Computers in Biology and Medicine 158 (2023) 106864

Contents lists available at ScienceDirect o
Computers in Biology
and Medicine

Computers in Biology and Medicine

B4

ELSEVIER journal homepage: www.elsevier.com/locate/compbiomed

Check for

A web server for predicting and scanning of IL-5 inducing peptides using |
alignment-free and alignment-based method

Leimarembi Devi Naorem, Neelam Sharma, Gajendra P.S. Raghava

Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India

ARTICLE INFO ABSTRACT
Keywords: Interleukin-5 (IL-5) can act as an enticing therapeutic target due to its pivotal role in several eosinophil-mediated
IL-5 inducing peptides diseases. The aim of this study is to develop a model for predicting IL-5 inducing antigenic regions in a protein

Alignment-based method

with high precision. All models in this study have been trained, tested and validated on experimentally validated
Alignment-free method

. . . 1907 IL-5 inducing and 7759 non-IL-5 inducing peptides obtained from IEDB. Our primary analysis indicates that
Machine learning techniques . . . . : . . .
BLAST IL-5 inducing peptides are dominated by certain residues like Ile, Asn, and Tyr. It was also observed that binders
Motifs of a wide range of HLA alleles can induce IL-5. Initially, alignment-based methods have been developed using

similarity and motif search. These alignment-based methods provide high precision but poor coverage. In order
to overcome this limitation, we explore alignment-free methods which are mainly machine learning-based
models. Firstly, models have been developed using binary profiles and eXtreme Gradient Boosting-based
model achieved a maximum AUC of 0.59. Secondly, composition-based models have been developed and our
dipeptide-based random forest model achieved a maximum AUC of 0.74. Thirdly, random forest model devel-
oped using selected 250 dipeptides and achieved AUC 0.75 and MCC 0.29 on validation dataset; best among
alignment-free models. In order to improve the performance, we developed an ensemble or hybrid method that
combined alignment-based and alignment-free methods. Our hybrid method achieved AUC 0.94 with MCC 0.60
on a validation/independent dataset. The best hybrid model developed in this study has been incorporated into
the user-friendly web server and a standalone package named ‘IL5pred’ (https://webs.iiitd.edu.in/raghava
/il5pred/).

cluster as IL-3, IL-4, IL-13 and granulocyte-macrophage colony-stimu-
lating factor (GM-CSF) [7]. IL-5 exerts its pleiotropic actions via IL-5
receptor (IL-5R), which is comprised of an « and a pc chain. The a
subunit recognises the IL-5 molecule, whereas the fic subunit recognises
either IL-3 or GM-CSF. Thereby promoting eosinophils maturation,
activation, survival and discharge from the bone marrow into the
bloodstream and finally to the airways [5-8]. When activated by IL-5,
eosinophils degranulate and produce antimicrobial cytotoxins that are
harmful to nearby cells and tissues [9]. Although IL-5 is critical in
eosinophil development, it has also been linked to the onset and severity
of a number of diseases, including asthma, autoimmune disorders, al-
lergy, atopic dermatitis, eosinophilic esophagitis, and cancer [5,10-13].
IL-5 production during asthma exacerbation can cause pulmonary
eosinophilia, enhancing airway smooth muscle contraction and
increased mucus production [14]. It has been demonstrated in earlier
studies that IL-5 is induced by a wide variety of MHC class II alleles and
has a role in MHC class II regulation [15-17]. The overall biological
effects of IL-5 on eosinophils are depicted in Fig. 1.

1. Introduction

Innate immunity is considered the first line of defense against
invading pathogens [1]. In contrast, adaptive immunity act as the sec-
ond line of defense and is referred to as antigen-specific immune
response. The immunological response against a pathogen is mediated
via major histocompatibility complex (MHC) by presenting the antigen
on the surface of antigen-presenting cells including dendritic, B-cells and
macrophages [1]. MHC class II is responsible for processing and pre-
senting exogenous antigens. This antigenic peptide activates CD4"
T-helper cells (Th) hence inducing the release of different cytokines [2].
Interleukin-5 (IL-5) is a crucial cytokine secreted by Th2, type-2 innate
lymphoid, mast, basophils and eosinophils cells [3,4]. These cells pro-
duced IL-5 upon stimulation by several environmental pollutants,
inhaled allergens and microbes [5]. IL-5 is a glycosylated homodimeric
protein with 45-60 kDa molecular weight, composed of two helical
bundle motifs [6]. The gene that encodes IL-5 is found in the same
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List of abbreviations

MHC Major Histocompatibility Complex

IL-5 Interleukin-5

IEDB Immune Epitope Database

BLAST  Basic Local Alignment Search Tool

HLA Human Leukocyte Antigen

MERCI Motif-EmeRging and with Classes-Identification
AAC Amino Acid Composition

DPC Dipeptide composition

ML Machine Learning

RF Random Forest

KNN K-nearest neighbour

DT Decision Tree

GNB Gaussian Naive Bayes

XGB Extreme Gradient Boosting

LR Logistic Regression

Acc Accuracy

Sens Sensitivity

Spec Specificity

MCC Matthews correlation coefficient
AUC Area under the receiver operating characteristic curve

In the past, numerous computational methods have been developed
for designing peptide/epitope-based subunit vaccines and immuno-
therapy. In the initial phase, methods have been developed for
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predicting Human Leukocyte Antigen (HLA) class I and II binders. Major
HLA class I binder prediction include ProPredl [18], nHLAPred [19],
PSSMHCpan [20], NetMHCpan [21] and NetMHC-3.0 [22]. Major HLA
class II binder prediction methods include ProPred [23], HLA-DR4Pred
[24], NetMHCII [25] and NetMHCIIpan [26]. Besides, another method
HLA,Pred [27] has been developed to predict non-classical HLA
binders. Recently, the trend has changed as a number of researchers are
developing methods for predicting peptides that can induce specific
types of cytokines. CytoPred is a method that can predict and classify
cytokines with high accuracy [28]. Currently, the following methods,
IL4pred [29], IL-6Pred [30], IL-10Pred [31], ILeukinlOPred [32],
IL17eScan [33], and IL-13Pred [34] have been developed to predict IL-4,
IL-6, IL-10, IL-17, and IL-13 inducing peptides respectively. Moreover,
PIP-EL [35] and ProInflam [36] are the tools used to predict the peptides
inducing a group of cytokines. These above-mentioned prediction tools
utilize compositional and binary profile features of the peptide
sequence. For instance, IL4pred and IL17eScan use amino acid, dipep-
tide composition and amino acid pairs, IL10pred uses dipeptide
composition as input features, and many more.

Taking into consideration the importance of IL-5 in several diseases
there is a necessity to develop a computational method that can predict
IL-5 inducing peptides. To the best of our knowledge, no method has
been developed to predict IL-5 inducing peptides. Thus in this study, we
proposed a novel method IL5pred to identify these peptides. We
retrieved the experimentally validated dataset from the well-established
database Immune Epitope Database (IEDB) [37]. We have implemented
Basic Local Alignment Search Tool (BLAST) to predict the peptides based
on their similarity to known IL-5 inducers. A motif-based approach was
utilised to identify motifs in IL-5 inducers. Next, a wide range of
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Fig. 1. Biological effects of IL-5 in the development of eosinophils and its linkage to the onset and severity of several diseases.
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sequence-based features including composition and binary profiles for
each peptide was computed using Pfeature tool [38]. We developed
several machine-learning models utilising these features to predict IL-5
inducers with better accuracy and the best model was incorporated into
the web server that can efficiently classify IL-5 inducers and
non-inducers.

2. Materials and methods
2.1. Dataset preparation

The most challenging aspect of designing a bioinformatics tool is
gathering enough experimentally validated data. The current study
retreived IL-5 inducing and non-IL-5 inducing peptides from IEDB [37],
a freely accessible database that consists of a huge amount of experi-
mentally verified immune epitopes. We created two datasets: main
dataset and alternate dataset.

2.1.1. Main dataset

We extracted 2802 IL-5 inducing peptides and 8674 non-IL-5
inducing peptides, which are experimentally validated MHC class II
binders from IEDB tested on Homo sapiens. Further, all peptides con-
taining non-standard characters (i.e., ‘B,” ‘J,” ‘O’, ‘U,” ‘X’ and ‘Z’) and
duplicates were removed. We have chosen unique linear peptides with
lengths ranging from 9 to 20 amino acids. The peptides found to be
common or exactly matched in both datasets were also eliminated.
Finally, 1907 IL-5 inducing and 7759 non-IL-5 inducing peptides were
obtained and labelled as positive and negative datasets, respectively.

2.1.2. Alternate dataset

We have also created an alternate dataset comprising IL-5 inducing
as a positive dataset and random peptides as a negative dataset
(generated from the Swiss-Prot database) [39]. We randomly extracted
1907 peptides and assigned them as negative peptides to create a
balanced dataset. Finally, the alternate dataset comprises 1907 IL-5
inducing peptides and 1907 random peptides.

2.2. Sequence logos

To investigate the preference of individual amino acids at a partic-
ular position, we generated the sequence logo using the R package
“ggseqlogo” [40]. It gives the graphical representation with residue
positions on x-axis and the bit score indicating the conservation of res-
idues at a specific position on y-axis. This package processes a
fixed-length input vector, thus, we considered the minimum length of 9
amino acids from N-terminal for each peptide sequence.

2.3. Motif identification using MERCI

The detection of motifs in peptides is crucial for annotating the
function of the sequence. The current study employed a publicly avail-
able software, Motif-EmeRging and with Classes-Identification (MERCI)
[41] to search motifs in IL-5 inducing peptides. This software used a Perl
script to find the motifs exclusively present in positive and negative
peptide sequences. This MERCI program examined both the positive and
negative peptide sequences to extract the specific patterns. Thus, we
adopted a two-step strategy to identify the motifs exclusively present in
positive and negative peptide sequences. Initially, we retrieved the
motifs present in IL-5 inducing peptides by inputting IL-5 inducing
peptides as positive and IL-5 non-inducing peptides as negative. We next
flipped the datasets providing MERCI with IL-5 non-inducing peptides as
positive datasets and inducing peptides as negative, thus obtaining the
motifs for IL-5 non-inducing peptides.
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2.4. Feature generation

In order to develop any prediction model, it is necessary to extract a
set of pertinent features for each protein or peptide sequence. Different
feature extraction methods have been employed in various studies. Hong
et al., have proposed novel protein encoding strategies by integrating
them with convolution neural networks [42] and deep learning methods
to annotate the proteins as well as to restrain false predictions [43].
Another study by Xia et al. has developed a method named PFmulDL, in
which multiple deep-learning algorithms have been amalgamated for
protein function interpretation. In this study, authors have combined
recurrent neural network (RNN) along with the multi-kernel CNN
method to annotate the function and then transfer learning has been
implemented for improving the efficiency of the model [44].
SVM-Prot-2016 is another machine learning-based method incorpo-
rating K nearest neighbour (kNN) and probabilistic neural networks
(PNN) for predicting the functions of the proteins from their sequence
regardless of their similarity [45].

In the study, we have used Pfeature [38], a standalone tool, to
generate distinct features from peptide sequence information. Using this
tool, we computed several compositional-based features as well as bi-
nary profile-based features for each peptide sequence. The major
composition features such as amino acid composition (AAC), dipeptide
composition (DPC), tripeptide composition (TPC), atom composition
(ATC), Physico-chemical properties repeat composition (PRI) along with
their vector length are tabulated in Table S1. Following are some of the
descriptions of the composition-based features used in the current study
to develop several alignment-free prediction models using machine
learning (ML) techniques.

2.5. Amino acid composition-based features

AAC has been used efficaciously in a number of sequence-based
classification techniques [46]. It is the primary feature that describes
the fraction of each amino acid residue present in a peptide sequence
with 20 length vector. Equation (1) is used to calculate AAC for each
amino acid residue.

AAC(i) :% x 100 )}

AAC(i) represents the per cent amino acid composition of residue

type (i); Ri represents the number of residues of type i, and N represents
the length of the sequence.

2.6. Dipeptide composition-based features

DPC is another frequently utilised input parameter for peptide
composition-based classification. It captures comprehensive informa-
tion about the pairwise composition of the amino acids in the peptide
sequence with a fixed vector of length 400 (20*20). The following
equation is used to calculate DPC.

__ Total number of dipeptides (i)

DPC(i) = N % 100 )

DPC(i) represents the per cent of dipeptide composition of residue
type i, and N represents the length of the sequence.

2.7. Selection and ranking of features

A total of 9553 features were computed for both main and alternate
datasets. Only relevant features are used for developing the classifica-
tion model. Thus, selecting relevant features from a larger set of features
is the most important step but challenging. Although there are a number
of techniques for feature selection, we employed a support vector clas-
sifier (SVC) with L1 regularization employing the Scikit-learn package
[47]. This method chooses the non-zero coefficients and implements the
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L1 penalty to select the small set of relevant features. During the opti-
mization process, the L1 regularization handles the sparse matrix by
selecting some model features. Another important regularization
parameter used in this technique is “C” parameter which is set to the
default value (i.e. 0.01), and as lower the C value, fewer features are
selected [48]. Feature-selector tool was further used to rank these fea-
tures based on their importance. This tool rank features that are
frequently used to divide the dataset among all trees, using the DT-based
algorithm Light Gradient Boosting Machine [49].

2.8. Binary profile-based features

Previous research studies have shown that the binary profile is one of
the essential features for classifying peptides [50]. Generally, it is
challenging to create a fixed-length pattern given the varied length of
the peptides. In our study, the length of the peptides varies from 9 to 20,
thus we generated a fixed length binary profile by extracting the fixed
length segments from either N or C terminus of the peptide [50]. Since
the minimum length of the peptides is 9, thus we created binary profiles
for Ny, Cg and also for combined terminal residues NgCy after calculating
the fixed length patterns.

2.9. Alignment-based search using BLAST

In this study, BLAST has been used for alignment-based search. It is
the most frequently used tool for annotating protein/peptide and
nucleotide sequences [51]. We implemented blastp-short for short
peptide sequences (8-30 amino acids) to identify IL-5 inducing peptides
based on the similarity of peptides with IL-5 inducers and non-inducers.
To identify IL-5 inducers and non-inducers, the top hit of BLAST was
considered at different E-value cut-offs.
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2.10. Alignment-free approach for classification

To generate more accurate prediction methods, several studies have
employed alignment-free approach using different ML techniques [52,
53]. For this, Random Forest (RF) [54], K-nearest neighbour (KNN)
[55], Decision Tree (DT) [56], Gaussian Naive Bayes (GNB) [57],
XGBoost (XGB) [58], and Logistic Regression (LR) [59] were employed
using Scikit’s sklearn package from Python [47]. Different hyper-
parameters were tuned in these classification algorithms, and the results
achieved on the best parameters were reported.

2.11. Five-fold cross-validation

The datasets were split into 80:20 ratio, in which 80% of the data was
utilised for training and 20% for validation purposes. Five-fold cross-
validation (CV) was used on 80% training dataset to train, test and
evaluate the classification models. The training dataset is split into five
equal folds, four of which are utilised for training and the remaining for
testing. This method is iterated five times, with each fold being tested
separately. This method has been extensively applied in several studies
by researchers in the past [50,60]. The complete workflow of IL5pred is
shown in Fig. 2.

2.12. Performance evaluation metrics

Model evaluation is a crucial stage in determining the model’s effi-
ciency. Thus, the performance of different ML models was evaluated
using standard evaluation metrics, including threshold-dependent and
independent parameters. The threshold-dependent parameters consist
of Accuracy (Acc), Sensitivity (Sens), Specificity (Spec), and Matthews
correlation coefficient (MCC), and the Area under the receiver operating
characteristic curve (AUC) is a threshold-independent metric. Sens
(equation (3)) is also known as recall and can be defined as the true
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Fig. 2. Complete architecture of IL5pred, including dataset collection, feature generation, machine learning techniques and performance evaluation.



L.D. Naorem et al.

positive rate, while Spec (equation (4)) is the true negative rate. Acc
(equation (5)) denotes the percentage of the correctly predicted IL-5
inducers and non-inducers, and MCC (equation (6)) is the relation be-
tween the predicted and actual values. These performance metrics are
commonly used and well-annotated in the previous studies [61,62] and
can be calculated as:

TP
- %1
Sens TP EN x 100 3
TN
Spec = TN TP < 100 ©)]
Acc :w x 100 (5)
TP + TN + FN + FP
TP x TN) — (FP x FN
MCC = (TP x TN) — (FP x FN) 6)

/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

TP, TN, FP, and FN annotate true positive, true negative, false pos-
itive, and false negative respectively.

2.13. Hybrid or ensemble approach

The study explores the potential of a hybrid model that integrates
BLAST, motif and alignment-free approach using ML. Initially, BLAST
was used to predict the peptide sequence at E-value of 1071, The scores
of ‘+0.5’ and ‘-0.5" were assigned for the correct positive and negative
predictions respectively, and the score of ‘0’ was provided for no hits.
Second, the MERCI program was used to classify the same peptide
sequence, and the scores of ‘+0.5” and “-0.5’ were assigned if the motifs
were present in positive and negative datasets and O for absent. The
peptide sequences not identified using BLAST (no hits) and MERCI were
further predicted using ML models. Ultimately, the overall score was
calculated by combining BLAST, MERCI as well as ML prediction scores.
Then, the peptides were assigned as IL-5 inducers and non-IL-5 inducers
based on the overall score. This hybrid approach has been applied in
different research studies in recent years [60,63].
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3. Results
3.1. Compositional analysis

The AAC for IL-5 inducing and non-IL-5 inducing peptides was
computed. It has been found that the average composition of Phe, Gly,
Ile, Lys, Asn, Arg, and Tyr are higher in IL-5 inducing peptides. In
contrast, residues like Ala, Thr, Glu, Pro and Val are not preferred in IL-5
inducing peptides. Additionally, we also computed the AAC of random
peptides generated from Swiss-Prot. The average AAC for IL-5 inducing,
non-IL-5 inducing and random peptides is depicted in Fig. 3.

3.2. HLA alleles distribution analysis

The distribution of epitopes from IEDB database was also examined
for different HLA alleles and is depicted in Fig. 4. It has been observed
that 9 alleles were found common in both IL-5 inducing and non-IL-5
inducing assays. 24 peptides showed IL-5 inducing whereas only one
peptide showed non-IL-5 inducing response against HLA-DRB1%04:01
allele. Similarly, the assays against the HLA-DR allele included 22 IL-5
inducing peptides and 9 non-IL-5 inducing peptides.

3.3. Positional preference of residues

We generated the sequence logo for IL-5 inducing peptides to iden-
tify the positional preference of individual amino acid residues at spe-
cific positions. This analysis exhibited that hydrophobic residues such as
Leu, Ile, Val, Phe and Ala are highly predominant in IL-5 inducing
peptides. The sequence logo of 9 N-terminal residues of IL-5 inducers is
depicted in Fig. 5.

3.4. Alignment-based approach

3.4.1. BLAST similarity search

The study utilised BLAST for developing alignment-based models to
distinguish between IL-5 inducing and non-IL-5 inducing peptides. A
five-fold CV was carried out for evaluating the performance of BLAST.
The training dataset was divided into five equal folds, out of which the
peptides in four folds were used to build BLAST database, and the se-
quences in the fifth fold were searched against that database. This pro-
cess has been iterated five times to avoid any biasness. To evaluate the
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Fig. 3. Amino acid composition of IL-5, non-IL-5 and random peptides.
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performance of BLAST on the validation dataset, a BLAST database was
generated using all the sequences of the training dataset and then each
sequence in the validation dataset was searched against it. The peptide is
assigned as IL-5 and non-IL-5 inducer based on the top hit generated by
BLAST. For the main dataset, the number of correct hits (sensitivity)
rises from 0.13% to 5.56% for the training and 0.1%-6.72% for the
validation datasets. Besides this, it has attained a specificity of 36.39%
for training and 40.74% for validation datasets with E-value ranging
from 107° to 10, As shown in Table 1, the wrong hits (error) increase
proportionally with the increase in correct hits for both datasets. Hence,
it can be inferred from the result that alignment-based method using
BLAST alone is not competent in classifying IL-5 and non-IL-5 inducers
since it produces a large number of wrong hits as well as no hits.

3.4.2. Motif-based approach

In order to extract the motifs solely found in IL-5 inducing and non-
IL-5 inducing peptides of the main dataset, we have used the MERCI
program. The motifs such as ENSL, LYVGS, HFFN, and NANR are
exclusively present in IL-5 inducing peptides. Alternatively, VGL, YYA,
RSP, and PAG motifs are solely found in non-IL-5 inducing peptides. The
detailed results are provided in Table 2.

3.5. Alignment-free approach

3.5.1. Binary-profile based features

We also computed binary-profile-based features to develop
alignment-free classification model using several ML techniques. We
have built ML models for the Ng, C9 and also for combined terminal
residues NgCg. We found that RF-based model developed using binary
profile of Cg achieved an AUC of 0.57 on training and 0.58 on validation
dataset. RF-model developed using binary profile of Ng achieved an AUC
of 0.55 on training and 0.57 on validation dataset. In the case of binary
profile of NgCy, XGB-based model achieved an AUC of 0.59 on training
and validation datasets. The performance of ML models developed using
binary-profile-based features on main dataset is given in Table 3, while
the result for the alternate dataset is provided in Table S2. We found that
the binary profile-based model does not perform quite well when clas-
sifying the peptide sequences.

3.5.2. All compositional features

A vector of 9553 features was computed against each sequence for
both main and alternate datasets using Pfeature standalone tool [38].
We computed composition-based features including AAC, DPC, TPC and
others to distinguish IL-5 and non-IL-5 inducing peptides. These 9553
features were used to develop alignment-free classification model using
several ML techniques. The performance of ML models developed using
all compositional features on the main dataset is listed in Table 4. We
found that LR-based model attained an AUC of 0.68 on training and
validation datasets. In addition, the performance of ML models devel-
oped using all compositional features on the alternate dataset is tabu-
lated in Table S3.

Alternatively, SVC-L1 method was then used to reduce these features
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Table 2
Motifs exclusively present in IL-5 inducing and non-IL-5 inducing peptide
sequences.

S. Motifs (IL-5 No. of Motifs (Non-IL-5 No. of
No. inducers) sequences inducers) sequences
1 ENSL 10 VGL 42

2 LENS 10 YYA 35

3 LENSL 10 RSP 34

4 HFFN 7 PAG 33

5 LYVGS 7 VKP 31

6 LYVGSK 7 FRV 29

7 LYVGSKT 7 VFA 29

8 LYVGSKTK 7 MLR 28

9 NANR 7 IGK 27

10 VLENS 7 LKY 27

11 VLENSL 7

to 318 (main dataset) and 164 (alternate dataset). These selected fea-
tures for the main dataset were utilised to build several prediction
models and their performance is tabulated in Table 5. The performance
of machine learning models developed using selected features on the
alternate dataset is shown in Table S4.

Further, we ranked these reduced features using feature-selector tool
based on their importance. The detailed results for the top-ranked fea-
tures are tabulated in Table S5. Based on these top-ranked features (10,
50, 100, 150, ....), several classification models were developed. The
performance of the best models developed using the top-ranked features
on the main dataset is listed in Table 6. In addition, the performance of
other classification models developed using these ranked features on the
main and alternate datasets was also computed and tabulated in
Tables S6 and S7.

3.5.3. Different types of compositional features

These compositional features were used to develop alignment-free
classification model using several ML techniques. The performance of
the best models developed using different composition-based features on
the main dataset is listed in Table 7. Among all, we found that DPC-
based RF model achieved an AUC of 0.74 on training and validation
datasets. It could be inferred from the results that alignment-free ML-
based model using DPC has performed significantly better than other
compositional-based features models. Furthermore, the performance of
other classification models developed using compositional-based fea-
tures on the main and alternate datasets was computed and tabulated in
Supplementary Tables S8 and S9.

3.5.4. Cascade machine-learning model

In addition, we employed a bilayer cascade ML-based approach to
distinguish IL-5 and non-IL-5 with improved accuracy. In this approach,
the prediction was carried out using two layers of machine learning
algorithms. In the first layer, 108 ML models were generated by amal-
gamating the prediction scores of 18 different types of features
computed using six different ML techniques. The second layer has been
trained on the scores generated by the first layer. Hence, the second

Table 1
The performance of alignment-based method, developed using BLAST-based similarity on the main dataset.
E-value Training Validation
IL-5 inducers non-IL-5 inducers IL-5 inducers non-IL-5 inducers
Chits* (Sens) Whits (error) Chits (Spec) Whits (error) Chits (Sens) Whits (error) Chits (Spec) Whits (error)
107! 430 (5.56%) 340 (4.4%) 2814 (36.39%) 354 (4.58%) 130 (6.72%) 99 (5.02%) 788 (40.74%) 97 (5.12%)
1072 249 (3.22%) 207 (2.68%) 1468 (18.99%) 219 (2.83%) 80 (4.14%) 66 (3.31%) 368 (19.03%) 64 (3.41%)
107 149 (1.93%) 127 (1.64%) 729 (9.43%) 129 (1.67%) 49 (2.53%) 37 (1.71%) 193 (9.98%) 33 (1.91%)
107 98 (1.27%) 73 (0.94%) 375 (4.85%) 71 (0.92%) 36 (1.86%) 20 (0.98%) 81 (4.19%) 19 (1.03%)
10° 28 (0.36%) 25 (0.32%) 70 (0.91%) 27 (0.35%) 12 (0.62%) 10 (0.47%) 13 (0.67%) 9 (0.52%)
10 10 (0.13%) 2 (0.03%) 8 (0.1%) 4 (0.05%) 2(0.1%) 3(0.1%) 0 (0%) 2 (0.16%)

* Chits: Correct hits; Whits: Wrong hits; Sens: Sensitivity; Spec: Specificity.



L.D. Naorem et al. Computers in Biology and Medicine 158 (2023) 106864

Table 3
The performance of machine learning-based models developed using binary profile of terminal residues of peptides on main dataset.

Coy
ML Training Validation

Sens Spec Acc AUC MCC Sens Spec Acc AUC McCC
DT 26.65 76.98 67.11 0.52 0.03 26.6 78.48 67.99 0.53 0.05
RF 52.9 56.19 55.55 0.57 0.07 58.82 53.27 54.4 0.58 0.1
LR 51.65 53.91 53.47 0.54 0.04 54.99 52.95 53.36 0.55 0.06
XGB 53.03 54.28 54.04 0.55 0.06 55.5 52.17 52.84 0.55 0.06
KNN 67.15 36.65 42.63 0.53 0.03 67.01 36.49 42.66 0.53 0.03
GNB 53.03 52.09 52.28 0.53 0.04 58.31 50.49 52.07 0.57 0.07
Ny
DT 50.59 51.43 51.27 0.52 0.02 58.31 44.98 47.67 0.53 0.03
RF 50.53 55.84 54.8 0.55 0.05 54.73 53.79 53.98 0.57 0.07
LR 47.89 57.08 55.28 0.54 0.04 44.5 55.8 53.52 0.52 0
XGB 52.77 53.27 53.17 0.54 0.05 51.15 51.72 51.6 0.52 0.02
KNN 49.87 56.66 55.33 0.55 0.05 53.2 53.66 53.57 0.57 0.06
GNB 50.86 51.05 51.01 0.52 0.02 54.22 46.66 48.19 0.52 0.01
NoCo
DT 24.27 78.88 68.17 0.52 0.03 27.88 78.61 68.36 0.53 0.06
RF 57.65 54.1 54.8 0.59 0.09 62.4 50.23 52.69 0.58 0.1
LR 53.5 52.61 52.78 0.54 0.05 59.08 52.11 53.52 0.56 0.09
XGB 54.95 56.93 56.54 0.59 0.1 55.75 55.02 55.17 0.59 0.09
KNN 66.56 40.44 45.56 0.56 0.06 62.4 40.31 44.78 0.54 0.02
GNB 51.65 52.56 52.38 0.53 0.03 59.08 48.74 50.83 0.56 0.06

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naive Bayes; DT: Decision Tree.

Table 4
The performance of machine learning models developed using all compositional features on the main dataset.
ML Parameters Training Validation
Sens Spec Acc AUC MCC Sens Spec Acc AUC McCC

DT ¢ = entropy, 52.97 53.02 53.01 0.55 0.05 80.31 29.29 39.61 0.57 0.09
md = 10,
mf = auto

RF ¢ = entropy, 61.74 62.61 62.44 0.68 0.20 61.38 59.17 59.62 0.67 0.17
md = 100,
mf = log2,
ne = 1000

LR C=0.01,p=12, 63.65 64.24 64.12 0.68 0.23 64.19 62.22 62.62 0.68 0.21
s = liblinear

XGB g=0.5, 62.14 59.25 59.82 0.65 0.17 62.66 58.78 59.57 0.65 0.17
it = gain,
ne = 1000

KNN a = auto, 53.63 54.09 54.00 0.56 0.06 61.13 50.94 53.00 0.58 0.10
m = Manhattan,
nn = 91,
w = distance

GNB var_smo = le-09 41.29 75.87 69.09 0.59 0.15 48.08 76.28 70.58 0.62 0.22

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naive Bayes; DT: Decision Tree, c: criterion; md:
max_depth; mf: max_features; s: solver; g: gamma; it = importance_type; ne: n_estimators; m: metric; w: distance; nn: n_neighbors; var_smo: variance smoothing; p:
penalty; a: algorithm.

Table 5
The performance of machine learning models developed using selected features on the main dataset.

318 Features

ML Training Validation

Threshold Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
DT 0.48 57.98 53.96 54.75 0.58 0.10 49.87 60.60 58.43 0.56 0.09
RF 0.19 69.86 65.03 65.97 0.74 0.28 68.80 59.88 61.69 0.70 0.23
LR 0.48 67.41 66.92 67.02 0.74 0.28 61.64 62.87 62.62 0.67 0.20
XGB 0.17 63.65 63.05 63.17 0.70 0.22 62.40 61.05 61.32 0.67 0.19
KNN 0.18 63.52 59.20 60.05 0.65 0.18 61.89 56.32 57.45 0.62 0.15
GNB 1 93.27 29.46 41.97 0.61 0.21 85.68 27.48 39.25 0.57 0.12

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naive Bayes; DT: Decision Tree.
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Table 6
Performance of the best random forest-based models developed on top-ranked features of the main dataset.
Features Parameters Training Validation
Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
Topl0 ¢ = entropy, md = 100, 54.02 56.90 56.34 0.59 0.09 57.55 55.54 55.95 0.60 0.11
mf = auto, ne = 1000
Top50 ¢ = entropy, md = 50, 64.18 59.44 60.37 0.67 0.19 64.19 56.12 57.76 0.65 0.16
mf = log2, ne = 1000
Top100 ¢ = entropy, md = 50, 62.53 65.15 64.64 0.69 0.22 62.66 63.38 63.24 0.67 0.21
mf = log2, ne = 500
Top150 ¢ = entropy, md = 50, 64.51 64.11 64.19 0.71 0.23 66.24 60.73 61.84 0.70 0.22
mf = log2, ne = 1000
Top200 ¢ = entropy, md = 50, 64.91 66.06 65.83 0.73 0.25 65.47 62.67 63.24 0.70 0.23

mf = log2, ne = 1000

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; c: criterion; md:

max_depth; mf: max_features; ne: n_estimators.

Table 7
Performance of best machine learning-based models developed on compositional-based features of the main dataset.

Features ML Training Validation

Sens Spec Acc AUC McCC Sens Spec Acc AUC MCC
AAC RF 61.61 61.73 61.71 0.67 0.19 63.17 59.69 60.39 0.66 0.19
AAI RF 59.57 58.72 58.89 0.63 0.15 60.61 56.38 57.24 0.62 0.14
APAAC RF 63.26 61.68 61.99 0.68 0.20 60.10 59.37 59.51 0.65 0.16
ATC GNB 54.29 51.98 52.43 0.54 0.05 57.55 47.89 49.85 0.54 0.04
BTC XGB 49.54 60.28 58.17 0.57 0.08 49.11 59.88 57.70 0.56 0.07
CTC RF 59.76 59.57 59.61 0.64 0.16 62.40 56.77 57.91 0.65 0.15
DDR RF 56.86 59.27 58.80 0.62 0.13 59.59 56.90 57.45 0.62 0.13
DPC RF 68.01 66.20 66.56 0.74 0.28 68.80 66.11 66.65 0.74 0.29
PAAC RF 61.21 60.65 60.76 0.67 0.18 63.17 60.53 61.07 0.66 0.19
PCP RF 58.58 62.56 61.78 0.66 0.17 58.31 61.24 60.65 0.66 0.16
PRI RF 55.34 58.67 58.02 0.60 0.11 52.43 55.74 55.07 0.56 0.07
QsO RF 62.01 57.26 58.19 0.64 0.15 63.17 54.18 56.00 0.62 0.14
RRI RF 56.99 60.10 59.49 0.62 0.14 54.73 57.29 56.77 0.59 0.10
SEP DT 51.19 58.41 57.00 0.57 0.08 53.45 52.60 52.74 0.56 0.05
SER RF 61.94 60.76 60.99 0.67 0.18 60.87 60.34 60.45 0.66 0.17
SOC LR 53.83 49.36 50.23 0.52 0.03 52.69 48.74 49.54 0.51 0.01
SPC RF 61.28 58.70 59.21 0.65 0.16 60.10 60.01 60.03 0.66 0.16
TPC RF 68.67 59.86 61.59 0.71 0.23 71.10 58.59 61.12 0.71 0.24

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; GNB: Gaussian Naive Bayes; DT: Decision Tree.
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Fig. 6. Diagrammatic representation of bilayer cascade ML-based approach. The first layer consists of different ML models based on individual features. The second

layer has been trained on the scores of the output generated by the first layer.

layer learns from the results of the first layer classifiers and produces a
final cascade ML model [64] (Fig. 6). We found that among all the ML
models, XGB-based classifier attained an AUC of 0.69 on training and
0.67 on validation dataset for the main dataset (Table S10). The per-
formance of the alternate dataset using cascade approach is given in
Table S10.

3.5.5. Selected dipeptide compositional features

Since we achieved the best performance on DPC features using RF-
based model, thus we utilised these features to enhance the classifica-
tion performance. Feature-selector tool was used to rank these features
based on their importance. Using these top-ranked features, we devel-
oped several machine learning-based models and their performances are
tabulated in Table 8. We observed that RF-based model on DPC-250
features attains the best performance with an AUC of 0.74 on training
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Table 8

The performance of best random forest-based models developed using the composition of selected dipeptides.
Features Parameters Training Validation

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

Top50 ¢ = entropy, md = 50, mf = log2, ne = 500 58.64 60.15 59.86 0.63 0.15 59.34 60.86 60.55 0.64 0.16
Topl100 ¢ = entropy, md = 100, mf = log2, ne = 1000 63.33 63.11 63.15 0.69 0.21 67.52 63.19 64.06 0.72 0.25
Topl50 ¢ = gini, md = 100, mf = log2, ne = 500 64.05 66.89 66.34 0.72 0.25 69.57 65.91 66.65 0.74 0.29
Top200 ¢ = gini, md = 100, mf = log2, ne = 1000 64.58 68.42 67.67 0.73 0.27 65.22 70.06 69.08 0.74 0.29
Top250 ¢ = gini, md = 100, mf = log2, ne = 800 65.70 68.21 67.72 0.74 0.28 66.24 69.15 68.56 0.75 0.29
Top300 ¢ = entropy, md = 100, mf = log2, ne = 800 68.34 65.01 65.66 0.74 0.27 71.36 65.65 66.81 0.75 0.30
Top350 md = 100, mf = log2, ne = 1000 67.81 66.72 66.93 0.74 0.28 68.29 67.14 67.37 0.75 0.29
All400 mf = log2, md = 100, ne = 1000 68.01 66.20 66.56 0.74 0.28 68.80 66.11 66.65 0.74 0.29

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; c: criterion; md:

max_depth; mf: max_features, ne: n_estimators.

and 0.75 on validation dataset respectively, with balanced sensitivity
and specificity for main dataset. The same procedure was carried out on
alternate dataset and the detailed results are provided in Supplementary
Table S11.

We developed several ML-based methods to predict IL-5 using
compositional and binary profile-based features computed from the
peptide sequence. We could infer from the results that alignment-free
ML-based model using DPC-250 features has performed significantly
better than other feature-based models. Hence, in the current study, the
hybrid model was developed using DPC-250 features of the peptides.

3.5.6. Hybrid approach

To combat the shortcomings of individual techniques, we have
explored the potential of our hybrid method that combines BLAST, motif
with ML using DPC-250 features. This approach was built to classify the
IL-5 inducers with high precision. For this, the composition-based model
is integrated with MERCI and BLAST-based approaches. Followed by the
MERCI approach, peptides were distinguished using BLAST with an E-
value of 107!, The sequence is assigned as IL-5 and non-IL-5 inducers
based on the top hit of BLAST, while the peptides that are unpredicted by
BLAST were further predicted using DPC-based ML model. This hybrid
method considerably improved the accuracy on validation dataset,
hence overcoming the limitation of each method as shown in Table 9.
RF-based model performed the best on main dataset and achieved AUC
of 0.92 and 0.94 on the training and validation dataset. The results for
the alternate dataset are provided in Supplementary Table S12.

4. Implementation of IL5pred server

A user-friendly web server IL5pred was developed for predicting IL-5
inducing peptides with better efficiency. The main components of the
web server are Predict, Design, Protein scan, Motif scan, and Blast scan.
The modules are explained below.

(i) Predict Module: Enables the user to submit single/multiple
peptide sequences in FASTA format and will predict the peptides
as IL-5 inducers or non-IL-5 inducers. The module will provide

the user prediction scores and results (IL-5 inducers/non-

inducers) based on the chosen threshold value.

Design Module: Enables the user to design novel IL-5 inducers

with better activity. The user can provide the input sequence in

single-line format. It will generate all possible mutants peptides
with a single mutation which are further predicted using the
model.

Protein scan: Allows the user to identify IL-5 inducing regions in

the given protein sequence by generating overlapping patterns

based on the chosen length.

(iv) Motif scan: Allows the user to search for the motifs present in IL-
5 inducing peptide sequences. This module used MERCI program
to extract motifs from the given sequence.

(v) Blast scan: Uses an alignment-based search method, BLAST. The
module allows to search the query sequence against the database
of known IL-5 inducing peptides and assign it as IL-5 inducers
based on the match from the database.

(i)

(iii)

The web server can be accessed at (https://webs.iiitd.edu.in/ragha
va/il5pred/). The python-based standalone package of ILSpred was
also developed which can be downloaded from (https://webs.iiitd.edu.
in/raghava/il5pred/stand.php). The web server is user-friendly and
compatible with all contemporary gadgets, such as smartphones, tablets,
and desktops.

5. Discussion

IL-5 is an eosinophil regulatory cytokine involved in the maturation,
differentiation, activation and migration of eosinophils [5,65]. It plays a
role in a wide variety of diseases such as asthma, dermatitis, eosinophilic
esophagitis, and hyper-eosinophilic syndrome [12]. Several autoim-
mune disorders, such as Hashimoto’s thyroiditis and Graves’ disease, are
also associated with elevated IL-5 levels and eosinophilic infiltration
[66]. A recent study by Lucas et al. reported that the level of IL-5 is found
to be elevated in patients with severe COVID-19 conditions [67]. Past
studies have revealed the role of IL-5 in treating several
eosinophil-mediated disorders [68] and possess anti-tumor activity. For

Table 9

Performance of hybrid approach that combines BLAST, motif and selected dipeptide composition-based models on the main dataset.
ML Threshold Training Validation

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC

RF 0.2 79.68 82.14 81.66 0.92 0.54 82.86 84.71 84.33 0.94 0.60
DT 0.38 76.52 76.66 76.63 0.83 0.45 82.35 78.55 79.32 0.86 0.52
GNB 0.5 79.29 74.97 75.81 0.82 0.45 81.59 78.22 78.90 0.84 0.51
KNN 0.24 78.63 80.04 79.76 0.91 0.50 76.47 84.06 82.52 0.92 0.54
XGB 0.16 79.55 79.63 79.62 0.91 0.50 83.12 81.66 81.95 0.93 0.56
LR 0.47 78.3 79.50 79.27 0.89 0.49 81.07 80.43 80.56 0.92 0.53

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naive Bayes; DT: Decision Tree.
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instance, Ikutani et al. have shown the role of IL-5 inducing cells to
control eosinophil infiltration in lungs hence preventing tumor metas-
tasis [69]. IL-5 can act as an appealing therapeutic target due to its
pivotal role in the majority of eosinophil-mediated diseases [70-72].
Currently, three FDA-approved anti-IL-5 therapeutic agents, such as
benralizumab, mepolizumab and reslizumab, are available in the market
[91.

Taking into consideration, the role of IL-5 in several diseases there is
a necessity to develop a computational method that can predict IL-5
inducing peptides. In the current study, a prediction method, named
IL5pred that can be used to anticipate the peptides as IL-5 inducers and
non-IL-5 inducers. For this, we have created two datasets namely main
and alternate. The main dataset comprises experimentally validated
1907 IL-5 inducing and 7759 non-IL-5 inducing peptides obtained from
IEDB. While the alternate dataset contains 1907 IL-5 inducing peptides
from main dataset and 1907 random peptides generated from Swiss-
Prot. The compositional analysis shows that IL-5 inducing peptides are
abundant in Phe, Gly, Ile, Lys, Asn, Arg, and Tyr. Besides composition,
the order of the residue is an essential feature and plays a vital role in
defining its activity. For this, we also analyzed the residue preference
and observed that hydrophobic residues such as Leu, Ile, Val, Phe and
Ala are highly preferred at N-terminus of IL-5 inducing peptides. Along
with this, we have extracted the motifs exclusively present in IL-5
inducing peptides.

Moreover, a number of sequence-based features including composi-
tional and binary profiles were calculated for the peptides using Pfeature
standalone tool [38]. We computed a total of 9553 features and devel-
oped numerous prediction models using several classical ML techniques
including LR, RF, DT, GNB, KNN and XGB. LR is a supervised learning
algorithm used to predict the probability of a target variable [59]. DT is
a non-parametric supervised machine learning algorithm. This classifier
predicts the target variable using simple decision rules derived from
input features [56]. RF is an ensemble learning method used for classi-
fication, that combines multiple DTs during training and predicts a
single tree as a response variable. Also, it controls the overfitting of the
prediction models [54]. XGB classifier implements the gradient boosting
algorithm, where an iterative approach is utilised to predict the final
output [58]. GNB is a type of Naive Bayes algorithm based on the Bayes
theorem. This classifier is used when the features have continuous
values and assume that the features follow Gaussian normal distribu-
tions [57]. KNN is a non-parametric supervised learning classifier that
classifies a new data point to the target class closer to the nearest
neighbour data points [55]. Further, in our study, we attempt to select a
minimum set of features with minimum loss in performance to avoid
over-optimization of ML models. Taking this into account, we selected
different combinations of feature sets using feature selection and
ranking methods to accurately predict IL-5 inducers. We also employed a
bilayer cascade ML-based approach to better distinguish IL-5 and
non-IL-5. For this, we calculated all possible performance metrics to
achieve maximum performance in terms of AUC. Further, we choose
threshold values that minimise the discrepancy between sensitivity and
specificity on the training dataset and compute threshold-dependent
parameters such as accuracy and MCC. We found that RF-based model
on DPC-250 features achieved an AUC of 0.74 on training and 0.75 on
validation datasets with balanced sensitivity and specificity. This
RF-based model that used DPC-250 features outperformed other
feature-based models.

Apart from this, the commonly used alignment-based method,
BLAST was also employed to annotate the peptide sequence. If the query
sequence shows a high degree of similarity with a known peptide, then
the same function is assigned to the query peptide. It is found from
Table 1 that BLAST can predict IL-5 inducers, but it also produces an
enormous number of no-hits. To cope with this limitation, alignment-
based, and alignment-free approaches using DPC-250 were combined
to develop an improved method. This hybrid method, which combines
two or more approaches, improved both AUC and accuracy while
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circumventing the limitations of individual methods. We observed that
the hybrid model outperformed other models in the case of the main
dataset. Nonetheless, the hybrid model based on DPC-250, motif and
BLAST can accurately distinguish IL-5 and non-IL-5 inducing peptides in
terms of accuracy.

6. Conclusion

To expedite the research community working in the field of immu-
notherapy, we have incorporated the best-performing model into the
web server. IL5pred is a user-friendly, freely accessible web server which
is compatible with laptops and desktops. We expect that researchers will
use our prediction method to develop more accurate peptide-based
therapeutics for a variety of diseases.

7. Limitation of the study

This is the first systematic attempt to develop in silico models for
identifying IL-5 inducing peptides. A large enough dataset is required to
develop a more robust and accurate classification method. One limita-
tion of this method is the limited number of experimentally validated IL-
5 inducing peptides. We have made an effort to create more accurate and
reliable method while keeping this constraint in mind.
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