
Prediction of exosomal miRNA-
based biomarkers for liquid biopsy
Akanksha Arora  & Gajendra Pal Singh Raghava 

In this study, we investigated the properties of exosomal miRNAs to identify potential biomarkers for 
liquid biopsy. We collected 956 exosomal and 956 non-exosomal miRNA sequences from RNALocate 
and miRBase to develop predictive models. Our initial analysis reveals that specific nucleotides are 
preferred at certain positions in miRNAs associated with exosomes. We employed an alignment-based 
approach, artificial intelligence (AI) models, and ensemble methods for predicting exosomal miRNAs. 
For the alignment-based approach, we used a motif-based method with MERCI and a similarity-
based method with BLAST, achieving high precision but low coverage of about 29%. The AI models, 
developed using machine learning, deep learning techniques, and pretrained language models, 
achieved a maximum AUC of 0.707 and an MCC of 0.268 on an independent dataset. Finally, our 
ensemble method, combining alignment-based and AI-based models, reached a maximum AUC of 0.73 
and an MCC of 0.352 on an independent dataset. We have developed a web server, EmiRPred, to assist 
the scientific community in predicting and designing exosomal miRNAs and identifying associated 
motifs (https://webs.iiitd.edu.in/raghava/emirpred/).
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Liquid biopsy represents a groundbreaking advancement in diagnostics, enabling the detection and monitoring 
of various diseases through the analysis of biofluids1–3. This minimally invasive technique permits sampling 
throughout the disease course, circumventing the risks associated with tissue biopsies4. Commonly utilized 
molecules in liquid biopsies include circulating tumor DNA (ctDNA), cell-free RNA (cfRNA), and circulating 
tumor cells (CTCs). However, these molecules face limitations, such as the lack of surface markers and the low 
abundance of the desired cell-free nucleic acids5. Recently, exosomes have emerged as promising candidates 
for liquid biopsy applications due to their stability and the critical roles they play in biological processes. 
Exosomes, small extracellular vesicles released by cells, carry a cargo of proteins, lipids, DNA, mRNA, miRNA, 
and metabolites6,7. Exosomal biomarkers are more stable than cell-free macromolecules and can reflect dynamic 
changes in the tumor microenvironment8. They can be detected earlier in the disease process, making them a 
more promising tool for early diagnosis and monitoring.

Exosomal miRNAs, which are small non-coding RNA molecules approximately 19–22 nucleotides long, play 
critical roles in cellular communication and the regulation of gene expression9,10. The biogenetic pathway of 
exosomal miRNAs initiates in the nucleus, where DNA sequences are transcribed by RNA polymerase to form 
primary miRNAs (pri-miRNAs). These pri-miRNAs adopt hairpin structures of 70–100 nucleotides following 
initial processing11. Exportin 5 mediates the transport of hairpin pri-miRNAs to the cytoplasm, where Dicer 
facilitates further processing12,13. Upon maturation, these double-stranded miRNAs are converted into single-
stranded miRNAs and subsequently sorted into exosomes (see Fig.  1). The incorporation of miRNAs into 
exosomes is a regulated process and is not random14,15. In the past, a number of miRNA-based biomarkers have 
been reported, such as miR-21, miR-1246, and miR-155 for non-small cell lung cancer, miR-17-5p, and miR-92a-
3p for colorectal cancer, and miR-200b and miR-200c for ovarian cancer16–18. Beyond cancer, exosomal miRNAs 
can be used as potential biomarkers for other diseases, such as cardiovascular and neurological disorders, and 
personalized medicine.

However, predicting exosomal miRNA computationally poses several critical challenges. Firstly, miRNAs 
are short RNA molecules which limits the complexity and informativeness of sequence-based features. This 
short length leads to significant feature sparsity and sequence similarity, complicating accurate differentiation 
between exosomal and non-exosomal miRNAs. Secondly, experimentally validated datasets distinguishing 
exosomal miRNAs from their non-exosomal counterparts remain relatively small and imbalanced, presenting 
hurdles for developing robust prediction models. Thirdly, the molecular mechanisms guiding miRNA packaging 
into exosomes are not yet fully understood, making it challenging to computationally capture consistent 
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biological signals. Lastly, the current lack of well-characterized exosomal sequence signatures adds complexity to 
computational predictions, requiring advanced techniques to reliably identify subtle patterns and discriminative 
features.

In this study, a systematic attempt has been made to identify exosomal miRNAs and their characteristic 
features to help leverage their potential in diagnostics and therapeutics. Firstly, we created a dataset of 
experimentally validated exosomal and non-exosomal miRNA sequences. Then, we divided this dataset 
into training and independent datasets, where the training dataset contains 80% miRNA sequences, and the 
validation/independent dataset contains the remaining 20% miRNA sequences. We trained and developed 
our models on the training dataset using five-fold cross-validation. All hyperparameters are tuned on the 
training dataset, and only the final model is evaluated on the validation dataset. This is important to avoid 
overoptimization of the models. We have tried various alignment-based and AI-based techniques to develop 
a method to predict exosomal miRNA with high precision. Initially, we used alignment-based approaches 
involving motif search and sequence similarity search. These alignment-based approaches are only successful if 
the query sequence has a known motif or similarity with the annotated sequence but fail in the absence of a motif 
or similarity. In order to overcome these limitations, we developed artificial intelligence (AI) models. Our AI-
based models include Machine Learning (ML), Deep Learning (DL), and Pretrained Language Models (PLM). 
Finally, we developed an ensemble method that combines the strength of alignment and AI-based models. 
This comprehensive approach aims to predict exosomal miRNAs accurately, paving the way for their broader 
application in biomedical research and clinical practice.

Results
In this study, we employed different techniques to predict exosomal miRNA, which can be categorized into three 
main categories: (i) Alignment-based approaches, (ii) AI-based models, and (iii) Ensemble methods. Alignment-
based approaches encompass motif-search using MERCI software and similarity-search using BLAST. AI-based 
methods involve the development of ML, DL, and PLM-based models. The AI-based models used numerous 
features and their combinations, such as compositional, binary, structural features, and embeddings. To harness 
the full potential of alignment-based and AI-based techniques, we devised an ensemble method that integrates 
the strengths of both approaches. The comprehensive architecture of EmiRPred and the methodologies employed 
are illustrated in Fig. 2.

Alignment-based classification methods
Motif-search
In our study, we discovered motifs within exosomal miRNA using MERCI software applied with various 
parameters19. For instance, employing a Gap value of 0 led to the discovery of 11 motifs that covered 26 

Fig. 1.  Shows biomolecules in body fluid commonly used in liquid biopsy, as well as the mechanism of 
secretion of miRNA from cell to exosomes.
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exosomal sequences in the training dataset and 8 sequences in the validation dataset. Similarly, applying a Gap 
value of 1 uncovered 11 motifs spanning 30 exosomal sequences in the training dataset and 10 sequences in the 
validation dataset. The detailed results of motif discovery using MERCI under different settings are presented in 
Supplementary Table S1, along with the sequences covered in the validation dataset.

Similarity-search using BLAST
In this paper, we applied blastn-short to perform a similarity search against a training dataset of exosomal and 
non-exosomal miRNA for the e-values ranging from 10–6 to 10620. Using this approach, we obtained an optimal 
performance at e-value 10–2, with 233 correct hits and 85 incorrect hits for exosomal miRNA sequences in the 
training set; and 66 correct hits and 24 incorrect hits for exosomal miRNA sequences in the validation set. The 
e-values lesser than 10–2 did not show enough coverage for sequences, and the values greater than 10–2 showed a 
higher error rate. The full results for BLAST from e-values 10–6 to 106 are shown in Table 1.

AI-based classification methods
ML models
Initially, we computed a wide range of sequence features for miRNA sequences; details are given in the Materials 
& Methods section. Next, we applied a variety of ML techniques for developing prediction models that includes 
DT, KNN, XGB, LR, SVC, RF, and ET. These results are given in Supplementary Table S2 and the hyperparameters 
for each ML model is given in Supplementary Table S3. The performances of ML-based models developed using 
different classes of features are as follows:

Fig. 2.  The complete architecture of algorithm used in EmiRPred.
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Composition-based features
We calculated various composition-based features using Nfeature, including nucleotide composition, 
composition of reverse complement, nucleotide repeat index, distance distribution of nucleotides, and pseudo 
composition21. Our RF-based model developed using the composition of reverse complement RNA sequence 
for k-mers 3 and 4 (RDK-3 & RDK-4) achieved a maximum AUC of 0.677. Our KNN model developed using 
TF-IDF achieved a maximum AUC of 0.656.

Binary profile
We computed binary profiles or one hot encoding features to represent the nucleotide sequences as binary 
vectors. We developed ML-based models using these binary profiles. An SVM-based model performed the best 
on these features with an AUC of 0.642, on the validation dataset.

Secondary structure-based features
We estimated secondary structure-based features for miRNA sequences using the RNAfold tool from the 
ViennaRNA package 2.022. These features included minimum free energy, ensemble free energy, centroid 
free energy, centroid diversity, frequency of the minimum free energy (MFE) structure in the ensemble, and 
ensemble diversity. A logistic regression model, trained on these secondary structure-based features, achieved 
the highest AUC of 0.558 on the validation dataset.

PLM embeddings as features
To extract the embeddings from PLM models, we used two pre-trained models—DNABert and BERT-base-
uncased and then fine-tuned them on our training dataset23,24. The embeddings were then extracted from the 
fine-tuned models for miRNA sequences which were then used to develop models using ML models. A random 
forest model achieved the maximum AUC 0.598 and 0.565 using embeddings of DNABERT and BERT-base-
uncased, respectively.

Best features
We developed ML models using a combination of best features, including mononucleotide binary profiles, the 
composition of reverse complementary miRNA sequences (RDK-3, RDK-4), and TF-IDF. This resulted in a total 
of 382 features, which were normalized using the StandardScaler from the Scikit-learn package25. Our Extra 
Trees model, built using these features, achieved an AUC of 0.707 on the validation dataset. Additionally, a 
Mann–Whitney test was conducted on the 382 features to identify those that significantly differentiate exosomal 
from non-exosomal miRNA sequences. We found 75 features with p values less than 0.05, indicating a significant 
difference between the two classes. The results for the individual best features and the combined best features are 
provided in Tables 2 and 3, respectively. The results for the Mann–Whitney test performed on these features in 
given in Supplementary Table S4.

Feature importance
We selected the top 20 features from the best-performing set of features according to their feature importance in 
the model. It was observed that 17 out of the 20 features were significantly different (p value < 0.05) as calculated 
by the Mann–Whitney test in Section “Results”. In binary profile features, it was observed that C at the 1st 
position (C_1), U at the 21st position (U_21), and G at the 15th position (G_15) are seen in more exosomal 
miRNA sequences than non-exosomal miRNA sequences. From reverse complement sequence compositional 
features (RDKs), it is seen that RDK_CAC is significantly increased in exosomal miRNA sequences than in non-
exosomal sequences (p value < 0.0001). In TFIDF features from the range of (1,3) in reverse complement miRNA 

e-value

Training Dataset Validation set

Correct hits Incorrect hits No hits Total Correct hits Incorrect hits No hits Total

106 769 758 0 1527 185 198 0 383

105 769 758 0 1527 185 198 0 383

104 769 758 0 1527 185 198 0 383

103 769 758 0 1527 185 198 0 383

102 769 758 0 1527 185 198 0 383

101 769 758 0 1527 185 198 0 383

100 (1) 626 559 342 1527 152 146 85 383

10–1 300 143 1084 1527 79 44 260 383

10–2 233 85 1209 1527 66 24 293 383

10–3 175 53 1299 1527 49 15 319 383

10–4 119 34 1374 1527 35 13 335 383

10–5 99 24 1404 1527 30 11 342 383

10–6 50 14 1463 1527 14 6 363 383

Table 1.  Number of correct, incorrect, and total hits for exosomal miRNA sequences in training and 
validation set for e-values ranging from 10–6 to 106.

 

Scientific Reports |        (2025) 15:31191 4| https://doi.org/10.1038/s41598-025-15814-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


sequences, it is seen that “U” was found in abundance in exosomal sequences than non-exosomal, dinucleotides 
“AC” and “UC”, and trinucleotides “GGA”, “GGC”, and “GUC” were also significantly increased in exosomal 
sequences. The top 20 most important features in distinguishing exosomal and non-exosomal miRNA sequences 
have been shown in Fig. 4. The results for the importance of all features are given in Supplementary Table S5.

DL models
Sequences
We applied the CNN algorithm to develop a prediction model using the binary profiles of miRNA sequences26. 
The model gave an AUC of 0.611 on the training dataset after five-fold cross-validation and 0.621 on an 
independent validation dataset. The detailed results for CNN model applied on miRNA sequences are given in 
Supplementary Table S2 and the hyperparameters for each model is given in Supplementary Table S3.

Structure images
We obtained the secondary structures of miRNA sequences using the RNAfold of the Vienna RNA package22. 
RNAfold predicted secondary structure of miRNA in form of images. These images were used to develop models 
CNN and ResNet 5027,28. Our CNN and ResNet50 achieved AUCs of 0.551 and 0.553, respectively. The results for 
these models applied on RNA secondary structure images are given in Supplementary Table S2.

PLM models
We used pre-trained PLM models like DNABERT and BERT-base-uncased and fine-tuned them on our data23,24. 
DNABERT was able to differentiate between the exosomal and non-exosomal sequences with an AUC of 0.535 
and BERT-base-uncased was able to differential them with an AUC of 0.608. The detailed results for finetuned 
PLM models are given in Supplementary Table S2 and their hyperparameters are given in Supplementary Table 
S3.

Hybrid classification method
To develop a model that is able to differentiate between exosomal and non-exosomal miRNA sequence classes 
with high accuracy, we developed a hybrid model that combined the predictive power of our best performing ML 
model on the best identified features with motif-search, and similarity search algorithm. The best performing 

Model Thr

Training set Validation set

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

Binary features/One hot encoding—mononucleotides

DT 0.51 54.09 54.49 54.28 0.553 0.086 58.38 53.03 55.61 0.571 0.114

RF 0.50 61.61 59.63 60.63 0.640 0.212 58.92 63.64 61.36 0.634 0.226

LR 0.50 54.99 54.35 54.68 0.578 0.093 52.43 60.10 56.40 0.560 0.126

XGB 0.50 57.20 57.12 57.16 0.614 0.143 56.76 52.02 54.31 0.571 0.088

KN 0.51 55.51 59.76 57.62 0.613 0.153 58.92 60.10 59.53 0.614 0.190

GNB 0.52 54.73 55.14 54.94 0.569 0.100 54.05 55.55 54.83 0.568 0.100

SVC 0.50 59.40 60.95 60.17 0.634 0.204 61.08 62.12 61.62 0.642 0.232

ET 0.50 56.42 59.50 57.95 0.628 0.159 58.38 65.66 62.14 0.633 0.241

Reverse Complement Sequence Composition (RDK3 + RDK 4)

DT 0.53 54.86 49.21 52.06 0.529 0.041 58.92 52.02 55.35 0.559 0.110

RF 0.50 58.89 56.99 57.95 0.627 0.159 61.62 63.64 62.66 0.677 0.253

LR 0.50 57.07 56.60 56.84 0.596 0.137 56.22 60.10 58.23 0.602 0.163

XGB 0.50 58.50 56.73 57.62 0.601 0.152 58.38 58.59 58.49 0.620 0.170

KN 0.48 60.31 57.52 58.93 0.624 0.178 65.41 53.54 59.27 0.644 0.191

GNB 0.08 55.90 56.46 56.18 0.594 0.124 52.97 55.05 54.05 0.568 0.080

SVC 0.50 62.26 56.60 59.45 0.628 0.189 63.78 57.58 60.57 0.644 0.214

ET 0.50 59.66 59.37 59.52 0.639 0.190 62.70 59.09 60.84 0.662 0.218

Term Frequency- Inverse Document Frequency (TFIDF) on reverse complementary 
sequence (kmer range—1,3)

DT 0.01 55.25 55.28 55.26 0.553 0.105 52.43 60.10 56.40 0.563 0.126

RF 0.51 59.53 57.78 58.67 0.622 0.173 63.78 56.57 60.05 0.632 0.204

LR 0.51 54.86 56.86 55.85 0.594 0.117 51.89 53.03 52.48 0.565 0.049

XGB 0.51 58.75 58.58 58.67 0.605 0.173 62.70 53.03 57.70 0.620 0.158

KN 0.41 56.94 59.37 58.14 0.602 0.163 71.35 58.59 64.75 0.656 0.301

GNB 0.46 56.81 56.73 56.77 0.588 0.135 52.43 51.52 51.96 0.564 0.039

SVC 0.51 57.85 62.01 59.91 0.635 0.199 61.08 61.11 61.10 0.634 0.222

ET 0.51 61.61 62.01 61.81 0.652 0.236 58.92 58.59 58.75 0.629 0.175

Table 2.  AI-based methods results for the best performing features.
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prediction model is ET model with an AUC of 0.707 on independent validation dataset, which was improved to 
0.712 when motif-search algorithm results were added using the hybrid approach scoring system described in 
“Methods”. The AUC further improved to 0.73 when we added the similarity-search algorithm using BLAST on 
e-value = 10–2 to our model. Along with the AUC of 0.73, this final model also showed an accuracy of 67.62% 
and an MCC of 0.352 on an independent validation set. The resulting metrics for both training and independent 
validation set for this hybrid model are given in Table 3. The Area Under the Receiver Operating Curves 
(AUROC) for the training and validation set for the hybrid model are shown in Figs. 3 and 4.

Comparison with existing methods
Presently, there are a few existing methods that predict the subcellular location of miRNA, with “exosome” being 
one of the locations. However, there is no tool that solely focuses on exosomal miRNA and predicts it with high 
accuracy. The tools that take miRNA sequences as input include miRNALoc, and EL-RMLocNet29,30. We wanted 

Fig. 3.  AUROC graphs for the hybrid model (A) Training set and (B) Independent Validation set.

 

Model Thr

Training set Validation set

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

Best features combined—One hot encoding (mononucleotides) + RDK-3 + RDK-4 + Reverse 
complement TFIDF (1,3)

DT 0.50 56.16 53.83 55.00 0.550 0.100 56.76 54.55 55.61 0.557 0.113

RF 0.51 57.59 61.74 59.65 0.648 0.193 60.54 59.09 59.79 0.637 0.196

LR 0.50 57.46 56.99 57.23 0.602 0.144 60.54 58.59 59.53 0.620 0.191

XGB 0.55 55.12 63.98 59.52 0.636 0.192 65.41 56.57 60.84 0.640 0.220

KN 0.50 57.98 59.63 58.80 0.621 0.176 63.24 58.08 60.57 0.656 0.213

GNB 0.98 55.25 53.83 54.55 0.558 0.091 38.38 70.71 55.09 0.586 0.096

SVC 0.51 55.77 62.80 59.25 0.644 0.186 64.32 64.65 64.49 0.678 0.290

ET 0.50 62.39 62.01 62.20 0.672 0.244 63.24 63.64 63.45 0.707 0.269

Hybrid model: Best features combined with motif-search and similarity search

DT 0.51 57.33 53.83 55.59 0.614 0.112 57.84 54.04 55.87 0.622 0.119

RF 0.55 61.22 65.83 63.51 0.694 0.271 64.86 62.63 63.71 0.685 0.275

LR 0.59 60.96 60.16 60.56 0.663 0.211 64.32 61.62 62.92 0.687 0.259

XGB 0.59 61.74 61.21 61.48 0.680 0.230 69.19 53.54 61.10 0.694 0.230

KN 0.54 69.00 54.35 61.74 0.673 0.236 70.81 54.04 62.14 0.690 0.252

GNB 0.93 60.44 50.00 55.26 0.618 0.105 49.73 67.68 59.01 0.646 0.177

SVC 0.54 60.44 62.27 61.35 0.691 0.227 67.03 65.15 66.06 0.711 0.322

ET 0.52 65.63 62.93 64.29 0.703 0.286 67.57 67.68 67.62 0.730 0.352

Table 3.  Results for (a) best performing features combined (AI-based methods), and (b) hybrid model: best-
performing features (AI-based methods) combined with motif-search and similarity search (Alignment-based 
methods).
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to compare the performances of these existing tools with our prediction tool. The tool miRNALoc reports the 
highest accuracy of 50% for predicting the subcellular localization of miRNA on an independent validation 
set, whereas EL-RMLocNet reports the highest AUC of 0.629 for predicting human miRNA on a benchmark 
dataset. To compare the results, we fed our independent validation set into the prediction servers, where we got 
an AUC of 0.494, an accuracy of 48.04%, and an MCC of − 0.028 from the miRNALoc web server as compared 
to EmiRPred which gives an AUC of 0.73, accuracy of 67.62%, and MCC of 0.352.

However, we were not able to get the predictions from EL-RMLocNet as it only takes one sequence at a time 
for the prediction, making it unfeasible to predict the validation set comprising 383 sequences. To overcome 
this issue, we instead used data from EL-RMLocNet and predicted exosomal sequences using our web server 
EmiRPred. We used the human miRNA data from EL-RMLocNet as our model is built specifically for human 
miRNA for lengths 15–26 nucleotides. The dataset provided on this server only had 305 human miRNA 
sequences (158 exosomal and 147 non-exosomal). However, about 95 sequences were longer than 26 nucleotides 
ranging from lengths 61 to 149 nucleotides with most of being non-exosomal (~ 70%) which shows that the 
authors might have taken pre-miRNAs in addition to the mature miRNA. After removing these sequences, about 
210 miRNA sequences were left. Out of these 210 sequences, about 50 sequences contain “T” instead of “U”, 
and all 50 sequences were non-exosomal. After removing these, we went ahead with the remaining 160 mature 
sequences (130 exosomal and 30 non-exosomal) which do not contain “T” and fed it into our web server which 
resulted in an AUC of 0.891 and MCC of 0.639. These comparisons demonstrate that EmiRPred is better than 
the previous methods for predicting exosomal miRNA sequences.

Webserver and standalone software
One of the objectives of this study is to assist the scientific community working in the field of diagnostics or 
prognostics, specifically on exosomal miRNA-based biomarkers. This web server includes four modules: Predict, 
Design, Motif-scan, and BLAST-search. The “Predict” module accepts query sequences as input and predicts 
exosomal miRNA. Our “Design” module allows users to generate all possible mutant miRNA sequences and 
predict exosomal mutant miRNA. The "Motif-scan" module enables users to identify or scan known exosomal 
motifs in the query miRNA sequence. The "BLAST-search" module allows users to perform similarity searches 
against a database of known exosomal and non-exosomal miRNA sequences. This web server is compatible with 
smartphones, PCs, iMacs, and tablets. In addition to the web server, we have also created a Python package, a 

Fig. 4.  The 20 most important features for the classification of exosomal and non-exosomal miRNA.
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standalone tool, and a GitHub repository for this tool, available at the following links: ​h​t​t​p​s​:​/​/​w​e​b​s​.​i​i​i​t​d​.​e​d​u​.​i​n​/​r​
a​g​h​a​v​a​/​e​m​i​r​p​r​e​d​/​​​​ and https://github.com/raghavagps/emirpred.

Discussions
Exosomes are small vesicles enclosed by a lipid membrane bilayer, secreted by most cells in the body. They carry 
various molecules, including proteins, lipids, metabolites, and RNA sequences6. In diagnostics, exosomes provide 
a non-invasive means to detect biomarkers for various conditions, such as cancer, neurodegenerative diseases, 
and cardiovascular disorders. In recent years a number of exosome-based biomarkers have been identified; for 
example, exosomal PD-L1 has been highlighted as a biomarker in non-small cell lung cancer31. Additionally, 
exosomal circRNAs have been implicated in colorectal cancer, offering potential as both diagnostic markers and 
therapeutic targets32. Exosomal miR-21 is frequently elevated in breast cancer, while exosomal miR-1246 has 
been linked to chemotherapy resistance in pancreatic cancer33,34. In the realm of therapy, exosomes have been 
utilized to deliver CRISPR/Cas9 components for gene editing, showing efficacy in correcting genetic mutations 
in preclinical models of Duchenne muscular dystrophy35. Moreover, exosomes engineered to carry small 
interfering RNA (siRNA) targeting oncogenes like KRAS have demonstrated significant tumor suppression in 
pancreatic cancer models36. These advancements underscore the versatility of exosomes as both biomarkers and 
therapeutic delivery vehicles, paving the way for more personalized and effective medical interventions.

In this study, we focused on exosomal miRNA, the most abundant molecules found in exosomes, which hold 
immense potential as diagnostic and prognostic biomarkers. Our objective was to predict exosomal miRNA 
using various techniques, including motif identification, similarity search, ML, and DL. We identified several 
motifs and features that differentiate exosomal from non-exosomal miRNA. Initially, we discovered motifs or 
small patterns frequently found in exosomal miRNA. The most recurring motif was "GgapAAGCAC," which 
appeared in 4 exosomal and 1 non-exosomal sequences in the validation set. Only a limited number of sequences 
contained these motifs, covering just 5.2% of miRNA sequences in the validation dataset. This indicates that 
motif identification alone is insufficient for predicting exosomal miRNA. Next, we employed a similarity search 
technique commonly used for sequence annotation. As mentioned in the results section, our similarity-based 
technique demonstrated a high probability of correct prediction but poor coverage. This suggests that alignment-
based techniques (like motif and similarity search) are not adequate to predict all exosomal miRNA sequences.

In the last three decades, AI-based techniques have been heavily used to develop classification models in the 
field of computational biology, particularly in sequence classification. Thus, we utilized AI-based techniques 
to develop prediction models for this study. One of the advantages of AI-based models over alignment-based 
models is coverage of the dataset. Here, we systematically applied ML and DL techniques to develop prediction 
models. We also used all possible features, including compositional features, binary profiles, and embeddings, 
to develop models. In addition, we also used PLMs in this study to predict exosomal miRNA. Despite our best 
efforts, we achieved a maximum AUC of 0.707 with an MCC of 0.269 using AI-based models. Therefore, we 
developed an ensemble/hybrid method that combined the two techniques: Alignment-based models and AI-
based models. Our ensemble method utilising these approaches achieved AUC of 0.73 and an MCC of 0.352. The 
model also achieved a balanced sensitivity and specificity of 67.57% and 67.68%, respectively. This corresponds 
to a false negative rate (FNR) of approximately 32.43% and a false positive rate (FPR) of approximately 32.32%. 
These balanced metrics suggest that our model performs comparably in identifying both exosomal and non-
exosomal miRNAs, and is not overly biased toward one class.

Although our model achieved moderate predictive performance, it should be noted that predicting exosomal 
miRNA has its own challenges. Exosomes vary significantly in molecular composition based on their cellular 
origin, physiological condition, and environment. In addition, the mechanism of sorting of miRNA into 
exosomes is not fully understood. We have made an attempt to identify important features and motifs that 
can distinguish between exosomal and non-exosomal miRNA to advance the knowledge of exosomal miRNA 
sorting mechanism. Our model can potentially aid in the discovery of novel biomarkers for early disease 
detection. Furthermore, this tool can also support therapeutic applications, such as the design of synthetic 
exosomal miRNAs for targeted gene regulation or the refinement of exosome-based drug delivery strategies 
using the design module on our webserver.

It is important to compare newly developed methods with existing ones. To our knowledge, no method has 
been specifically developed for predicting exosomal miRNA sequences. However, we found miRNA subcellular 
localization methods like EL-RMLocNet and miRNALoc that can predict the subcellular localization of miRNA 
sequences. These subcellular localization methods predict multiple locations of miRNA in cells, including 
exosomal miRNA. Thus, we evaluated the performance of these methods on our independent validation dataset. 
As described in the results section, our method performed better than existing methods for exosomal miRNA. 
The limitation of this study is that, although the data is collected from experimentally validated studies, it is 
purely bioinformatics in nature. The features and motifs identified in this study have been previously reported 
to be associated with exosomal miRNA; however, in-depth studies with experimental validation are required.

Methods
Data collection and preprocessing
In this study, datasets were created using the data extracted from the databases: RNALocate and miRbase37,38. 
We collected the experimentally validated exosomal miRNA sequences from RNALocate. It contained about 
1195 unique exosomal miRNA sequences for humans, with 956 mature miRNA sequences. Similarly, we 
collected experimentally validated miRNA sequences found in humans from RNALocate that were not detected 
in exosomes. Additionally, we sourced human miRNAs from miRBase and excluded those present in exosomes. 
This resulted in 1694 unique non-exosomal miRNA sequences. We randomly selected 956 mature miRNAs 
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from the non-exosomal miRNA to balance the dataset. Our final dataset contains 956 exosomal and 956 non-
exosomal miRNAs. The sequence lengths ranged from 16 to 26 nucleotides, with most sequences being between 
21 and 24 nucleotides long.

Alignment-based approaches
Motif-search
We used the MERCI (Motif Emerging with Classes Identification) tool to detect motifs found in exosomal miRNA 
sequences19. We identified motifs using the training dataset and then searched those motifs in the independent 
validation set. MERCI software has the option to select motifs that are exclusively present in the positive class 
(exosomal) and not present in the negative class (non-exosomal) from the training dataset. Additionally, this 
software offers a variety of options, such as the frequency of motifs and motifs with or without gaps.

Similarity search
In this study, we used blastn-short to annotate miRNA sequences based on their similarity to exosomal or 
non-exosomal miRNA sequences20. First, we built a database using the “makeblastdb” command for miRNA 
sequences present in the training dataset. To compute results for the training dataset, we removed self-hits 
and considered the top hit after removing self-hits. For the independent dataset, we considered the first hit to 
calculate results at various e-values. This method has been used in the previous studies39,40.

AI-based classification methods
Feature generation
To develop a prediction model to predict exosomal and non-exosomal miRNA, we applied an array of techniques 
to extract meaningful features from miRNA sequences. They are discussed here:

Composition-based features
We utilized Nfeature to compute a wide range of composition-based features in miRNA sequences, including 
nucleotide composition, reverse complementary compositions, and auto-correlation21. Additionally, we 
computed features using Term Frequency-Inverse Document Frequency (TF-IDF), a statistical measure that 
evaluates the importance of a term in a document relative to a collection of documents. In our study, “terms” 
refer to k-mers, which are sequences of length k nucleotides, and a “document” refers to a sequence41. Term 
Frequency (TF) is the number of times a k-mer appears in a sequence, normalized by the total number of 
k-mers in the sequence. Inverse Document Frequency (IDF) is the logarithmically scaled inverse fraction of the 
sequences that contain the k-mer across the entire dataset. It measures how unique or rare a k-mer is within the 
whole dataset. By combining TF and IDF, TF-IDF assigns higher weights to k-mers that are frequent in a specific 
sequence but rare across the dataset, indicating that these k-mers are more informative and characteristic of the 
sequence’s content. The formulas for TF, IDF, and TF-IDF are explained in Eqs. 1, 2, and 3.

	
T F (k, s) = Number of times k-mer k appears in sequence “s”

T otal number of k-mers in sequence “s”
� (1)

	
IDF (k, D) = log

T otal number of sequences in dataset “D”
Number of sequences containing k-mer “k”

� (2)

	 T F -IDF (k, s, D) = T F (k, s) × IDF (k, D)� (3)

In Eqs. (1), (2), and (3), "k" represents a k-mer, "s" represents a sequence, and "D" represents the dataset of 
sequences.

The TFIDF features were computed for both the given sequences and reverse complementary sequences 
for kmer ranges from (1,1), (1,2),…(1,7). The best-performing TFIDF features were then also computed using 
different types of weighting—Term Frequency Collection (TFC) Weighting, Logarithmic Term Count (LTC) 
Weighting, and Entropy Weighting.

Binary features
We computed binary profiles, or one-hot encoding features, for sequences to represent nucleotide sequences as 
binary vectors. To handle variable-length sequences, we use a technique called padding to standardize the length 
of the sequences. Since the maximum length of miRNA sequences is 26 nucleotides, each sequence is padded to 
a length of 26 by adding the dummy nucleotide 'X'. For example, a sequence “​A​U​T​G​T​C​G​G​G​C​U​C​U​C​C​U​A​A​U​
C​U” of length 21 becomes “AUTGTCGGGCUCUCCUAAUCUXXXXX” of length 26. After padding, one-hot 
encoding features are computed by converting these sequences into binary profiles.

Structure-based features
The structure-based features of miRNA sequences were computed using the RNAfold tool of Vienna RNA 
package 2.0, which predicts and identifies the RNA secondary structure based on the lowest possible free 
energy. It provides feature values for minimum free energy, ensemble free energy, centroid free energy, centroid 
diversity, the frequency of MFE structure in the ensemble, and ensemble diversity for each sequence in the 
dataset. In RNA folding, an ensemble typically refers to a collection of possible secondary structures that the 
RNA molecule can adopt22. The structures were predicted for each miRNA sequence in both exosomal and 
non-exosomal categories. These predicted structures were saved in .jpg image formats to develop further deep-
learning classification models based on these structure images.
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PLM embeddings as features
In this study, we generated embeddings using two types of BERT PLMs. BERT, developed by Google, is a 
transformer-based DL model. The following pre-trained models were used in this study.

	(a)	 BERT-Base Uncased: Uncased means that the text used during pre-training and fine-tuning is convert-
ed to lowercase, and no distinction is made between uppercase and lowercase letters. For example, “Se-
quence” and “sequence” would be treated as the same word. We extracted embeddings from this model after 
fine-tuning it on our training dataset24.

	(b)	 DNABERT: DNABERT is a variant of BERT designed explicitly for processing DNA sequences. DNA-BERT 
is pre-trained on a large corpus of DNA sequences using self-supervised learning techniques. To use this 
model, we pre-processed our data and replaced "U" with "T" to suit the DNABERT model. We extracted the 
embeddings from this model by first fine-tuning the model on our sequence dataset23.

Prediction models
ML models
We have used several ML algorithms to differentiate between exosomal and non-exosomal miRNA sequences. 
These algorithms involve K-Nearest Neighbours (KNN), Gaussian Naïve Bayes (GNB), Decision Tree (DT), 
Logistic Regression (LR), Extreme Gradient Boosting (XGB), Support Vector classifier (SVC), Extra Tree Classifier 
(ET) and Random Forest (RF)42–49. We have built prediction models using these ML algorithms on different sets 
of features defined in section “Discussions”. We used grid search in sci-kit learn to perform hyperparameter 
tuning to optimize parameters of these algorithms. Grid search is a hyperparameter tuning technique that tries 
every possible combination of the given parameters and gives the best performing combination50,51.

DL models
We applied a DL classifier Convolutional Neural Networks (CNN) to classify exosomal and non-exosomal 
miRNA sequences. For the sequence classification task, we converted sequences to binary profiles as described 
in section “Alignment-based classification methods”. These binary profile of miRNA is classified using CNN 
algorithm. Additionally, two DL algorithms, CNN and ResNet (Residual Network), were applied to the miRNA 
structure images generated as described in section “Structure images”. ResNet utilizes shortcut connections 
to facilitate residual learning, enabling deep networks to train effectively. We used the ResNet50 variant, a 
50-layer version of the ResNet architecture, as it balances complexity and efficiency26–28,52,53. Given the high 
computational cost of deep learning models, we employed random search to efficiently tune hyperparameters 
and optimize model performance. Random search is a hyperparameter tuning technique where hyperparameter 
values are randomly sampled from specified distributions, rather than exhaustively tested like in grid search. 
It takes lesser time than grid search as instead of trying every possible combination, it tries a fixed number of 
random combinations54.

PLM models
PLMs excel in text classification due to their deep contextual understanding. They are pre-trained on extensive 
corpora and can be fine-tuned for specific tasks like sequence classification in our study55. They adapt well to 
various domains. The pre-training in PLMs provides efficient feature extraction, enabling accurate classifications 
even with smaller datasets. We have used two types of PLM models in our study to classify exosomal and non-
exosomal miRNA sequences. We have used BERT-based uncased and DNABERT, as mentioned in section 
“Hybrid classification method”, and fine-tuned them according to our sequence length and dataset composition. 
These fine-tuned models using our specific dataset and adapted to the sequence length of the input. In addition, 
we performed hyperparameter tuning using random search. The resulting fine-tuned models were then employed 
to classify sequences as exosomal or non-exosomal.

Cross-validation and performance metrics
The entire dataset, consisting of 1912 sequences, was divided into an 80:20 ratio, with 80% used for training and 
20% for validation. A five-fold cross-validation technique was employed on 80% of the training data to evaluate 
the ML and DL models, keeping the remaining 20% unseen for the models. In five-fold cross-validation, the 
training data is split into five parts: four parts for training and one part for internal validation. This process is 
repeated five times, ensuring each fold serves as the test set once. The models were assessed using both threshold-
dependent and threshold-independent metrics. Evaluation metrics included sensitivity, specificity, Matthews 
correlation coefficient (MCC), accuracy, and Area Under the Receiver Operating Characteristics (AUROC). 
AUROC is threshold-independent, while the other metrics depend on the threshold. Specificity, sensitivity, and 
MCC were optimized for the best threshold values. These metrics have been used in previous studies to measure 
the performance of models56–59

	
Sensitivity = TP

FP + TN
× 100� (4)

	
Specificity = TN

TN + FP
× 100� (5)

	
Accuracy = TP + TN

TN + TP + FN + FP
× 100� (6)
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MCC = (TN × TP) − (FN × FP)√

(FP + TP) (FN + TP) (FP + TN) (FN + TN)
� (7)

where TP, FP, TN, and FN are true positive, false positive, true negative, and false negative, respectively.

Ensemble method
We attempted to improve the prediction of our best-performing prediction model developed on the best set 
of features by using a combination of various findings. This approach applies a weighted scoring method 
that combines three techniques: (i) motif-based approach, (ii) similarity search using BLAST, and (iii) ML/
DL prediction based methods. In this approach, we assign a score of + 0.5 to an miRNA sequence if it has 
an exosomal motif and 0 if no exosomal motif is found. We further add + 0.5 if the sequence is found to be 
similar to an exosomal miRNA sequence using the BLAST algorithm. These scores are then combined with best 
performing ML/DL model prediction scores, obtained via the predict_proba() function in scikit-learn, which 
gives the probability of a sequence belonging to a specific class instead of a binary outcome25. Together, the motif 
score, similarity search score, and best ML/DL model score provide a combined score for each sequence, ranging 
from 0 to 2 as shown in Eqs. (8) and (9). By analyzing these overall scores, the sequences were classified as either 
exosomal or non-exosomal. Several studies have previously utilized this hybrid/ensemble approach7,60.

	
E =

{
E + 0.5 If exosomal motif is present
E if no exosomal motif present � (8)

Here, E = Prediction probability score obtained from best performing ML/DL model and E′ = Score obtained 
after adding scores from the motif-based approach

	
E′′ =

{
E′ + 0.5 If BLAST hit is against an exosomal sequence
E′ If BLAST hit is not against an exosomal sequence or no hit

� (9)

Here, E′′ = Final score obtained from the best performing ML/DL model, motif-based approach, and BLAST-
based approach ranging from 0 to 2.

Data availability
All the datasets generated in this study are available at ​h​t​t​p​s​:​​​/​​/​w​e​b​​s​.​i​i​i​t​​d​.​e​​d​u​​.​​i​n​/​r​​a​g​h​​a​v​a​​/​e​m​i​r​p​​​r​e​d​/​d​​a​t​​a​s​e​t​.​p​h​p 
and codes are available at https://github.com/raghavagps/emirpred.
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