

dataset and 0.91 on the testing dataset using the RF model. The performance of our models improved

significantly when we used the propensity index instead of expression (See Table 1 and Supplementary

Table S1).

Table 1. The Performance of Machine Learning Technique-Based Models Developed Using

Top 10 Genes Selected Using a Mean-Based Approach

Model

Training dataset Validation dataset

Sens Spec Accuracy AUC MCC Sens Spec Accuracy AUC MCC

GNB 97.41 83.33 96.10 0.90 0.78 94.63 68.75 92.12 0.82 0.59

KNN 98.85 75.00 96.63 0.87 0.79 97.32 75.00 95.15 0.86 0.73

SVM 94.82 88.88 94.29 0.92 0.73 85.91 75.00 84.85 0.80 0.45

DT 98.56 83.33 96.36 0.90 0.78 97.99 62.50 94.54 0.80 0.66

RF 99.42 72.22 96.62 0.86 0.80 97.98 62.50 94.54 0.80 0.66

XGB 98.56 72.22 96.10 0.85 0.76 95.95 62.50 92.73 0.79 0.58

LR 93.96 88.89 93.50 0.91 0.70 83.22 75.00 82.42 0.91 0.70

AUC, area under the curve; DT, decision tree; GNB, Gaussian Naive Bayes; KNN, K-means nearest neighbor; LR, logistic regression; MCC,

Matthews correlation coefficient; RF, random forest; Sens, sensitivity; Spec, specificity; SVM, support vector machine; XGB, XGBoost.
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Similarly, we developed models based on the propensity index of 10 genes selected using significance

difference in mean-based feature selection. As shown in Supplementary Table S2, the logistic regression-

based model achieved highest performance with an AUC of 1.00 on the training dataset and AUC of 0.97

on the validation dataset. In comparison with Table 2, the performance of prediction models reported in

Supplementary Table S2 shows an improvement after converting expression values to propensity index

values.

Finally, we developed models using the propensity index of top 10 genes obtained using the AUC-based

feature selection approach. As shown in Supplementary Table S3, the RF model obtained best performance

with an AUC of 1.00 on the training dataset and 0.99 on the validation dataset. It is clear from the above

results that performance models developed using the propensity index (Supplementary Tables S1–S3)

achieved better performance than models developed using gene expression (Tables 1–3).

3.2. Single gene-based classification

To understand the importance of individual genes in distinguishing prostate and nonprostate samples, we

developed threshold-based models that can be used to identify prostate cancer samples based on expression

of a single gene. Thus, after identifying the best genes using feature selection techniques, we ranked them

on the basis of their capability of accurately predicting prostate cancer. All 30 genes extracted using feature

selection techniques (i.e., top 10 using the mean-based method, 10 using the standard deviation-based

method, and 10 using the AUC-based method) are considered for ranking.

After removing duplicate genes, we ranked these genes based on probability of correct prediction of

prostate cancer. As shown in Supplementary Table S4, 13 genes have prognostic capability with probability

of correct prediction from 0.97 to 0.989. In Supplementary Table S4, we also added the performance of

KLK3, a gene associated with PSA (a commonly used test). It is clear that the performance of the KLK3

gene is very poor in comparison with other genes used in our study.

In addition to ranking of genes, we also determined whether the expression of these genes in prostate

cancer samples is statistically significant or not. We plotted gene expression values of the genes as box plot

figures using the Gene Expression Profiling Interactive Analysis tool (Tang et al., 2017).

Table 2. The Performance of Machine Learning Technique-Based Models Developed Using

Top 10 Genes Selected Using Significance Difference in Mean

Model

Training dataset Validation dataset

Sens Spec Accuracy AUC MCC Sens Spec Accuracy AUC MCC

GNB 97.41 91.97 96.88 0.95 0.83 95.30 81.25 93.94 0.88 0.70

KNN 98.56 86.11 97.40 0.92 0.85 95.30 62.50 92.12 0.79 0.56

SVM 95.40 88.89 94.80 0.92 0.74 90.60 87.50 90.30 0.89 0.62

DT 97.70 77.77 96.09 0.88 0.75 97.32 56.25 93.33 0.76 0.58

RF 97.98 77.78 96.35 0.88 0.77 97.31 75.00 95.15 0.86 0.72

XGB 97.99 80.56 96.36 0.89 0.79 96.64 81.25 95.15 0.89 0.74

LR 95.40 97.22 95.57 0.96 0.80 91.95 87.50 91.15 0.88 0.65

Table 3. The Performance of Machine Learning Technique-Based Models Developed Using

Top 10 Genes Selected Using an Area Under the Curve-Based Approach

Model

Training dataset Validation dataset

Sens Spec Accuracy AUC MCC Sens Spec Accuracy AUC MCC

GNB 94.54 94.45 94.53 0.94 0.75 93.29 87.50 92.73 0.90 0.68

KNN 98.27 86.11 97.14 0.92 0.83 95.30 87.50 94.55 0.91 0.74

SVM 90.51 94.45 90.90 0.92 0.65 88.59 87.50 88.48 0.88 0.58

DT 97.99 83.34 96.10 0.91 0.80 96.64 68.75 93.94 0.83 0.65

RF 98.85 72.22 97.40 0.86 0.77 97.31 81.25 95.76 0.89 0.76

XGB 98.27 75.00 96.09 0.87 0.76 97.31 81.25 95.76 0.89 0.76

LR 92.53 94.45 92.72 0.93 0.70 88.59 87.50 88.48 0.88 0.58
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As shown in Figure 2, the box plots generated depict that 7 of 14 genes (HPN, HOXC6, DLX1, SGEF,

EPHA10, TDRD1, and PCA3) are significant.

4. DISCUSSION

In this study, we aimed to identify gene expression-based biomarkers that distinguish between prostate

cancer patients and healthy controls. We proposed a machine learning-based model, in which features were

extracted using mean-, significance difference in mean-, and AUC-based methods. We identified the top 10

genes based on these three methods and further applied machine learning techniques for screening of

prostate cancer and healthy control subjects with high accuracy.

In this study, we converted expression values of top 10 genes identified by feature selection techniques

into the propensity index matrix. Classification models were developed using the propensity matrix, which

showed significant improvement over models developed using gene expression. This is a novel approach

used in this study to improve the accuracy of prediction.

With the implementation of our method, we aim to prevent misinterpretation of clinical diagnostic tests,

which may lead to unnecessary treatments such as surgery and radiation therapy. These treatments might

expose subjects to unfavorable side effects such as incontinence, erectile dysfunction, infection, and pain.

Since PSA is the widely accepted primary blood test for prostate cancer detection, we explored the

possibility of using the KLK3 gene (PSA-associated gene) as a potential biomarker. Due to the small

difference between mean expression values for normal and prostate cancer patients, the KLK3 gene was not

identified in the top 10 genes through the feature selection techniques used in the current study.

From Figures 2 and 3, it is also evident that the KLK3 gene’s performance as a biomarker for prostate

cancer is not good in terms of sensitivity, specificity, and accuracy. Various feature selection techniques

were applied to determine genes that can strongly distinguish between tumorous and nontumorous records.

It was observed that DLX1 and HOXC6 appeared in the top 10 genes with all three feature extraction

techniques.

In a recent study, researchers reported the SelectMDx method, which proposed HOXC6 and DLX1 as

RNA-based urine biomarkers (Haese et al., 2019). They reported an AUC of 0.85 with 93% sensitivity,

47% specificity, and 95% negative predictive value and PCPTRC AUC of 0.76 on the validation cohort.

Another study reported a urinary three-gene panel, that is, HOXC6, TDRD1, and DLX1, as a tool to

distinguish prostate cancer patients with low sPSA values (Leyten et al., 2015). They reported an AUC

value of 0.77 for these three biomarkers.

We also developed a KNN model using these three biomarkers, ran the process 10 times by shuffling

data each time, and achieved average AUCs of 0.927 – 0.009 (mean – SD) for training and 0.971 – 0.002 for

testing datasets. We also converted expression values to propensity index scores for the support vector

classifier (SVC) model and obtained AUCs of 0.981 – 0.002 for the training dataset and 0.914 – 0.001 for

the testing dataset. These results were highly unbalanced in terms of sensitivity and specificity.

In a recent study, authors reported that RTN1, HLA-DMB, and MRI1 differentially expressed genes can

classify prostate cancer samples (450 samples) into three laterality classes (left, right, and bilateral) with

almost 99% accuracy (Hamzeh et al., 2020). In this study, members tried to predict the location of prostate

tumor tissue in samples using machine learning methods.

Another study in the literature aims to predict potential genetic biomarkers for each Gleason score

group. In this study, researchers considered the RNA-Seq dataset of 104 prostate cancer patients and

reported PIAS3 as a potential biomarker for Gleason score 4 + 3 = 7 and UBE2V2 for Gleason score 6

(Hamzeh et al., 2019). They further validated their results using a dataset of 499 prostate cancer patients

and reported overall accuracy of 93.3% for training data and 87% for the validation dataset.

In this study, we plotted box plots to understand the potential of the top 14 genes ranked based on

probability of correct prediction. We reported that HPN, HOXC6, DLX1, SGEF, EPHA10, TDRD1, and

PCA3 are found to be significant. Using past studies, we mapped the role of DLX1, TDRD1, and HOXC6 in

prostate cancer. In the literature, we found studies that explain the role of HPN (Ma et al., 2020), SGEF

(Wang et al., 2012), EPHA10 (Nagano et al., 2014), and PCA3 (Bussemakers, 1994) in prostate cancer

diagnosis and prognosis.

These studies further validate our findings. In the current study, we applied three feature selection tech-

niques, that is, mean-based, standard deviation-based, and AUC ROC-based approaches, for identifying the
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top 10 gene identifiers for classifying prostate cancer samples versus normal samples. Of the top 10 genes

identified, DLX1 and HOXC6 were found to be present using all three approaches.

Furthermore, to understand the role of the DLX1 and HOXC6 genes in functional pathways, we explored

Gene Ontology (GO) annotations of both genes. The DLX1 gene, also known as distal-less homeobox 1, is a

protein-encoding gene and is located on the long arm of chromosome 2. GO annotation of the DLX1 gene

includes sequence-specific DNA binding and chromatin binding. In the literature, DLX1 is reported to be

associated with dental fluorosis and Witkop syndrome. It is involved in related pathways such as DNA

damage/telomere stress-induced senescence and regulation of the nuclear SMAD2/3 signaling pathway.

The HOXC6 gene, also referred to as homeobox C6, is also a protein-coding gene and is located in

a cluster on chromosome 12. The homeobox gene family usually encodes a highly conserved family of

transcription factors involved in a crucial role (such as morphogenesis) in multicellular organisms.

Furthermore, GO annotations include DNA-binding transcription factor activity and transcription core-

pressor activity.

Diseases that are reported to be linked with HOXC6 include lymphoma, non-Hodgkin lymphoma, and

familial lymphoma. With recent advancements, there is always scope for improvement. Apart from these

approaches, various other measures such as entropy changes can be used to select genes that will lead to

higher information gain. We could also apply network analysis models to establish connections between

various gene IDs.

Building networks for tumorous and nontumorous gene expression data could provide deeper insights

into the molecular mechanisms involved in development of cancerous conditions.
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