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Abstract. Molecular Property Diagnostic Suite (MPDSTB) is a web tool (http://mpds.osdd.net) designed to
assist the in silico drug discovery attempts towards Mycobacterium tuberculosis (Mtb). MPDSTB tool has nine
modules which are classified into data library (1–3), data processing (4–5) and data analysis (6–9). Module 1
is a repository of literature and related information available on the Mtb. Module 2 deals with the protein target
analysis of the chosen disease area. Module 3 is the compound library consisting of 110.31 million unique
molecules generated from public domain databases and custom designed search tools. Module 4 contains tools
for chemical file format conversions and 2D to 3D coordinate conversions. Module 5 helps in calculating
the molecular descriptors. Module 6 specifically handles QSAR model development tools using descriptors
generated in the Module 5. Module 7 integrates the AutoDock Vina algorithm for docking, while module
8 provides screening filters. Module 9 provides the necessary visualization tools for both small and large
molecules. The workflow-based open source web portal, MPDSTB 1.0.1 can be a potential enabler for scientists
engaged in drug discovery in general and in anti-TB research in particular.
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1. Introduction

Data and knowledge generated in drug discovery have
been escalating exponentially in recent years owing
to the demanding nature of pharmaceutical industry
to deliver affordable and safer drugs for existing and
emerging diseases.1–10 How to make the knowledge
thus generated available to the practicing scientists is an
issue of great significance as it reduces the redundancy,
enables research activity and focuses on the grand chal-
lenges in the healthcare sector.11–17 Open science and
open innovation are extremely important in the drug dis-
covery approaches in general and those directed towards
neglected and orphan diseases in particular.18–27 How
the existing knowledge helps medicinal chemists can be
addressed by answering the following two questions: a)
What is the value or relevance of molecules that were
synthesized? and (b) which of those molecules are the
most promising? Because currently chemist’s ability to
synthesize complex molecules has increased tremen-
dously and more often than not, the question is which
molecule to synthesize rather than how to synthesize.

Tuberculosis (TB) has become a global threat killing
nearly 1.4 million people with 10.4 million new cases
in 2015.28 The disease-causing bacteria Mtb is a rather
challenging microorganism that takes over six months
of treatment with multiple drugs to curb its infection.29

The therapeutic interventions further get confounded
due to the fact thatmost of the timeMtb remains in latent
phenotype, which is not well understood.30 The emer-
gence of multi-drug resistant, extensively drug-resistant
and totally drug-resistant forms have resulted in long
duration therapies with various side effects and toxic-
ity issues with a risk of non-compliance.31–38 Therefore,
the need of new therapy to combat this dreadful disease
is inevitable and demands exploration of new chem-
ical space. Computational approaches to obtain and
optimize anti-tubercular leads have been extensively
employed in this area.39–44 There are several public
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databases having diverse chemical classes of the com-
pounds including PubChem, ZINC, KEGG, DrugBank,
ASINEX, ChEMBL and NCI.45–62 The computational
tools and databases are required to facilitate rational pri-
oritization and analysis of compounds from the available
large chemical space. Further, the development of new
algorithms/scripts is required to classify the chemical
space for searching or extracting the useful information
for each molecule. The tools are needed to predict the
physical, chemical and biological properties of small
molecules in order to improve search capabilities.
Before synthesizing any molecule, the medicinal

chemist should have prior knowledge to optimize var-
ious physicochemical properties, structural alerts, in
addition to the understanding of protein-ligand interac-
tions that help in improving drug-likeness and avoiding
toxicity issues. There are a number of open source
scripts and algorithms developed by various developers
for solving drug discovery issues.63,64 Ideally, develop-
ing a disease-specific web portal which integrates the
publicly available tools could provide a right platform
to conduct drug discovery research in TB.
A variety of chemoinformatics analysis tools have

been previously implemented in workflow systems.
Steinbeck et al., have implemented the chemoinformat-
ics library of Chemistry Development Kit (CDK)65,66 in
the Taverna workflow suite.67 Steinbeck et al.68 have
also implemented CDK in Konstanz information miner
(KNIME), which is an open source workflow platform.
It contains functions like format conversion, signatures,
fingerprints and molecular properties generation. The
Galaxy platform69–71 is another workflow management
system that provides easy to use interfaces of tools to the
users and allows easy connection of the tools as well.
Various instances of Galaxy have already been estab-
lished.72 For example, Ballaxy73 is aGalaxy instance for
structural bioinformatics wherein functions like protein
preparation, ligand and protein checker, docking and
many other tools have been implemented.
The currentmanuscript presents aweb-basedMPDSTB

Galaxy tool, which provides an open source platform for
the chemoinformaticians, bioinformaticians, medici-
nal chemists, computational biologists, pharmacologists
and others scientists to work on the design of anti-
tuberculosis (anti-TB) drugs. The Galaxy based web
tool is conveniently designed to integrate with any other
software or script and can be used by designing user-
defined workflows, a feature conveniently exploited
by the users of Galaxy in many cases. The MPDSTB

tool provides three class of modules: a) Data Library
(modules: 1. Literature, 2. Target library, 3. Compound
library); b) Data Processing (4. File format conver-
sion, 5. Descriptor calculation); and c) Data Analysis
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Figure 1. MPDS is structured into data library (literature, target library, compound
library), data processing (file format conversion, descriptor calculation) and data anal-
ysis (QSAR, docking, screening and visualization).

(6. QSAR, 7. Docking, 8. Screening, 9. Visualization)
(Figure 1). While modules 1, 2, 7 and 8 are specific to
a particular disease (in this case TB), it is quite possi-
ble to make at least three out of the four modules, 2,
7, and 8 as generic. Efforts are underway to achieve
this in the near future. However, in MPDSTB1.0.1,
only five modules Compound library, QSAR, Dock-
ing, Screening, Visualization are generic in nature and
can be used ‘as is’ in drug discovery platforms directed
towards other diseases. As the main focus of the cur-
rent endeavor is to store all the data that is generated
for each of the molecules, we decided to generate a
unique MPDS ID, which is akin to Aadhar number in
India, or social security number in the USA where all
the information pertaining to a molecule is stored. A
structure-based classification tool has been employed
which facilitates the navigation through the chemical
space.
The current work has the following major objectives:

a) Quantitatively evaluating the multifarious aspects of
drug-likeness of a given molecule, in order to diag-
nose its potential application as a drug; b) Calculate
various drug-like physico-chemical properties for prior-
itization of compounds; c) Provide necessary framework
to employ virtual screening of large dataset of com-
pounds; d) Help synthetic medicinal chemists for the
design of novel compounds; e) Coordinate the strate-
gic development and integration of chemoinformatics
efforts; f) Develop new multi-disciplinary collaborative
projects. The currentwork focuses on the anti-tubercular
lead discovery, design and optimization. Expectedly, a

suitably altered protocol can be generated for other dis-
ease specific Galaxy webMPDS portals by customizing
some of the modules. Thus, MPDS in the long run, can
emerge as a general purpose open source drug discovery
web portal.

2. Methods and modules

Galaxy (http://galaxyproject.org/) is a web-based workflow
management system implemented in Python programming
language, which is widely used for making data libraries,
data integration, data processing and data analysis. In the
current work, MPDSTB is developed using Linux (CentOS
6.4) operating system having the python version 2.7. It pro-
vides a graphical user interface (GUI) to many computational
tools that helps in computational chemistry, drug design,
image analysis, climatemodeling, linguistics, and biomedical
research. Basically, it was developed to analyze the genomic
data including gene expression, proteomics, transcriptomics,
and gene assembly. Galaxy can be used directly on the web
or can be installed in local machines which gives freedom
to the users to integrate their own tools. It has flexibility in
using diverse biological, chemical data formats and it allows
the integration of tools that is written in any programming
language or script for which a command line invocation
can be constructed. Once the piece of code is written, a
tool definition file should be written in XML that describes
the working of the tool and its input/output parameters
(Table 1).

For each module, the XML code and its complete path
should be incorporated into the main configuration file of
the Galaxy. The new tool implemented gets displayed in the

http://galaxyproject.org/
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Table 1. Description of XML file as implemented
in Galaxy MPDSTB.

Tool ID Description

<tool id> Gives a unique name to the tool
whose description is mentioned in
the XML file.

<name> It has the name of the tool that will
be displayed as hyperlink in
Galaxy.

<description> This is displayed just after the
hyperlinked name.

<command> It describes how the tool (which
compiler) will be executed and its
input and output parameters.

<inputs> Defines the input parameters.
<outputs> Defines the output parameters.
<help> Describes what the tool does.

tool panel of the Galaxy home page. The Galaxy workspace
mainly consists of four areas, the first one is the navigation bar
which provide links to Galaxy’s major components, analysis
workspace, workflows, data libraries, and user repositories
(histories, shared data, workflows, pages), the second one is
the tool panelist containing the analysis tools and data sources
available to the user, the third one is detailed panel display
interfaces for tools selected by the user and the fourth one is
history panel that shows data and the results of analyses per-
formed by the user, as well as automatically tracked metadata
and user-generated annotations.

3. Structure of MPDSTB

MPDSTB is structured into data library (literature, tar-
get library, compound library), data processing (file
format conversion, descriptor calculation), and data
analysis (QSAR, docking, screening, and visualization)
(Table 2). Each of these modules is customized for TB
drug discovery and will be described in the following
sections.

3.1 Data library

3.1a Module 1: Literature: Module 1 provides infor-
mation of druggable protein targets/gene information,
FDA-approved drugs, and polypharmacology for Mtb.
The genetic information provided includes RvID, gene
name, gene product, class of protein, structural details
from PDB, active site, function, metabolic pathway,
localization, method of validation, drug/inhibitor infor-
mation, druggability index, and mechanism of action.
The literature module provides the list of available FDA
approved drugs along with their identification, pharma-
cology, potential targets and corresponding references.
The polypharmacology covers the structure of Mtb
cell wall, biosynthetic, metabolic pathways (cell wall,
chorismate, amino acids, lipids, carbohydrate, cofac-
tor, nitrogen/sulphur, DNA, protein), bibliography and
hyperlinks were given to various servers related to TB.

Table 2. Description of various modules in MPDSTB 1.0.1.

Category Modules Description

Data Library Module 1: Literature Contains Mtb proteins and its genetic information; FDA
approved drug information and polypharmacological
information.

Module 2: Target Library Contains crystal structures and homology models for Mtb
proteins.

Module 3: Compound Library Contains a single window interface for searching a
compound in MPDS compound database.

Data Processing Module 4: File Format Conversion Conversions of files from one chemical format to another
chemical format, 2D to 3D file conversion using Open
Babel.

Module 5: Descriptor Calculation Calculation of descriptors and fingerprints using PaDEL
and CDK tools.

Data Analysis Module 6: QSAR Generation of QSAR models using the data mining tools,
McQSAR and SVMlight.

Module 7: Docking Ligand Optimization; Conformer Generation and
Protein-Ligand docking.

Module 8: Screening Prioritization of compounds for drug-like features using
DruLiTo tool; Biopharmaceutical Classification System
(BCS); Identification of toxicophoric groups in a
compound.

Module 9: Visualization Visualizing protein-ligand interactions using Jmol and
Ligplot.
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Figure 2. Schema for the generation of MPDS compound library from various data sources and repre-
sentation of compound search engine.

3.1b Module 2: Target library: The target library
consists of crystal structures of 140 Mtb proteins which
are reported targets and also the ones prioritized through
systems level analysis of Mtb interactome. Each protein
is also annotated for key residues around the active site.
Most of these target structures were collected from pro-
tein data bank (PDB) and some of them were homology
models. If the structural information is not available,
then mutagenesis study results were collected from lit-
erature.Multiple sequence alignment of the same family
of protein was employed for identification of active site
residues for the protein. One of the principal objectives
of the target library is to provide a list of prepared pro-
teins in Mtb suitable for molecular docking, and give
hyperlink of the data source, if available. The collected
PDB structures were prepared by using standard proto-
cols such as assigning bond orders, adding hydrogens,
and minimizing protein complexes.
The targets were selected from Mtb H37Rv genome

family and they majorly belong to various enzyme
classes, such as oxidoreductase, transferase, hydro-
lase, lyase, isomerase, and ligase. These targets are
involved in various biological functions that include sig-
nal transduction, peptidoglycan and cell wall synthesis,

amino acid synthesis, drug metabolism, DNA precursor
synthesis, post-translational modifications and nitrogen
metabolism, etc. The protein structures in MPDSTB

target library can be potentially exploited in structure-
based drug design approaches.

3.1c Module 3: Compound library: The compound
library is generated with the objective of establishing a
single window interface to search compounds available
across different public domain databases. An efficient
small molecule search, implemented using multiple
search strategies, facilitates the comprehensive analy-
sis of the available chemical space that may be utilized
for identification of novel anti-TB compounds.

Preparation: For the preparation ofMPDSTB compound
library, existing small molecule databases such as Pub-
Chem, Drugbank, KEGG, NCI, ZINC and ASINEX
were downloaded. To ensure that globally acceptable
standards are followed to store and search this data,
each compound in the library is converted into SMILES,
InchI and InchIKey using OpenBabel 2.3.2.74 Indexing
of the compound library is done using InchIKey (Fig-
ure 2).
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Figure 3. A structure-based chemical classification system
of MPDS compound library.

Storage and search: As mentioned above, each com-
pound in the library is stored using InchI standards
along with SMILES string and the IDs from where
the compound is sourced. Multiple search options
are provided through MPDSTB web interface which
includes structure-based search, property-based search,
and fingerprint-based search (Figure 3). Compound
property data is mostly calculated using PaDEL. The
pKa values and IUPAC names are calculated using
ChemAxoncommand line tools. The substructure search
is implemented using RDkit.75 A novel fingerprinting
algorithm is developed to classify compounds at various
levels of structural features. This binary fingerprinting
algorithm is developed and employed for the classifi-
cation and clustering of all the molecules included in
the MPDSTB compound library database. Currently, a
30-bit qualitative and partially quantitative fingerprint-
ing scheme is adopted to cluster similar compounds
together and reduce the search space. Furthermore, two
open source tools, ‘molecule cloud’ and ‘openmolecule
generator’ are also implemented in compound library
module to create a molecular cloud of scaffolds and to
generate molecule library respectively.76,77

3.2 Data processing

3.2a Module 4: File format conversion: A core
requirement of any workflowmanagement system is the
connecting links between different analysis tools. Most
often these links are based on the file formats that are
read by these tools. As there are various molecular file
formats to represent chemical structures, an open source
file format converter is implemented to facilitate the cre-
ation of workflows over the web. Different tools require
specific input file formats and will produce output in
another specific format. In order to maintain a smooth
flow of data between different tools in a workflow, the
file format converter module utilizes one of the tools
from the Galaxy toolshed to convert one file format to
another based on user requirements. As of now, a few
input formats likemol2,mol, sdf, SMILES, etc., andout-
put formats, mol2, sdf, mol, pdb are incorporated. This

module also contains a tool that generates 3D coordi-
nate from 2D structural file or SMILES which utilizes
OpenBabel 2.3.2. The 3D structure generated follows
geometrical rules based on hybridization of atoms.Once
the structure is generated, the stereochemistry of the
structure is taken care of and the lowest free energy
conformer is generated by MMFF94 force field using
weighted rotor search.

3.2b Module 5: Descriptor calculation: In order to
computationally assess the properties of the compounds
present inMPDSTB compound library or those provided
by end users, two descriptor calculation tools, namely,
PaDEL and CDK, are incorporated in MPDSTB. These
tools may be used to calculate different compound prop-
erties. The input format for both of these descriptor
tools is sdf and provides the output in CSV format.
The descriptor module may read the output from com-
pound library search or user uploaded sdf. The output
may be used to buildmachine-learningmodels for target
specific filters, predicting anti-TB properties, drug-like
properties or toxicity of the compounds.

3.3 Data analysis

3.3a Module 6: QSAR: Two methods of data min-
ing, quantitative structure activity relationships (QSAR)
and support vector machine (SVM), are incorporated in
MPDSTB. A Multi-conformational Quantitative Struc-
ture-Activity Relationship (McQSAR) using Genetic
algorithms is implemented for developing QSAR mod-
els.78 The ‘Build_QSAR_Model’ tool of the QSAR
module takes the descriptor file of the compounds with
known activity and prompts the user to enter the name
of the column whose value needs to be predicted (activ-
ity, in this case). In order to remove the redundancy
and unwarranted features, the user has been given six
options. The feature selection options are as follows:
exclude correlated descriptors, exclude identical con-
formers, exclude inactive compounds, exclude sparse
conformers, exclude sparse descriptors and exclude
descriptorswith zeros. The user also has the flexibility to
set the number of times user wants cross-validation step
to be repeated. The user can perform four kinds of cross-
validation using the percentage of bins 3, 5, 7, 10 folds to
divide the compounds. McQSAR can be used to predict
the activity of new compounds using the model created
by the previouslymentioned tool. This accepts two input
files: one that contains the descriptors of the compounds
whose activity needs to be predicted and the second is
a model file created by the ‘Build_QSAR_Model’ tool
(Figure 4).
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Figure 4. Workflow for QSAR model generation.
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Figure 5. Workflow for compound prioritization using
screening and docking modules.

Along with McQSAR, SVMlight79 has also been
incorporated in MPDSTB which helps in classifying the
compound data into actives and inactives. The ‘Build
QSAR Model: SVMlight’ builds a QSAR model based
on descriptor files of active and inactivemolecules. Then
‘Classify Data: SVMlight’ tool takes the model file and
the descriptor file of compounds with unknown activity,
and classifies them into actives and inactives.

3.3b Module 7: Docking: The docking protocol
involves multiple steps including energy minimization

(chemical structure optimization), conformer genera-
tion, docking and its analysis, and visualization. In
MPDSTB, the docking module contains four tools to
carry out these steps. The ligand optimization tool
incorporates the Phenix electronic Ligand Builder and
Optimisation Workbench (eLBOW).80 The tool uses
semi-empirical quantum chemistry based calculations
using AM1 (Austin Model 1).81 Hydrogen atoms are
automatically added to the compound by eLBOW.
The conformer generation tool utilizes the OpenBabel
2.3.2. genetic algorithm approach to generate diverse
conformers based on RMSD. AutoDock Vina82 has
been implemented as the docking software in module
7. Thus, the use of docking module allows the user
to carry out efficient and robust docking calculations
(Figure 5).

The proteins can be uploaded as a PDB file, or can
directly be accessed from target library available in the
MPDSTB shared library. The ligands can be obtained
from the compound library of MPDSTB package or
a user can upload their choice of ligand in sdf or
pdb format with 3D coordinates. The docking calcu-
lation can be started using the default parameters and
with some user defined parameters. Users can also
download the docking results as a zip file containing
the complex files in PDB format and the Vina log
file containing the ranked binding free energy scores.
The docked complexes can be visualized through the
visualization module for examining the protein-ligand
interactions.
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Figure 6. Drug-Likeness prediction tool (DruLiTo) for screening chemical compounds, databases or libraries.
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Figure 7. Workflow for compound screening using DruLiTo and filters.

3.3c Module 8: Screening: To prioritize compounds
for their drug-like features, DruLiTo83 is integrated
into MPDSTB. This tool provides the assessment of
drug-like features based on eight different published

algorithms.84–88 To calculate drug-likeness of a com-
pound, DruLiTo needs descriptor data, which may be
calculated using CDK. DruLiTo uses these descrip-
tors to determine the drug-likeness of the molecule,
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based on the different rules as defined by the end
user. The user can then segregate the input dataset into
passed and failed groups based on one or more rules
selected (Figure 6, 7). In addition to this, the biophar-
maceutics classification system (BCS) is implemented
using in-house scripts to evaluate the solubility and the
permeability of compounds. These predictions can sub-
sequently be used to process the positive ligand set or
negative ligand set or the original input dataset, all of
which are in sdf format, to determine the BCS class (I,
II, III, IV) into which the molecules fall based on their
predicted permeability and intrinsic solubility values.

Another feature provided in MPDSTB is to perform tox-
icity analysis. A comprehensive list of structural alerts
including data from FAF-Drugs2 (204 substructures),
OChem and literature are generated. The toxicity filter
performs a substructure search on the query molecule
and highlights the matched toxicophoric groups from
this data and displays it in an image format. It also pro-
duces themol format of themoleculeswith toxicophoric
groups that can be saved. Along with this, a text file list-
ing the molecule ID, the total number of toxicophoric
matches found and the SMARTS pattern of the matched
groups can also be generated with this module.

Figure 8. (a) Visualization of protein-ligand complex by various structural representations, (b) LigPlot
for visualizing protein-ligand interactions (hydrogen bonding and hydrophobic contacts).
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3.3d Module 9: Visualization: Protein-ligand com-
plex can be viewed in LigPlot+ tool available in this
module in order to examine the protein-ligand interac-
tions. The key interactions of the ligand with active site
amino acids are displayed by hydrogen bonding (dashed
lines between the atoms) and hydrophobic contacts (an
arcwith spokes radiating towards the ligand atoms). The
protein-ligand complex can be visualized in Jmol by var-
ious structural representations (Figure 8).

4. Results and Discussion

4.1 The compound library and search page

MPDSTB compound library is a compiled and curated
database containing 110.31 million unique compounds
(as on 31st December 2016) from various publicly
available databases including PubChem, KEGG, ZINC,
DrugBank, ASINEX and NCI. Before making unique
compounds, salt containing compounds were removed
and further, the compounds were separated on the
basis of molecular weight taking 750 Da as cut-off.
Fingerprints were generated and compounds were clas-
sified into classes and clusters. Chemically well-defined
classes obtained from fingerprinting algorithm were
subjected to redundancy as well as removal of isotopes
based on the InchIKey and truncated InChI respec-
tively (Table 3). A class is a chemically well-defined
group, whereas cluster is a set of compounds with
a size limit of 0.25 million. After classification, the
compound library majorly consists of 106.30 million
cyclic compounds (2.34 million alicyclic, 5.96 million
heteroalicyclic, 41.51 million aromatic and 56.49 mil-
lion heteroaromatic). For aromatic compounds, class 12
(aromatic compounds contain two rings) has a maxi-
mum number of compounds (8.97 million) having 42
clusters, whereas class 20 (aromatic compounds con-
tains more than or equal to four rings) has 0.91 million
compounds in clusters. Highest number of compounds
is present in the heteroaromatic class 22 (10 million),
which are stored in 46 clusters (Figure 9). MPDSTB fin-
gerprinting algorithm and search engine offer a number
of advantages over the available fingerprinting algo-
rithms. The various available algorithms match a set
of SMARTS patterns against each molecule to calculate
each bit of the fingerprint that leads to reduced search
time.89 MPDS-Database uses SMILES notation of the
molecules for storage and fingerprinting which makes
it faster than the other approaches utilizing SMARTS
notation for pattern search and matching. The avail-
able fingerprinting algorithms are not suitable for the

Table 3. Distribution of number of compounds in structural
classes of MPDSTB compound library.

Chemical
Classes

Class‡ No. of
clusters£

No. of
compounds

Acyclic 1 8 1,790,302
2 4 708,804

Alicyclic 3 7 1,436,757
4 3 483,877
5 1 127,301
6 2 292,961

Heteroalicyclic 7 12 2562,119
8 11 2,289,075
9 4 772,643

10 2 337,420
Aromatic 11 31 6,842,221

12 42 8,978,649
13 32 6,898,540
14 13 2,649,637
15 31 6,276,919
16 10 2,071,127
17 5 1,024,251
18 15 3,089,744
19 14 2,771,697
20 5 903,427

Heteroaromatic 21 16 3,461,762
22 46 10,086,573
23 25 5,484,547
24 32 6,580,855
25 45 9,268,612
26 13 2,588,133
27 12 2,228,509
28 39 7,829,460
29 45 8,970,816

Large Molecules 30 7 1,499,109
Inorganic 31 1 11747

‡Class is a chemically well-defined group, £Cluster is a set of
compounds with a size limit of 0.25 million.

large data size (110.31 million) as the speed is com-
promised due to matching a large set of SMARTS
patterns against each molecule. The limitation of the
current version of MPDS-fingerprinting is that it is not
at the stage of being molecule specific. The purpose of
designing this fingerprinting algorithm was to reduce
the search space to a level where the 2D structural com-
parison can be performed without compromising the
computational power and time utilization. Therefore,
more efforts are required to make this fingerprinting
robust and molecule specific. Fingerprinting of inor-
ganic molecules is an issue with most of the available
fingerprinting algorithms. However, MPDSTB finger-
printing algorithmadopts the structure-based fingerprint
classifying the inorganic compounds efficiently. The
program for the generation of 30-bit fingerprinting is
written in Java (using NetBeans IDE 7.2.1).90 Further,
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Figure 9. Distribution of unique (dark color) and duplicate (light color) compounds
in different chemically well-defined classes.

the choice of SMILES notation for the assignment of
fingerprinting and structure search was attributed to the
easy and fast handling of the SMILES patterns rather
than SMARTS patterns (Table 4).

4.2 The search page

MPDSTB provides an interface for searching molecule
based on their diverse properties through compound
library search tool designed on the Galaxy platform.
The user can search the compound library by database
ID, exact structure, substructure, descriptor and finger-
print. The result of search page shows a list of molecules
fulfilling the criteria, which are further linked to MPDS
ID card, displaying the basic information of molecule.
The in-house program will calculate molecular finger-
prints and searches the query molecules in the database
for generating MPDS ID card. For assisting the molec-
ular drawing in MPDS-Galaxy portal, JS draw has been
incorporated.

4.3 Workflow system

This is one of the most important features of the cur-
rent platform, which paves the way to generate custom
design workflows. The Galaxy workflow system can be
used by a graphical drag-and-drop interface in which
tools are configured and interconnected between the
appropriate input and output points. The user can also
extract/download the workflow from the history pane.

MPDSTB presents a platform where a data library, data
processing and data analysis are configured and inter-
connected to assist in silico drug discovery. The user can
utilize the inbuilt workflows or design a new one to carry
out chemoinformatics analysis for any given molecule.
The MPDSTB workflow system can be interconnected
between different modules for a specific task.

4.4 MPDS ID card

The output from MPDSTB portal is MPDS ID card
(which is akin to Aadhar card in India, or social security
number in the USA) that represents a molecular profile
report specific to a given molecule. This card reports
the vital physico-chemical properties of a molecule
essential to estimate the drug-likeness and activity of
the molecule in the early stages of the drug discovery
and development pipeline. MPDS ID which provides
all pertinent information can have several pages. First
page is standard and essentially aids in registering
the molecule in the database, besides providing vital
physico-chemical parameters. However, if more perti-
nent data are available on the molecule, such as their
biological activity, spectroscopic data, toxicity, PK/PD
data, etc., subsequent pages will be created. The first
page of the molecule can be viewed publicly from the
portal; second and subsequent pages are stored in the
external hard disks at the development site, due to appar-
ent disk storage limitations (Figures 10 and 11).
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Table 4. 30-bit fingerprinting scheme and its various levels employed for the classification of molecules in MPDSTB 1.0.1.

Fingerprint Level Fingerprint bits Fingerprint bits and Molecular features

Level 1 (Skeleton) 1 2 3 4 5 6 1st bit: Acyclic/Cyclic
Acyclic:
2nd and 3rd bits: Saturation & Conjugation
4th bit: Straight/Branched
5th bit: Homo/Hetero atomic
Cyclic:
2nd and 3rd bits: Number of rings
4th and 5th bits: Alicyclic/Aromatic
6th bit: Large/Small

Level 2 (Atom type) 7 8 9 10 11 12 Acyclic and Cyclic:
7th bit: Geometrical isomerism
8th bit: Hydrogen Bond Donor
9th bit: Hydrogen Bond Acceptor
10th bit: Halogens
11th bit: Heteroatom in side chain/backbone
Acyclic:
12th bit: Presence of metal ion
Cyclic:
12th bit: Presence of fused/unfused rings

Level 3 (Functional group) 13 14 15 16 17 18 19 20 Acyclic and Cyclic:
13th bit: Carbonyl group
14th bit: Phosphate containing group
15th bit: Cyanide group
16th bit: Nitro group
17th bit: Sulphur group
18th bit: Amino group
19th bit: Alcohol/Ether group
20th bit: Boron

Level 4 (Size of molecule) 21 22 23 24 25 26 Acyclic and Cyclic:
21st, 22nd, 23rd and 24th bits: Number of
heavy atoms

25th bit: Chirality
26th bit: Connected/Disconnected structure

Level 5 (Heteroatom type in ring) 27 28 29 30 Acyclic:
27th, 28th, 29th and 30th bits: Even/Odd
number of carbons

Cyclic:
27th bit: Nitrogen in ring
28th bit: Oxygen in ring
29th bit: Sulphur in ring
30th bit: Phosphorus in ring

Level 6 – Number of heteroatom containing rings

5. Conclusions

MPDSTB 1.0.1 is a comprehensive open source Galaxy-
based web tool, which provides a platform to integrate
the data collection, processing, and analysis customized
towards anti-TB drug discovery and design. One of the
main features of this program is its ability to assess and
estimate the activity of a givenmolecule using chemoin-
formatics, bioinformatics tools, and the existing knowl-
edge in the area. The major attainment of MPDSTB

is the creation of a unique compound library (110.31
million) by removing duplicates, isotopic redundancy
and salts. A structure-based classification program was
developed, which classifies the compound library into
31 classes and 533 clusters.
We believe that the web-based chemoinformatics and

modeling tools are great enablers to tackle grand chal-
lenges in healthcare in general and drug discovery in
particular. One of the major bottlenecks for carrying
out research in drug discovery in the academia can be
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Figure 11. A workflow system for the generation of MPDS ID card by integration
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traced to the lack of proper software, access to the com-
prehensive information on the disease, and alsowhat the
contemporary challenges are in developing therapeutics
in a given area. Developed countries are not signifi-
cantly affected by TB and thus the onus of coordinating

and conducting frontline research on neglected diseases
will be on the developing world. It is very important
that India, possessing a tremendous pool of talent and
human resource, takes up the leadership role in under-
taking research on TB and other neglected diseases. The
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current web-based tool, MPDSTB is expected to provide
exactly such a platform to drive the research in this area.
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