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Abstract

The conventional approach for designing vaccine against a particular disease involves stimulation of the immune system
using the whole pathogen responsible for the disease. In the post-genomic era, a major challenge is to identify antigenic
regions or epitopes that can stimulate different arms of the immune system. In the past two decades, numerous methods
and databases have been developed for designing vaccine or immunotherapy against various pathogen-causing diseases.
This review describes various computational resources important for designing subunit vaccines or epitope-based immuno-
therapy. First, different immunological databases are described that maintain epitopes, antigens and vaccine targets. This
is followed by in silico tools used for predicting linear and conformational B-cell epitopes required for activating humoral
immunity. Finally, information on T-cell epitope prediction methods is provided that includes indirect methods like
prediction of Major Histocompatibility Complex and transporter-associated protein binders. Different studies for validating
the predicted epitopes are also examined critically. This review enlists novel in silico resources and tools available for pre-
dicting humoral and cell-mediated immune potential. These predicted epitopes could be used for designing epitope-based
vaccines or immunotherapy as they may activate the adaptive immunity. Authors emphasized the need to develop tools
for the prediction of adjuvants to activate innate and adaptive immune system simultaneously. In addition, attention has
also been given to novel prediction methods to predict general therapeutic properties of peptides like half-life, cytotoxicity
and immune toxicity.

Key words: immunoinformatics; subunit vaccine; peptide therapeutics; in silico tools; epitope prediction algorithms

Introduction

The traditional approach to design a vaccine is a long and tedi-
ous process that involves the attenuation of the pathogen
through sub-culturing followed by its administration. The ad-
ministration of whole pathogen raises several safety issues and
toxicity owing to the unwanted biomaterial. It has been shown
in the past that a small peptide or antigenic regions can also

activate different arms of the immune system [1]. Thus, peptide
can also serve as a vaccine candidate, as well as can be used for
designing immunotherapeutic. However, identification of pep-
tides (or epitopes or antigenic regions) that can be used for im-
munization against a pathogen is one of the major challenges.
Numerous tools have been developed in the past for identifica-
tion of antigenic regions in pathogenic proteins or antigens.
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These computational tools are playing an important role in the
field of immunoinformatics by virtue of their assistance in the
screening of potential epitopes from a large number of possible
epitopes. Figure 1 demonstrates the application of immunoin-
formatics in virtual screening of vaccine candidates in a patho-
gen. The numbers, shown in Figure 1, have been estimated from
the whole proteome of Mycobacterium tuberculosis that contain
nearly 4000 proteins with average length �350 amino acids. It
has been shown that all proteins are not vaccine candidates;
only around 200 proteins are potential vaccine candidates.
These selected vaccine candidates may have some possible
peptides, which may be further filtered based on their immuno-
genic and antigenic potential. Only potential epitopes, which
can activate desired arm of the immune system, can be vali-
dated using experimental techniques.

This review summarizes the peptide-based novel in silico
tools as well as tools developed in the past for the prediction of
epitopes that can activate different arms of immune system.
For better understanding of the field, these tools are categorized
based on their function that includes immunological databases
and epitope prediction tools. Finally, the review is concluded
with an expert opinion where we have figured out the most
commonly used tools in each category.

Repositories of immunological resources

In the past few decades, different research groups have created
several databases across the world to serve the scientific com-
munity. These databases store different types of information
related to the human immune system and pathogenic
components responsible for generating the immune responses
(Table 1). AntigenDB [7] maintains comprehensive information
about experimentally validated antigens that includes struc-
tural and functional annotation of antigens. This database will
be useful for designing protein- or antigen-based vaccine.
PRRDb [12] contains pattern recognition receptors and their lig-
ands; it is important for designing vaccine adjuvants. One of the

largest repository of immunological epitopes is Immune
Epitope Database (IEDB) [5], which maintains B-cell and T-cell
epitopes including non-epitopes. In addition, there are data-
bases that maintain interaction-related information, like anti-
gen–antibody interactions (e.g. AgAbDb [13]) and Major
Histocompatibility Complex–peptide (MHC–peptide) inter-
actions (e.g. MPID-T2 [15]). In addition to generalized resources,
disease-specific resources have also been developed in the past.
These resources provide a comprehensive information required
to design subunit vaccine against a specific disease, like MalVac
[19], MycobacRV [8] and FungalRV [9]. One of the challenges
in the field of immunological databases is to maintain and up-
date information; numerous databases have becomes non-
functional and outdated in the past two decades. Thus, it is
imperative to use the most updated resources in research to in-
crease the reliability of experiments.

In silico tools for humoral immunity

The humoral immune system recognizes antigenic determin-
ants in pathogenic proteins to activate and generate memory B-
cells. These antigenic regions are called B-cell epitopes and can
be used to develop immunotherapy or vaccine against deadly
pathogens [20–29]. Thus, prediction of these B-cell epitopes
with high accuracy is one of the important challenges in the
field of epitope-based immunotherapy. Broadly, B-cell epitopes
are divided in two categories: continuous (or linear) and discon-
tinuous (or conformational) [21]. Earlier methods were de-
veloped on a small data set and were based on various
physiochemical properties of amino acids like Bcepred [22, 23].
In 2006, for the first time, a machine learning technique was ex-
ploited for developing a computational method to predict con-
tinuous B-cell epitopes [24]. Since then, a number of methods
were developed using various machine learning techniques like
ABCpred [25], BepiPred [26], LBtope [27], LBEEP [28] and APCpred
[29]. In 2013, LBtope [27] has been developed to predict linear B-
cell epitopes using a large number of experimentally validated

Figure 1. Computational approach for the identification of potential epitopes for designing peptide-based immune therapy or vaccine (e.g. Mycobacterium tuberculosis).

A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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B-cell epitopes and non-epitopes. Linear B cell exact epitope
predictor (LBEEP), published in 2015, used dipeptide deviation
from expected mean as an input feature for the identification of
linear B-cell epitopes [28]. APCpred is another support vector
machines (SVM)-based method, which was developed using the
amino acid anchoring pair composition [29]. In addition to gen-
eralized methods, recently an organism-specific method B-cell-
hepatitis C virus (HCV) has been developed to predict linear B-
cell epitope in HCV [30].

Similarly, methods have also been developed to predict con-
formational B-cell epitopes in an antigen from its sequence like

CBtope [31], or from antigen structure like DiscoTope [32], BEpro
[33], etc. Epitopia can use either structure or sequence informa-
tion for predicting conformation epitopes [34]. Table 2 summar-
izes different in silico tools developed for predicting linear and
conformational B-cell epitopes.

Various research groups have used the B-cell epitope predic-
tion tools for identifying epitopes in the organism for developing
vaccine candidates. For example, Menezes-Souza et al. used the
BepiPred 1.0 program for predicting the linear B-cell epitopes and
found these to be a potential target for diagnosing tegumentary
leishmaniasis as well as visceral leishmaniasis [44]. Likewise,
Soni et al. used Ellipro and DiscoTope for predicting the linear and
conformation B-cell epitopes in the virulence proteins LLO, ILO
and SLO, coded by Listeria monocytogenes. They also predicted the
antibody-specific epitopes using the server IgPred [45]. In one of
the study done by Yang and Zhang group, ABCpred server and
BepiPred server were used to predict and screen potential B-cell

Table 1. List of databases or repositories developed for maintaining
immunological resources

Name Description

Databases for immunogenic/antigenic peptides and proteins
SYFPEITHI [2] http://www.syfpeithi.de

Databases for MHC ligands and peptide motifs.
MHCBN [3] http://www.imtech.res.in/raghava/mhcbn

MHC binding, non-binding and TAP-binding
peptides

Bcipep [4] http://www.imtech.res.in/raghava/bcipep/
A database of B-cell epitopes

IEDB [5] http://www.iedb.org/
IEDB

EPIMHC [6] http://bio.dfci.harvard.edu/epimhc/
A database of MHC ligands

AntigenDB [7] http://www.imtech.res.in/raghava/antigendb/
A database of pathogenic antigens

Database of potential vaccine candidates for pathogenic organism
MycobacRV [8] http://mycobacteriarv.igib.res.in/

A database of Mycobacterial vaccine
candidates.

FungalRv [9] http://fungalrv.igib.res.in/
Immunoinformatics portal and adhesion pre-

diction for fungal pathogens
FluKB http://research4.dfci.harvard.edu/cvc/flukb/

Focusing on data and analytical tools for influ-
enza vaccine discovery.

HPV [10] http://cvc.dfci.harvard.edu/hpv/Antigen data-
base of Human Papillomavirus (HPV)

Other immunological repositories
IIID [11] http://bordensteinlab.vanderbilt.edu/IIID/

test_immunity.php
Maintain data set of insect innate immunity

genes
PRRDB [12] http://crdd.osdd.net/raghava/prrdb/

A repository of pattern-recognition receptors
and their ligands

AgAbDb [13] http://196.1.114.46:8080/agabdb2/home.jsp
Structure of antibody–antigen complexes

IMGT/HLA [14] http://www.ebi.ac.uk/ipd/imgt/
Sequence database of MHC

MPID-T2 [15] http://biolinfo.org/mpid-t2/
The MHC–peptide interaction database

InnateDB [16] http://www.innatedb.com/
Comprehensive information on innate

immunity
Vaxjo [17] http://www.violinet.org/vaxjo/

Information on vaccine adjuvants
LRRSearch [18] http://www.lrrsearch.com/

Maintain leucine-rich repeats and NOD-like
receptors

Table 2. in silico tools for predicting linear and conformational B-cell
epitopes

Resource Description

Linear or continuous B-cell epitopes
ABCpred [24] http://www.imtech.res.in/raghava/abcpred/

ANN-based prediction of linear B-cell epitopes
Bcepred [25] http://www.imtech.res.in/raghava/bcepred/

Prediction of B-cell epitope using physicochemi-
cal properties.

BepiPred [26] http://www.cbs.dtu.dk/services/BepiPred/
HMM and propensity-based B-cell epitope

prediction
SVMTriP [35] http://sysbio.unl.edu/SVMTriP/

Linear B-epitope prediction using tripeptide
COBEpro [36] http://scratch.proteomics.ics.uci.edu

Continuous B-cell epitope prediction
EPMLR [37] http://www.bioinfo.tsinghua.edu.cn/epitope/

EPMLR/
A server for prediction of linear B-cell epitope

Pep-3D-
Search [38]

http://kyc.nenu.edu.cn/Pep3DSearch/
B-cell epitope prediction based on mimotope

IgPred [39] http://www.imtech.res.in/raghava/igpred/
Prediction of B-cell epitope for class-specific

antibodies
Lbtope [23] http://crdd.osdd.net/raghava/lbtope/

Improved method for predicting linear B-cell
epitope

Conformational or discontinuous B-cell Epitopes
BEpro [35] http://pepito.proteomics.ics.uci.edu/

Discontinuous B-cell epitope prediction
CBTOPE [27] http://crdd.osdd.net/raghava/cbtope/

Conformational B-cell epitopes prediction from
sequence

CEP [40] http://196.1.114.49/cgi-bin/cep.pl
Conformational B-cell epitope prediction server

PEASE [41] http://www.ofranlab.org/PEASE/
Predicting antibody-specific B-cell epitope

DiscoTope [42] http://www.cbs.dtu.dk/services/DiscoTope-2.0
Predicts discontinuous B-epitope in structure.

Epitopia [29] http://epitopia.tau.ac.il/
Conformation B-epitope from structure and

sequence
SEPPA [43] http://badd.tongji.edu.cn/seppa/

Discontinuous B-epitope prediction in antigen
structure
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epitopes on spike glycoprotein of infectious bronchitis virus.
They concluded with three potential epitopes on the basis of their
antigenicity [46]. CBtope server was used to predict conform-
ational B-cell epitope on collagen VII in the study done by
Licarete and colleagues [47]. Experimental studies showed that
predicted epitopes were localized within NC1 and NC2 domains
and possibly in the hinge region of the antigen [47].

Prediction algorithms for CD81 T-cell

Over the past three decades, a large number of methods have
been developed to predict T-cell epitope. In 1987, based on se-
quential and structural analysis of T-cell epitopes, direct

prediction method was developed [48]. One of the T-cell epitope
predicting tools, AMPHI, is based on the hypothesis that T-cell
epitopes form stable amphipathic structure [48–50]. Similarly,
SOHHA is based on the hypothesis that a helix of 3–5 turn and a
strip of hydrophobic residues at one side make T-cell epitopes.
Above-mentioned methods are called direct methods, as they
directly predict T-cell epitopes instead of MHC binders. In 1990s,
structure of MHC–peptide complex was solved by X-ray crystal-
lography, which changed the old concept of structure-based
epitope prediction. It is clear now that the peptide bound to
MHC has extended conformation [51] and cannot accommodate
helix in its groove. This led to development of indirect methods,
where MHC binder is predicted instead of T-cell epitope. It in-
cludes motif-based methods like EpiMer and Optimer [52]. The

Figure 2. Diagrammatic presentation of endogenous processing of antigens. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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EpiMer method’s performance was evaluated with the standard
method of synthesizing short, overlapping peptides and testing
them for their immunogenic reactions. The method was found
to be better than AMPHI or other overlapping methods, as it re-
quires synthesis of fewer peptides compared with other meth-
ods [53]. The prediction accuracy of both EpiMer and Optimer
was found to be in between 60% and 70%. In the past two dec-
ades, instead of the T-cell epitope prediction, the scientific com-
munity was more curious toward developing methods to
predict MHC binders because it provides more specificity. These
methods can be classified in two categories: (i) MHC Class I
binders (MHC-I) or CD8 T-cell epitopes for endogenous antigen
processing and (ii) MHC Class II binders (MHC-II) or helper T-cell
epitopes for exogenous antigen processing.

In the endogenous antigen processing, proteasome recognizes
the foreign proteins or antigens and cleaves them into small frag-
ments (peptides). Transporter-associated protein (TAP) then trans-
ports these fragments or peptides to the endoplasmic reticulum
where the association between these peptides and MHC Class I
molecules takes place. These antigenic peptides are presented to
cytotoxic T lymphocyte (CTL) by MHC Class I molecules (Figure 2).
In silico methods have been developed to predict proteasomal
cleavage sites in a protein, for example, Pcleavage [54] and
NetChop [55]. Pcleavage was developed using SVM technique, and
its Matthews correlation coefficient value was found to be 0.54
and 0.43 on in vitro and MHC-ligand data, respectively. The SVM
classifier in Pcleavage was able to recognize �82% of cleavage sites
and �45% of non-cleavage sites. This performance was compar-
able with the NetChop, which was developed using neural net-
work and was able to determine 65% of the cleavage site and 85%
of the non-cleavage site correctly. To understand whether protea-
somal fragments or peptides will bind to TAP, methods have been
developed for predicting TAP binders [56, 57]. Similarly, numerous
methods have been developed to predict MHC Class I binders that
include ProPred-I, RANKPEP, etc. [58–63]. Propred-I server showed
80% accuracy in predicting MHC allele HLA-A*0201 and H2-Kb
binders as well as non-binders. RANKPEP, which was developed
using position-specific scoring matrix (PSSM) profile, was able to
predict>80% of the epitopes among the top 2% of scoring pep-
tides. NetMHCpan 2.0 server allows users to predict binding pep-
tides for human leukocyte antigen A and B (HLA-A and HLA-B), as
well as for chimpanzee, rhesus macaque, gorilla and mouse MHC
Class I molecules [64]. NetMHC-4.0 is a sequence alignment-based
MHC Class I prediction method, which incorporates the gapped
sequence alignment and INDEL events, i.e. insertion and deletion
information for predicting peptide-MHC Class I binding affinity
[65]. Finally, the MHC-bound peptides are presented to the cell sur-
face where selected peptides are recognized by CD8þT-cells. To
predict whether MHC-bound peptide will be recognized by
CD8þT-cells, direct methods, such as CTLpred, have been de-
veloped [66]. Different computational tools developed for predict-
ing CTL epitopes have been listed in Table 3.

Experimental researchers have used the above-mentioned
servers in their experiments and found them to be useful in car-
rying out their research and also validated them. For example,
Simoneau et al. used Pcleavage server to predict the proteaso-
mal cleavage site in the SHP-1 domain, which is expressed in
the nuclei of intestinal epithelial cells and found that both the
Tyr208and Ser591 residues are important for the SHP-1 proteoly-
sis [70]. Similarly, Frahm et al. predicted the proteasomal cleav-
age site using NetChop method, which has been found to be
highly predictive of C termini in HIV-1 epitope [71]. RANKPEP
server was used by Mingozzi et al. for predicting T-cell epitopes
and was found to be accurate [72]. Nuzzaci et al. used CTLpred

for predicting CTL epitopes within a series of HCV-derived anti-
genic sequences [73]. They predicted three epitopes with high
accuracy and found that the predicted epitopes were able to ac-
curately discriminate between T-cell epitopes and non-epitope
MHC binders and further validated them experimentally. In a
similar study, Geluk et al. identified four peptides from
Mycobacterium leprae having HLA binding motifs using ProPred
as well as ProPred-I servers [74]. So these studies have shown
that bioinformatics servers contribute significantly in develop-
ing potential vaccine candidates.

In silico tools for CD41 T-cells

Exogenous antigen processing pathway has been shown in
Figure 3, CD4þT-cells or helper T-cell recognize antigenic re-
gions or peptide in the form of MHC-II–peptide complex [75].
There is a fundamental difference between MHC-I and MHC-II
binding groves; in case of MHC-I, the groove is closed from both
sides, whereas it is open in case of MHC-II. Thus, prediction of
MHC-II binders is much more difficult than the prediction of
MHC-I binders [76]. During the past decade, efforts have been

Table 3. List of significant computational methods available for pre-
dicting MHC Class I binders and cytotoxic T-cell epitopes

Resource Description

Prediction MHC Class I binders
ProPred1 [52] http://www.imtech.res.in/raghava/propred1/

Server for predicting promiscuous MHC-I binders
NetMHCcons [54] http://www.cbs.dtu.dk/services/NetMHCcons/

A consensus method for predicting MHC-I
binders

nHLAPred [56] http://www.imtech.res.in/raghava/nhlapred/
Prediction server for promiscuous MHC Class I

binders
MMBPred [57] http://www.imtech.res.in/raghava/mmbpred/

Prediction of high-affinity mutated promiscuous
MHC binders.

NetCTLpan [55] http://www.cbs.dtu.dk/services/NetCTLpan/
CTL epitope and MHC Class I binder prediction

predictions
RANKPEP [53] http://bio.dfci.harvard.edu/RANKPEP/

Profile motifs-based prediction of MHC Class I
binding peptides

Important tools for endogenous antigen processing
CTLPred [58] http://www.imtech.res.in/raghava/ctlpred/

Direct method for predicting CTL epitopes
NetTepi [67] http://www.cbs.dtu.dk/services/NetTepi/

Integrated method of T-cell epitopes prediction
FRED [68] http://www-bs.informatik.uni-tuebingen.de/

Software/FRED
FRED—a framework for T-cell epitope detection.

TAPPred [50] http://www.imtech.res.in/raghava/tappred/
Prediction of TAP binding peptides

TAPhunter [69] http://datam.i2r.a-star.edu.sg/taphunter/
Prediction of TAP ligands using local description

of sequence
TAPreg [51] http://imed.med.ucm.es/Tools/tapreg/

Affinity of TAP-binding ligands
Pcleavage [48] http://www.imtech.res.in/raghava/pcleavage/

Proteasome/immunoproteasome cleavage sites
prediction

NetChop [49] http://www.cbs.dtu.dk/services/NetChop/
Predicting cleavage site for human proteasome
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made in developing data-driven methods to predict MHC-II
binders. In 1998, Brusic et al. have used an evolutionary algo-
rithm and artificial neural network to predict MHC-II binders
[77]. Later, many other algorithms like ant colony [78], hidden
Markov models [79], SVM [80], as well as consensus methods
integrating the output from two or more methods [81, 82], were
proposed for MHC-II binding prediction. In the past, methods
have also been developed to predict promiscuous MHC-II bind-
ers (which may bind more than one allele) like EpiDOCK,
EpiTOP, MHC2Pred, etc. [83–85]. EpiDOCK method is structure
based, and models are represented by docking score-based
quantitative matrices. EpiTOP is the proteochemometrics-based
server for T-cell epitope prediction. Proteochemometrics is a
quantitative structure activity relationship (QSAR)-based ap-
proach developed by Lapinsh et al. [86]. ProPred is another
method developed using quantitative matrix [87]. HLA-DR4Pred
is a method for predicting MHC-II binding peptides with accur-
acy �86% and �78% in case of SVM and artificial neural network
(ANN) models, respectively [88]. Recently, updated
NetMHCIIpan 3.1 is a version of a quantitative method that pre-
dicts 9 amino acid long binding core of a peptide likely to bind
human and mouse MHC Class II molecules [89].

All the above MHC-II binder prediction methods are indirect
methods for predicting T-helper epitopes. Recently, a few direct
methods have been developed to predict T-helper (e.g. Th1,
Th2) epitopes like IFNepitope, IL4Pred [90, 91], etc. Another re-
cent CD4þT Cell epitope prediction method is PREDIVAC, which
made a significant advancement over the previous methods, as
its prediction accounts for 95% of the available MHC Class II pro-
tein variants [92]. All these methods are summarized in Table 4.

In human system, immune response initiation and regula-
tion are achieved through recognition of HLA-II presented pep-
tides. These peptides (HLA-II T-cell epitopes) can be targeted for
the development of the vaccine. Complete viral proteome and
individual antigen have to be studied in multiple spanning pat-
terns to get HLA-II binding peptides. Because of the excessive
polymorphism of HLA and pathogenic antigen variation, the
time and cost of experimental screening methods would be
high. In silico prediction tools have proven to be a complement
to experimental studies in epitope mapping process.
Mycobacterium. tuberculosis secretes an antigen MPT64 (Rv1980c),
which is recognized by Th1 [94], and previous studies have
shown that when mycobacterial protein/peptide antigen is
associated with HLA-II, it is recognized by human Th1 [95, 96].

Figure 3. Diagrammatic presentation of exogenous processing of antigens. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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In one study, Rv1980 sequence was analyzed for binding to mol-
ecules expressed from 51 HLA-DR in ProPred and then predicted
regions were experimentally evaluated for HLA-promiscuous
Th1 cell reactivity [97]. The study concluded that MPT64 de-
serves consideration as a candidate vaccine and could have use-
ful diagnostic applications. Similarly, Mustafa used EpiTOP for
identifying HLA-promiscous peptide in Mycobacterium bovis
BCG-vaccinated healthy subjects [98]. MULTIPRED2 has been
used in several experimental studies [99–101] as for the identifi-
cation of an HPV-16 tumor antigen from cancer biopsy speci-
men [100] and in the detection of influenza A epitope [101].
Consensus prediction approach, a service provided by IEDB, has
been used in various experimental studies [102–106].

Discussion

Considerable progress has been made in the past few decades,
as to develop novel in silico tools, which play an important role
in designing immunotherapeutic peptide, directly or indirectly.
Identification of suitable vaccine candidates, which can induce
significant immune response using high-throughput screening,
is a time-consuming and labor-intensive approach. The devel-
opment of in silico tools not only expedites the drug discovery
process but also saves the time and labor consumed in channel-
izing the whole process. One of the challenges in designing pep-
tide-based therapeutics is their toxicity. It could be cytotoxicity
or immune toxicity or hemolysis. Peptides are generally con-
sidered as good inducers of immune response, but their toxicity
limit their approval from clinical trials. A few tools have been
developed in the past to predict the toxicity of peptides. In 2014,

Gupta et al. have developed a tool, Toxinpred, for predicting the
toxic effects of peptides [107]. To address the issue of immune
toxicity or allergenicity, researchers developed numerous tools
that include Algpred [108], AllerHunter [109] and PREAL [110]. In
addition, there are tools or resources that allow users to predict
other side effects of peptides like Hemolytik [111] for hemolysis
and AHTpin [112, 113] for hypertension. In silico tools like half-
life prediction may help researchers in understanding stability
of peptide-based vaccine candidates in body fluid [114]. Gosh
et al. applied Algpred for assessment of biosafety in antifungal
protein to explore its transgenic applications [115]. Similarly,
capsid protein from Tobacco mosaic virus has been identified
using computational tools and verified in wet laboratory experi-
ments [116].

There is a pressing need to create a pipeline to run multiple
algorithms using a single input point. These pipelines may join
end to end or in parallel, but the final output should be provided
in a single file or folder (Table 5), like Vacceed [117], NERVE
[118], EpiToolKit [119]. EpIC is another pipeline that can predict
immunogenecity in protein sequences [120]. Vaccine candidates
against edwardsiellosis disease and tuberculosis predicted
using NERVE pipeline has been validated in experimental stud-
ies [121, 122]. The use of Vacceed pipeline has been suggested
for rational selection of peptides as candidates [123, 124]. Allard
et al. described the immune escape mechanism of HIV-1 Rev
epitope using EpiTookit [125].

In this review, our main focus is to cover freely available
software packages for predicting immunogenic peptides that
can stimulate immune system. These methods generally

Table 4. List of major computational tools commonly used for pre-
dicting MHC Class II binders and T-helper epitopes

Resource Description

MHC Class II binder prediction servers
Propred [79] http://www.imtech.res.in/raghava/propred/

Prediction of promiscuous HLA-DR binders
Consensus [74] http://tools.immuneepitope.org/mhcii/

IEDB tool for predicting MHC Class II binders
EpiDOCK [75] http://epidock.ddg-pharmfac.net/

Docking-based method for predicting MHC-II
binders

EpiTOP [76] http://www.pharmfac.net/EpiTOP/
An in silico tool for MHC Class II binding

prediction
MHC2Pred [77] http://crdd.osdd.net/raghava/mhc2pred/

Prediction of promiscuous binders for MHC
Class II alleles.

HLA-DR4Pred [80] http://www.imtech.res.in/raghava/
hladr4pred/

Prediction of HLA-DRB1*0401 binding pep-
tides in an antigen sequence.

MULTIPRED2 [93] http://cvc.dfci.harvard.edu/multipred2/
A web server for identification of peptides

predicted to bind to HLA supertypes and
alleles

Direct method for predicting T-helper epitopes
IFNepitope [81] http://crdd.osdd.net/raghava/ifnepitope/

Prediction of interferon-gamma inducing T-
helper (Th1) epitopes

IL4pred [82] http://crdd.osdd.net/raghava/il4pred/
Prediction of IL4 inducing T-helper (Th2)

epitopes

Table 5. Miscellaneous in silico tools and resources for designing
immunotherapy

Tool Description

Prediction of toxic effect of peptides
Toxinpred [107] http://crdd.osdd.net/raghava/toxinpred/

Prediction of toxicity of peptides and proteins
Algpred [108] http://www.imtech.res.in/raghava/algpred/

Prediction of allergenicity for peptide and
proteins

AllerHunter [109] http://tiger.dbs.nus.edu.sg/AllerHunter
Allergen prediction program based on SVM

PREAL [110] http://gmobl.sjtu.edu.cn/PREAL/index.php
Prediction of allergenic protein

Hemolytik [111] http://crdd.osdd.net/raghava/hemolytik/
Database of experimentally verified hemo-

lytic and non-hemolytic peptides
AHTPDB [112] http://crdd.osdd.net/raghava/ahtpdb/

Database of antihypertensive peptides
Pipeline and meta-servers
Vacceed [117] https://github.com/sgoodswe/vacceed/

releases
In silico vaccine candidate for eukaryotic

pathogens discovery pipeline
EpiToolKit [119] http://www.epitoolkit.de/

EpiToolKit offers an array of immunoinfor-
matics tools

NERVE [118] http://www.bio.unipd.it/molbinfo
New enhanced reverse vaccinology

environment
Mosaic Vaccine Tool

Suite [126, 127]
http://www.hiv.lanl.gov/content/sequence/

MOSAIC/
Generation of multiple T-cell epitopes for

covering all variants of HIV
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consider static aspect of immune system for designing a vac-
cine candidate. There is need to understand dynamics behavior
of immune system that includes immune-cell populations and
their interactions. Over the years, considerable efforts have
been made to investigate dynamics of immune system using
mathematical modeling, simulation methods and physical con-
cepts [128–132]. Pappalatrado et al. developed an in silico model
based on six ordinary differential equation for modeling anti-
gen-specific CTL activation and their differentiation into mem-
ory cell on vaccination with dendritic cells [133]. It is able to
predict the dimensions of immune response and contemplate
the persistence of antigen-specific memory cells. Arianna
Palladin et al. showed an integrated in vivo–in silico approach for
cancer immunoprevention [134]. They developed an antigen-
based mathematical model, SimTriplex, that integrates a gen-
etic algorithm. The model is competitive with human-designed
time-taking experiments and gives vaccination protocols
against cancer. The whole coverage of immune dynamics is be-
yond the scope of this review.

Conclusion

The past two decades have seen a tremendous progress in the
field of immunoinformatics, which reflects in the form of numer-
ous resources developed in these years. These resources cover
nearly all aspects required to design peptide-based immunother-
apy. One of the challenges is to identify the best resource for each
aspect; for example, user may be interested to know the best
method for predicting linear B-cell epitope. To serve the scientific
community, particularly experimental researchers, we summarize
the best resource for predicting each therapeutic property of pep-
tides (Figure 4). The list of currently functional tools has been com-
piled based on certain criteria that include prediction accuracy,
user-friendliness and data set used for training. Here, we suggest

LBtope for predicting linear B-cell epitope because it has been
trained on largest data set of experimentally proven B-cell epi-
topes and non-B-cell epitopes. In case of epitope databases, we
suggest IEDB, as it is the largest repository for experimentally veri-
fied positive as well as negative epitopes. Similarly, AntigenDB is
recommended for designing antigen-based vaccines, as it provides
detailed information about an antigen.

One of the major disadvantages of epitope-based vaccine
over conventional approach is its inability to activate the innate
immune system. Ideally, a vaccine candidate should have abil-
ity to stimulate both adaptive and innate arms of immune sys-
tem simultaneously. Unfortunately, limited attempts have been
made in the past for predicting vaccine targets that may acti-
vate innate immune system as well. The rational design of adju-
vants largely banks on the search for ligands of innate
immunity receptors. Though some molecules like CpG oligo-
nucleotides, lipopeptides, synthetic chemokines, etc. are in clin-
ical trials for their development as adjuvants, the area remains
relatively unexplored owing to the limited number of system-
atic investigations. There is a need to develop peptide-based
tools for adjuvant prediction, as we have tool for DNA-based ad-
juvants [135]. The field of rational vaccine adjuvant design holds
a vast potential with respect to host defense peptides. These
have been shown to activate the innate immune system and
are increasingly being discovered more in numbers.

In case of B-cell epitope prediction, we could not achieve as
good accuracy as we have achieved in the case of T-cell epitope
prediction. The poor performance could be attributed to the
conformational nature of the B-cell epitope. Therefore, there is
a need to understand structural aspects of the epitopes before
developing tools for the prediction. Alternatively, B-cell epitope
algorithm can be improved through the development of spe-
cies-specific tools like the prediction of B-cell epitopes that can
raise antibody response in different animals like mice, rabbit,

Figure 4. List of in silico tools recommended for researchers working in the field of immunotherapy and vaccine. A colour version of this figure is available at BIB online:

https://academic.oup.com/bib.
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horse, human, etc. In case of prediction of T-cell epitopes, nu-
merous tools from MHC Class I pathways have been developed,
but MHC Class II pathway needs to be explored further. Only a
handful of direct T-cell epitope prediction algorithms like
PREDIVAC, IFNepitope and IL4pred have been developed so far.
There is a great scope for further improvement and also devel-
opment of new tools for predicting helper T-cell epitopes.

Immunoinformatics tools are required to cope with next-
generation sequencing (NGS) data. NGS is based on parallel
sequencing technology that generates millions of short reads in
a short time at a low cost [136]. In the era of the NGS, size of
databases consisting of whole genome of different pathogens is
growing at an exponential rate. There is a need to develop com-
putational tools or pipelines that can identify the best vaccine
candidates for designing vaccine against a pathogen from its
whole-genome sequence. As we are moving in the era of per-
sonalized medicine, we could not achieve our dreams as long as
we do not have tools where comparison of epitopes from dis-
eased and healthy sample can be achieved. We anticipate that
with the advances in NGS technologies and in silico prediction,
algorithms will expedite the drug discovery process and novel
efficient immunotherapeutic agents will be discovered.

Key Points

• Tremendous progress has been made in the field of
immunology over the years that led to development of
highly accurate computational tools.

• Immunological databases are playing an important
role in the field of immunoinformatics.

• Sequence-based methods are available for predicting
linear or conformational B-cell epitopes in antigenic
proteins.

• There is a need to develop tools for predicting vaccine
adjuvants and peptide toxicity for designing better
subunit vaccines.

• In silico tools or pipelines are required for predicting
vaccine candidates against a pathogen from its whole
genome sequence obtained from NGS.
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