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Abstract

This paper describes a method Pprint2, which is an improved version of Pprint developed for predicting RNA-interacting residues
in a protein. Training and independent/validation datasets used in this study comprises of 545 and 161 non-redundant RNA-binding
proteins, respectively. All models were trained on training dataset and evaluated on the validation dataset. The preliminary analysis
reveals that positively charged amino acids such as H, R and K, are more prominent in the RNA-interacting residues. Initially, machine
learning based models have been developed using binary profile and obtain maximum area under curve (AUC) 0.68 on validation
dataset. The performance of this model improved significantly from AUC 0.68 to 0.76, when evolutionary profile is used instead of binary
profile. The performance of our evolutionary profile-based model improved further from AUC 0.76 to 0.82, when convolutional neural
network has been used for developing model. Our final model based on convolutional neural network using evolutionary information
achieved AUC 0.82 with Matthews correlation coefficient of 0.49 on the validation dataset. Our best model outperforms existing methods
when evaluated on the independent/validation dataset. A user-friendly standalone software and web-based server named ‘Pprint2’ has
been developed for predicting RNA-interacting residues (https://webs.iiitd.edu.in/raghava/pprint2 and https://github.com/raghavagps/
pprint2).
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Introduction
Proteins and RNA are the most crucial biological components
of life, whereas RNA forms the essential part of ribosome,
spliceosome and performs diverse roles within cell [1]. The RNA-
protein interactions are necessary for several biological functions
such as gene expression regulation, viral assembly & replication,
posttranscriptional modification and protein synthesis [2–7].
Recent studies reveal that RNA-protein interactions shows major
involvement in developing human cancers and neurological
disorders such as amyotrophic lateral sclerosis and Alzheimer’s
[8–12]. These interactions also play a very crucial role in various
infectious and genetic disorders [13–15]. In order to understand
the functions and mechanisms of any biological process, it
is necessary to get information regarding the RNA-protein
interaction residues. In addition to that, RNA-protein interactions
play major role in cellular homeostasis and malfunctioning in
these interactions may lead to abnormal cellular functions and
diseases [16–19]. Therefore, identification of the RNA-interacting
residues can help with biotechnological manipulation. With the
better understanding of the RNA-protein interacting residues one

can design the RNA-based therapy to treat several RNA associated
disorders [20–23]. The advancements in experimental techniques
such as X-ray crystallography and nuclear magnetic resonance
(NMR) several structures of protein-RNA-interacting residues
have been discovered and reported in Protein Data Bank [24].
However these experimental methods are very cost expensive
and time-consuming. Whereas, computational approaches based
on sequence information are very viable and cost-efficient in
the probable detection of RNA-binding residues. Identification of
RNA-interacting residues/sites in proteins is a highly significant
and complex processes in molecular biology, and it has drawn
many researchers to work on it for several years in order to provide
the best of the best research in this field.

In the last few years a wide range of computational algorithms
has been developed for the prediction and identification of RNA-
interacting proteins and residues. Broadly, these methods can
be divided into two categories, sequence-based and structure-
based methods [25–31]. In case of structure based methods,
RNA-interacting residues are identified from structure of RNA-
protein complex. Unfortunately, due to limitation of experimental
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techniques it is not possible to determine structure of RNA-
binding protein. In the last two decades; numerous sequence
based methods have been developed where RNA-interacting
residues are identified from sequence only. Kumar et al. [32]
developed a sequence based model using machine learning tech-
niques and evolutionary information. Song et al. [33] developed
two approaches for predicting RNA-protein interaction residues
in protein sequences; first is sequence-based method and second
is feature-based method. In addition, PredRBR integrated huge
number of sequence, structure-based features for the prediction
of protein-RNA-binding affinity [34]. Another computational
method named RPiRLS [35] predicts RNA-protein interactions
using the structural information. Recently developed methods
such as ProNA2020 and hybridNAP predict using sequence
information [36]. List of all the available tools is provided in
Table 1.

In this study, we have made a systematic attempt to construct
machine learning and deep learning based models using the
sequence information. We compute physiochemical properties,
binary profile and position-specific scoring matrix or evolutionary
profile-based features. In order to develop prediction models, we
used a wide range of machine learning algorithms such as deci-
sion tree, extra-tree classifier, random forest, naive Bayes, gradient
boosting, logistic regression and k-nearest neighbor. In addition,
models have been developed using deep learning particularly
convolutional neural network. In order to provide uniform bench-
marking, all existing methods have been evaluated on an indepen-
dent or validation dataset. We have integrated our best models in
the webserver and standalone package for the prediction of RNA-
interacting or non-interacting residues in a protein sequence. It
has been shown that our convolutional neural network based
model using evolutionary profile better than existing methods.

Material and methods
Dataset collection and pre-processing
In the current study, we have compiled the datasets from the
recently published paper HybridNAP [48] and ProNA2020 [36],
which consist of 1057 and 360 protein sequences that are anno-
tated as RNA-binding proteins. In HybridNAP, the proteins were
collected from BioLiP database [52] that provides annotations of
biologically relevant protein–ligand interactions for complexes
extracted from Protein Data Bank (PDB). Whereas, in ProNA2020,
RNA-protein-binding dataset was collected from the Protein-RNA
Interface Database (PRIDB) [53], which is a comprehensive repos-
itory of protein-RNA interfaces extracted from the protein-RNA
complexes available in the PDB. We have used CD-HIT software
with the standards of 30% sequence identity to take care the
redundancy. In order to compare the performance of the proposed
method with HybridNAP and ProNA2020, we have used their
training dataset to train the model and independent/validation
dataset to evaluate the final model, after removing the redun-
dancy by implementing CD-HIT software. No protein in valida-
tion dataset has >30% similarity with any protein in training
dataset. Eventually, we were left with 545 (18 559 RNA-interacting
and 171 879 non-interacting residues) protein sequences in the
training dataset and 161 (6966 RNA-interacting and 44 349 non-
interacting residues) sequences in the validation dataset. After
that, we generated the overlapping patterns for each sequence
and with length 17, as done in previous studies [32, 54]. The
central i.e. 9th residue was taken as the representative of whole
pattern, such as if the 9th residue is RNA-interacting the pattern is
assigned as RNA-interacting otherwise non-interacting. To handle

the terminal residues, eight ‘X’ residues were added to both
terminals of the sequences before generating the patterns, so that
each residue gets the chance to be the central residue. Figure 1
represents the complete workflow adapted in this study.

Amino acid composition
Amino acid composition (AAC) of residues in a protein sequence
was computed using Pfeature standalone version [55]. For AAC, it
calculates the percent composition and generates a fixed length
vector of 20 amino acid residues as shown in Equation (1).

AACi = Ri

L
(1)

where AACi is amino acid composition of residue type i; Ri and L
number of residues of type i and length of sequence.

Feature generation
Binary profile
The binary profile is generated with the help of Pfeature [55],
here we computed binary profile. Where, each amino acid residue
represented with a fixed vector size i.e. 21, for example A is
represented as 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; in which 20
are natural amino acids and one is for dummy variable, whereas
X is denoted as 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1. Hence, each
pattern is denoted by a fixed length vector of size 357 (17 * 21).

Physicochemical properties profile
We have implemented Pfeature [55] to calculate physicochem-
ical properties profile using binary profile module. In this
approach, each amino acid is represented with a vector of
size 25, where each element denotes the particular physico-
chemical property, such as amino acid ‘A’ is represented as
0,0,1,0,1,1,0,0,0,0,1,1,0,0,0,0,1,0,0,1,0,0,1,1,0; where ‘X’ is denoted
by zero vector of length 25. ‘1’ denotes the presence and ‘0’
denoted the absence of a particular property. Since, the size of
each pattern is 17, hence the resulting length for each vector is
425 (17 * 25).

Evolutionary profile
In order to compute the evolutionary information of residues
we generate Position-Specific Scoring Matrix (PSSM) profiles. The
PSSM profile was created using PSI-BLAST, which searches each
sequence against the Swiss-Prot database. PSI-BLAST was con-
ducted with three iterations along with an e-value of 1e−3. As
shown in Equation (2), we further normalized the profiles, where
each pattern is represented as a vector of length 357 in the final
matrix for each sequence, which is of dimension N × 21, where N
is the length of the protein sequence.

PSSMN = 1
1 + e−x

(2)

where, x is the PSSM score and PSSMN is the normalized value.

Model building
In order to classify RNA-interacting and non-interaction residues
in a protein sequence, we have implemented various classifiers.
These machine learning classifiers implemented in python library
Scikit-learn [56]. To develop prediction models, we implement
various classifiers such as decision tree (DT), random forest (RF),

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac538/6901899 by Indraprastha Institute of Inform

ation Technology user on 19 January 2026



Prediction of RNA-interacting residues in a protein | 3

Table 1. List of computational resources for the prediction of RNA-interacting residues

Name Year Description (Weblink) Working status

BindN [37] 2006 SVM based method for predicting DNA and RNA binding sites (http://
bioinformatics.ksu.edu/bindn/)

No

RNABindR [38] 2007 Distance cut-off based prediction (http://bindr.gdcb.iastate.edu/RNABindR) Yes
Pprint [32] 2008 SVM and PSSM profile-based prediction method (https://webs.iiitd.edu.in/

raghava/pprint/)
Yes

PRINTR [39] 2008 SVM and PSSM profile-based prediction method (http://210.42.106.80/printr/) No
BindN+ [40] 2010 SVM based DNA or RNA-binding site prediction using PSSM profile (http://

bioinfo.ggc.org/bindn+/)
No

PRBR [41] 2011 RF based model developed using hybrid feature (http://www.cbi.seu.edu.cn/
PRBR/)

No

RPISeq [42] 2011 Sequence information prediction method for RNA-protein interaction (http://
pridb.gdcb.iastate.edu/RPISeq/)

Yes

RNABindRPlus [43] 2014 Machine Learning and Sequence Homology-Based Methods (http://ailab-
projects2.ist.psu.edu/RNABindRPlus/)

Yes

DR_bind [44] 2014 Evolutionary conserved structural and energetic features based prediction
(https://drbind.limlab.ibms.sinica.edu.tw/)

Yes

RBScore & Nbench [45] 2015 Scoring scheme based linking of feature values with nucleic acid-binding
probabilities
(http://ahsoka.u-strasbg.fr/rbscorenbench/)

No

SNBRFinder [46] 2015 Prediction of nucleic acids binding residues using hybrid algorithm (http://ibi.
hzau.edu.cn/SNBRFinder)

No

PredRBR [34] 2016 Structure based prediction method (http://denglab.org/PredRBR/) Yes
DRNAPred [47] 2017 Fast sequence-based method that accurately predicts RNA-interacting

residues
(http://biomine.cs.vcu.edu/servers/DRNApred/)

Yes

HybridNAP [48] 2017 RNA-binding residue prediction method (http://biomine.cs.vcu.edu/servers/
hybridNAP/)

Yes

RPI-Bind [29] 2017 Structure-based method for accurate identification of RNA-protein-binding
sites
(http://ctsb.is.wfubmc.edu/publications/RPI-Bind-Pred.php)

No

iDeepS [27] 2018 Deep convolutional and neural networks based prediction method
(https://github.com/xypan1232/iDeepS)

Yes

RPiRLS [35] 2018 Quantitative matrix based predictions of RNA interaction (http://bmc.med.
stu.edu.cn/RPiRLS)

No

SVMnuc & NucBind [49] 2019 Support vector machine-based ab-initio method (https://yanglab.nankai.edu.
cn/NucBind/)

Yes

PRIME-3D2D [31] 2020 Structure based RNA-binding residue prediction method (http://www.
rnabinding.com/PRIME-3D2D/)

Yes

ProNA2020 [36] 2020 Standard neural networks based method
(www.predictprotein.org)

Yes

NCBRPred [50] 2021 Multi-label learning framework method
(http://bliulab.net/NCBRPred/)

Yes

PST-PRNA [30] 2022 Protein surface topology method
(http://www.zpliulab.cn/PSTPRNA)

Yes

iDRNA-ITF [51] 2022 Induction & transfer framework based method
(http://bliulab.net/iDRNA-ITF/)

Yes

logistic regression (LR), eXtreme gradient boosting (XGB), Gaus-
sian Naive Bayes (GNB), extra-tree classifier (ET), K-nearest neigh-
bor and one-dimensional convolutional neural network (1D-CNN).

Five-fold cross-validation
To train, test and validate the prediction models, we employed 5-
fold cross-validation and an external validation as implemented
in previous studies [57, 58]. Five-fold cross-validation was
employed only on the training dataset. In which the data were
split into five parts, where four of which were used to train the
model and the fifth set was utilized for testing. This process
is iterated five times, in which each set is used in training
and testing the models. We have hyper-tuned the parameters
using grid-search approach for traditional machine learning and

deep-learning technique. For 1D-CNN model, the parameters were
hyper-tuned at three level: layers (filters in each convolution
layer, convolution filters’ size, number of dense layers and
number of neurons in each layer); functions (optimizers, loss
function and activation function) and rates (learning and
dropout).

Performance evaluation
In this work, we examined the performance of the model using
sensitivity, specificity, f1 score, accuracy, area under the receiver
operating characteristic (AUROC) and Matthews correlation coef-
ficient (MCC). These parameters belong to threshold dependent
(i.e. sensitivity, specificity, accuracy and MCC) and independent
category (AUROC) to evaluate our models. These parameters were
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Figure 1. Complete workflow of the study including the dataset creation, feature generation, model development and evaluation.

Figure 2. Average percent composition of each residue in RNA-interacting, non-interacting residues and general proteome.

computed using the following Equations (3–7).

Sensitivity = TP
TP + FN

∗ 100 (3)

Specificity = TN
TN + FP

∗ 100 (4)

Accuracy = TP + TN
TP + FP + TN + FN

∗ 100 (5)

F1-score = 2TP
FP + FN

(6)

MCC = (TP ∗ TN) − (FP ∗ FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(7)

where, FP is false positive, FN is false negative, TP is true positive
and TN is true negative.

Results
Compositional analysis
In order to understand the distribution of amino acid residues
in the RNA-interacting versus non-interacting versus general
proteome, we have calculated the percent amino acid compo-
sition. For percent amino acid composition of general proteome,
we have used the values from the Swiss-Prot database available
at https://web.expasy.org/protscale/pscale/A.A.Swiss-Prot.html.
As exhibited by Figure 2, positively charged residue H, K and R
are abundant in RNA-interacting residues as compare to non-
interacting or general proteome, where A, D, E, I, L and V are rich
in non-interacting and general proteome.

Physiochemical property analysis
In order to explore the nature of amino acids involved in the
RNA-interaction, we computed physiochemical properties-based
percent composition of residues involved in RNA-interaction.
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Figure 3. Percent composition based on physicochemical properties of residues involved in RNA-interaction.

Table 2. The performance binary profile based on models developed using different classifiers

Classifier Training dataset Validation dataset

Sens Spec Acc AUC F1 K MCC Sens Spec Acc AUC F1 K MCC

DT 19.14 88.93 82.13 0.54 0.17 0.07 0.07 15.94 89.07 79.14 0.53 0.17 0.05 0.05
RF 66.57 67.53 67.43 0.73 0.29 0.16 0.21 55.77 68.54 66.81 0.67 0.31 0.15 0.18
LR 67.20 68.16 68.07 0.74 0.29 0.16 0.22 55.79 70.37 68.39 0.68 0.32 0.16 0.19
XGB 66.88 67.54 67.48 0.74 0.29 0.16 0.21 55.86 69.65 67.78 0.68 0.32 0.16 0.19
KNN 60.32 63.75 63.41 0.64 0.24 0.10 0.15 52.60 64.66 63.02 0.60 0.28 0.10 0.12
GNB 66.63 65.14 65.28 0.71 0.27 0.14 0.19 56.30 67.11 65.64 0.65 0.31 0.14 0.17
ET 68.25 65.72 65.97 0.73 0.28 0.15 0.21 58.38 66.64 65.52 0.67 0.32 0.15 0.18
1D-CNN 73.91 73.76 73.78 0.81 0.36 0.24 0.31 50.66 74.63 71.38 0.68 0.33 0.17 0.19

DT: decision tree; RF: random forest; LR: logistic regression; XGB: eXtreme gradient boosting; KNN: K-nearest neighbour; GNB: Gaussian Naïve Bayes; ET: extra
tree; 1D-CNN: one-dimensional convolutional neural network; Sens: sensitivity; Spec: specificity; Acc: accuracy; AUC: area under the receiver operating
characteristic curve; K: Kappa; MCC: Matthews correlation coefficient.

As shown by Figure 3, positively charged, basic and hydrophilic
residues are abundant in the RNA-binding sites as RNA has a
negative backbone. On the other hand, negatively charged, neutral
charged, acidic, hydrophobic, small, non-polar and aliphatic
residues are scare in RNA-interacting sites.

Two sample logo
In the past, number of studies have shown that the interaction
property of a residue is influenced by its neighboring residues.
In this study, we have created the patterns of length 17, where
central i.e. 9th residue is the representative of whole pattern
and based on that a pattern is assigned as interacting or non-
interacting. Figure 4 represents the preference of residues as each
position in RNA-interacting and non-interacting patterns, and
it shows that residue R is highly preferred at interacting site
followed by K and H, flanked by positively charged residues R and
K. On the contrary, non-interacting sites are preferred by residue
L, followed by E, A and V, where these residues are flanked by
residues E and L.

Performance of binary profile
We have used binary profile as input features to train and evaluate
the prediction models by implementing various machine learning

classifiers. We used five-fold cross-validation technique to build
prediction models on training datasets. As shown in Table 2, in
case of machine learning techniques both logistic regression and
XGB achieve maximum AUC 0.74. In case of deep learning, 1D-
CNN based model obtained AUC 0.81, which is highest. In order
obtain unbiased performance of models we evaluate these models
on validation/independent dataset. In case of machine learning
techniques, we achieved maximum AUC 0.68 for both logistic
regression and XGB based models. In case of 1D-CNN performance
of model decrease drastically from 0.81 to 0.68 when tested
on validation/independent dataset instead of training dataset.
In summary, both 1D-CNN and machine learning based models
achieve same performance on validation dataset.

Performance of physicochemical properties
profile
In addition, models have been developed using physicochemical
properties profile, which represents each amino acid with vector
of length 25. In case of machine learning techniques, we got max-
imum AUC 0.74 and 0.68 on training and independent/validation
dataset, respectively (Table 3).

In case of deep learning 1D-CNN, we achieved maximum AUC
0.79 and 0.68 on training and validation dataset, respectively.
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Figure 4. Two sample logo exhibits the preference of residues at each position in RNA-interacting and non-interacting patterns.

Table 3. Performance measures for models developed by implementing various classifiers using physicochemical properties profile as
the input feature

Classifier Training dataset Validation dataset

Sens Spec Acc AUC F1 K MCC Sens Spec Acc AUC F1 K MCC

DT 16.15 91.03 83.73 0.54 0.16 0.07 0.07 14.00 91.46 80.95 0.53 0.17 0.06 0.06
RF 67.74 64.56 64.87 0.72 0.27 0.14 0.20 56.88 66.37 65.08 0.66 0.31 0.14 0.17
LR 67.30 68.19 68.10 0.74 0.29 0.16 0.22 55.70 70.48 68.47 0.68 0.32 0.16 0.19
XGB 65.41 68.60 68.29 0.73 0.29 0.16 0.21 54.22 70.50 68.29 0.68 0.32 0.16 0.18
KN 62.43 63.32 63.23 0.65 0.25 0.11 0.16 53.22 63.81 62.37 0.60 0.28 0.10 0.12
GNB 65.44 66.15 66.08 0.71 0.27 0.14 0.19 54.19 68.58 66.63 0.66 0.31 0.14 0.16
ET 65.81 67.25 67.11 0.72 0.28 0.15 0.20 54.65 68.74 66.83 0.66 0.31 0.14 0.17
1D-CNN 69.84 69.60 69.62 0.77 0.31 0.19 0.25 56.42 71.14 69.14 0.69 0.33 0.17 0.20

DT: decision tree; RF: random forest; LR: logistic regression; XGB: eXtreme gradient boosting; KNN: K-nearest neighbour; GNB: Gaussian Naïve Bayes; ET: extra
tree; 1D-CNN: one-dimensional convolutional neural network; Sens: sensitivity; Spec: specificity; Acc: accuracy; AUC: area under the receiver operating
characteristic curve; K: Kappa; MCC: Matthews correlation coefficient.

Table 4. Performance of various classifiers using PSSM profile as input feature for training and validation dataset

Classifier Training dataset Validation dataset

Sens Spec Acc AUC F1 K MCC Sens Spec Acc AUC F1 K MCC

DT 30.54 ± 1.56 92.02 ± 0.21 86.03 ± 0.31 0.61 ± 0.008 0.29 ± 0.018 0.22 ± 0.016 0.22 ± 0.016 22.08 92.42 82.87 0.57 0.26 0.17 0.17

RF 74.35 ± 1.79 70.63 ± 1.52 71.01 ± 1.20 0.80 ± 0.008 0.33 ± 0.012 0.21 ± 0.009 0.28 ± 0.009 62.26 70.90 69.73 0.73 0.36 0.20 0.24

LR 71.93 ± 1.69 71.63 ± 0.47 71.66 ± 0.29 0.79 ± 0.007 0.33 ± 0.14 0.21 ± 0.011 0.28 ± 0.013 61.71 74.12 72.44 0.75 0.38 0.23 0.27

XGB 74.23 ± 1.33 73.65 ± 0.61 73.71 ± 0.42 0.82 ± 0.006 0.36 ± 0.012 0.24 ± 0.008 0.31 ± 0.009 61.47 75.83 73.88 0.76 0.39 0.25 0.28

KN 74.19 ± 1.91 66.17 ± 0.79 66.96 ± 0.64 0.75 ± 0.012 0.30 ± 0.015 0.18 ± 0.012 0.25 ± 0.014 64.36 66.71 66.39 0.69 0.34 0.18 0.22

GNB 67.64 ± 1.70 68.82 ± 1.06 68.70 ± 0.80 0.75 ± 0.007 0.30 ± 0.010 0.17 ± 0.005 0.23 ± 0.007 54.78 73.28 70.77 0.70 0.34 0.18 0.21

ET 74.28 ± 1.87 70.24 ± 1.79 70.64 ± 1.44 0.80 ± 0.007 0.33 ± 0.012 0.21 ± 0.010 0.28 ± 0.009 62.82 70.12 69.13 0.72 0.36 0.20 0.24

1D-CNN 83.08 ± 1.29 83.37 ± 1.34 83.34 ± 1.36 0.91 ± 0.008 0.49 ± 0.025 0.41 ± 0.023 0.47 ± 0.021 80.19 82.35 82.05 0.82 0.55 0.45 0.49

DT: decision tree; RF: random forest; LR: logistic regression; XGB: eXtreme gradient boosting; KNN: K-nearest neighbour; GNB: Gaussian Naïve Bayes; ET: extra
tree; 1D-CNN: one-dimensional convolutional neural network; Sens: sensitivity; Spec: specificity; Acc: accuracy; AUC: area under the receiver operating
characteristic curve; K: Kappa; MCC: Matthews correlation coefficient.
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Figure 5. Difference in the AUROC of various models developed using PSSM profile.

These results indicate that models based on physicochemical
properties and binary profile have nearly same precision.

Performance of evolutionary profile
It has been shown in the previous studies that evolutionary
information provides more information then single sequence.
Thus, in this study PSSM profiles were generated for proteins to
capture evolutionary information. Machine learning based mod-
els have been developed using PSSM profile for predicting RNA-
interacting residues. As shown in Table 4, almost all classifies
developed using PSSM profile perform better then binary profile-
based models. In case of machine learning, XGB based model
obtain AUC 0.82 and 0.76 on training and independent/validation
dataset, respectively. It means the performance increases from
0.68 to 0.76 on the validation dataset, when we used PSSM profile
in place of binary profile. It shows importance of PSSM profile
in predicting RNA-interacting residues. Our 1D-CNN based model
obtained AUC 0.91 and 0.82 on training and validation datasets
respectively. In summary, 1D-CNN achieved maximum AUC 0.82
on validation dataset.

We have also compared the difference between the AUC of
models built using PSSM profile, to understand the overfitting
in the models by comparing their performances in training and
validation dataset as shown in Figure 5. The difference in the AUC
for training and validation dataset showed that DT model is least
overfitted, whereas the performance of the deep-learning model
exhibits that the resulting model is quite overfitted as compare to
the other models.

Comparison with existing methods
In order to justify a newly developed method, it is essential
to compare its performance with the existing methods. The
existing methods have been trained and evaluated on different
datasets as these methods have been developed over the years.
In order to provide unbiased evaluation of methods, one should
evaluate performance of all methods on a common dataset. In
this paper, evaluate the performance of the existing methods on
independent/validation dataset. The performance measures

Figure 6. ROC curve shows the performance of all methods on validation
dataset in term of area under curve (AUC).

taken into consideration were sensitivity, specificity, AUC,
accuracy, F1, Kappa and MCC. As shown in Table 5 and Figure 6,
Pprint2 perform better than existing methods with AUC of 0.82,
whereas iDRNA-ITF performed second best among the existing
methods with AUC 0.77 (See Table 5).

Service to scientific community
In order to facilitate scientific community, we developed a web
server and standalone package called Pprint2, which is avail-
able at https://webs.iiitd.edu.in/raghava/pprint2/. Our web server
allows the users to predict RNA-interacting residues in a protein
sequence pasted/uploaded by user. It allows users to select any
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Table 5. Performance of existing methods on the validation dataset

Methods Sensitivity Specificity Accuracy AUC F1 K MCC

DRNAPred 45.40 51.87 51.59 0.52 0.08 0.00 0.01
COACH-D 46.17 59.37 58.80 0.58 0.09 0.01 0.02
HybridNAP 56.90 56.05 56.09 0.59 0.10 0.02 0.05
Pprint 60.15 60.29 60.28 0.63 0.12 0.04 0.08
ProNA2020 62.07 62.44 62.43 0.68 0.13 0.05 0.10
NCBRPred 37.93 86.03 83.95 0.69 0.17 0.11 0.14
SVMnuc 63.03 65.39 65.29 0.70 0.14 0.06 0.12
RNABindR-
Plus

67.24 68.36 68.31 0.73 0.16 0.09 0.15

NucBind 65.71 66.92 66.87 0.74 0.15 0.08 0.14
iDRNA-ITF 71.65 71.83 71.82 0.77 0.18 0.11 0.19
Pprint2 80.19 82.34 82.05 0.82 0.55 0.45 0.49

Figure 7. Complete usage of prediction module of webserver.

modules for prediction that include PSSM profile and binary
profile. The resulting page displays the input sequence(s) with
highlighting the interacting residues in red color as represented
in Figure 7. In addition, server provides the facility to download
the results in .txt, .pdf and .png format. In addition, we have also
provided the python-based standalone package, which is available
from https://github.com/raghavagps/pprint2.

Discussion and conclusion
The interaction between RNA and protein complexes is responsi-
ble for many fundamental processes such as splicing, translation,
transport and silencing [59, 60]. Accurate identification of amino
acid residues involving in the interaction with the RNA lead to
the better understanding of the sequence specific mechanism of
RNA-protein interaction [61, 62]. Correct identification of RNA-
interacting residues in a protein is only possible if structure of
RNA-protein complexes is available. Unfortunately, crystallization
of all RNA-protein complexes is not possible due to number of

limitation of experimental techniques like crystallography and
NMR. In addition, experimental techniques are costly and time-
consuming. In order to facilitate researcher in the field of RNA
biology, many methods have been developed for predicting RNA-
interacting residues [63–65]. One of the major limitation of pre-
vious methods was that they have been trained and evaluated
on limited RNA-binding proteins. For example, in our previous
method Pprint [32], we trained and test our models on only 86
RNA-binding proteins. Due to lack of sufficient data, a lenient
cut-off level 70% has been used for removing redundant proteins.
This is true for most of old methods where limited set of RNA-
binding proteins were used for training and evaluation. In addi-
tion, proteins in dataset contain highs level of similarity with each
other. Over the years structures of RNA-protein complexes have
been grown drastically in PDB [62, 66]. Thus, there is a need to
develop new method on large set of RNA-binding proteins whose
structure is available in PDB. In addition, there is a need to create
separate dataset for training and validation. In order to avoid any
over optimization of machine learning models that proteins in
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training and validation should not have minimum similarity. In
this study, we make an attempt to train our models on large set
of proteins. Initially, we obtained 1057 and 360 protein sequences
from recently published articles hybridNAP [67] and proNA2020
[36]. In order to create dataset of redundant RNA-binding protein,
we removing the redundant sequences using CD-HIT at 30%. This
leads to a dataset of 545 proteins in training and 161 sequences
in independent or validation dataset. This is one of the largest
dataset used for training and validation. In addition, proteins in
training and validation dataset have similarity 30% or less.

As shown in results section, in most of the cases performance
of our machine learning based model on training and validation
dataset is nearly same. This indicates that our models are not
over optimized on training dataset. Our results indicate that
performance of models improved significantly using evolutionary
information. This support previous studies including our previous
method Pprint that evolutionary information is important for pre-
diction. The performance of models based on binary profile and
physiochemical property is nearly same. It means over optimiza-
tion is not a major challenge in case of machine learning tech-
niques if models developed using cross-validation techniques.
In case of 1D-CNN (deep learning), we observed high level of
over optimization. Most of the 1D-CNN models have high per-
formance on training dataset compare to training dataset. Thus
cross-validation techniques are not sufficient for evaluating deep-
learning models. These deep-learning models should be evaluated
on validation dataset for unbiased evaluation.

Key Points

• Machine learning based models were developed using
different profiles.

• PSSM profile of a protein was created to extract evolu-
tionary information.

• PSSM profiles of proteins were generated using PSI-
BLAST.

• Convolutional neural network based model was devel-
oped using PSSM profile.

• Webserver, Python- and Perl-based standalone package
and GitHub is available.
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