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A B S T R A C T   

Interleukin-5 (IL-5) can act as an enticing therapeutic target due to its pivotal role in several eosinophil-mediated 
diseases. The aim of this study is to develop a model for predicting IL-5 inducing antigenic regions in a protein 
with high precision. All models in this study have been trained, tested and validated on experimentally validated 
1907 IL-5 inducing and 7759 non-IL-5 inducing peptides obtained from IEDB. Our primary analysis indicates that 
IL-5 inducing peptides are dominated by certain residues like Ile, Asn, and Tyr. It was also observed that binders 
of a wide range of HLA alleles can induce IL-5. Initially, alignment-based methods have been developed using 
similarity and motif search. These alignment-based methods provide high precision but poor coverage. In order 
to overcome this limitation, we explore alignment-free methods which are mainly machine learning-based 
models. Firstly, models have been developed using binary profiles and eXtreme Gradient Boosting-based 
model achieved a maximum AUC of 0.59. Secondly, composition-based models have been developed and our 
dipeptide-based random forest model achieved a maximum AUC of 0.74. Thirdly, random forest model devel
oped using selected 250 dipeptides and achieved AUC 0.75 and MCC 0.29 on validation dataset; best among 
alignment-free models. In order to improve the performance, we developed an ensemble or hybrid method that 
combined alignment-based and alignment-free methods. Our hybrid method achieved AUC 0.94 with MCC 0.60 
on a validation/independent dataset. The best hybrid model developed in this study has been incorporated into 
the user-friendly web server and a standalone package named ‘IL5pred’ (https://webs.iiitd.edu.in/raghava 
/il5pred/).   

1. Introduction 

Innate immunity is considered the first line of defense against 
invading pathogens [1]. In contrast, adaptive immunity act as the sec
ond line of defense and is referred to as antigen-specific immune 
response. The immunological response against a pathogen is mediated 
via major histocompatibility complex (MHC) by presenting the antigen 
on the surface of antigen-presenting cells including dendritic, B-cells and 
macrophages [1]. MHC class II is responsible for processing and pre
senting exogenous antigens. This antigenic peptide activates CD4+

T-helper cells (Th) hence inducing the release of different cytokines [2]. 
Interleukin-5 (IL-5) is a crucial cytokine secreted by Th2, type-2 innate 
lymphoid, mast, basophils and eosinophils cells [3,4]. These cells pro
duced IL-5 upon stimulation by several environmental pollutants, 
inhaled allergens and microbes [5]. IL-5 is a glycosylated homodimeric 
protein with 45–60 kDa molecular weight, composed of two helical 
bundle motifs [6]. The gene that encodes IL-5 is found in the same 

cluster as IL-3, IL-4, IL-13 and granulocyte-macrophage colony-stimu
lating factor (GM-CSF) [7]. IL-5 exerts its pleiotropic actions via IL-5 
receptor (IL-5R), which is comprised of an α and a βc chain. The α 
subunit recognises the IL-5 molecule, whereas the βc subunit recognises 
either IL-3 or GM-CSF. Thereby promoting eosinophils maturation, 
activation, survival and discharge from the bone marrow into the 
bloodstream and finally to the airways [5-8]. When activated by IL-5, 
eosinophils degranulate and produce antimicrobial cytotoxins that are 
harmful to nearby cells and tissues [9]. Although IL-5 is critical in 
eosinophil development, it has also been linked to the onset and severity 
of a number of diseases, including asthma, autoimmune disorders, al
lergy, atopic dermatitis, eosinophilic esophagitis, and cancer [5,10–13]. 
IL-5 production during asthma exacerbation can cause pulmonary 
eosinophilia, enhancing airway smooth muscle contraction and 
increased mucus production [14]. It has been demonstrated in earlier 
studies that IL-5 is induced by a wide variety of MHC class II alleles and 
has a role in MHC class II regulation [15–17]. The overall biological 
effects of IL-5 on eosinophils are depicted in Fig. 1. 
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In the past, numerous computational methods have been developed 
for designing peptide/epitope-based subunit vaccines and immuno
therapy. In the initial phase, methods have been developed for 

predicting Human Leukocyte Antigen (HLA) class I and II binders. Major 
HLA class I binder prediction include ProPred1 [18], nHLAPred [19], 
PSSMHCpan [20], NetMHCpan [21] and NetMHC-3.0 [22]. Major HLA 
class II binder prediction methods include ProPred [23], HLA-DR4Pred 
[24], NetMHCII [25] and NetMHCIIpan [26]. Besides, another method 
HLAncPred [27] has been developed to predict non-classical HLA 
binders. Recently, the trend has changed as a number of researchers are 
developing methods for predicting peptides that can induce specific 
types of cytokines. CytoPred is a method that can predict and classify 
cytokines with high accuracy [28]. Currently, the following methods, 
IL4pred [29], IL-6Pred [30], IL-10Pred [31], ILeukin10Pred [32], 
IL17eScan [33], and IL-13Pred [34] have been developed to predict IL-4, 
IL-6, IL-10, IL-17, and IL-13 inducing peptides respectively. Moreover, 
PIP-EL [35] and ProInflam [36] are the tools used to predict the peptides 
inducing a group of cytokines. These above-mentioned prediction tools 
utilize compositional and binary profile features of the peptide 
sequence. For instance, IL4pred and IL17eScan use amino acid, dipep
tide composition and amino acid pairs, IL10pred uses dipeptide 
composition as input features, and many more. 

Taking into consideration the importance of IL-5 in several diseases 
there is a necessity to develop a computational method that can predict 
IL-5 inducing peptides. To the best of our knowledge, no method has 
been developed to predict IL-5 inducing peptides. Thus in this study, we 
proposed a novel method IL5pred to identify these peptides. We 
retrieved the experimentally validated dataset from the well-established 
database Immune Epitope Database (IEDB) [37]. We have implemented 
Basic Local Alignment Search Tool (BLAST) to predict the peptides based 
on their similarity to known IL-5 inducers. A motif-based approach was 
utilised to identify motifs in IL-5 inducers. Next, a wide range of 

List of abbreviations 

MHC Major Histocompatibility Complex 
IL-5 Interleukin-5 
IEDB Immune Epitope Database 
BLAST Basic Local Alignment Search Tool 
HLA Human Leukocyte Antigen 
MERCI Motif-EmeRging and with Classes-Identification 
AAC Amino Acid Composition 
DPC Dipeptide composition 
ML Machine Learning 
RF Random Forest 
KNN K-nearest neighbour 
DT Decision Tree 
GNB Gaussian Naïve Bayes 
XGB Extreme Gradient Boosting 
LR Logistic Regression 
Acc Accuracy 
Sens Sensitivity 
Spec Specificity 
MCC Matthews correlation coefficient 
AUC Area under the receiver operating characteristic curve  

Fig. 1. Biological effects of IL-5 in the development of eosinophils and its linkage to the onset and severity of several diseases.  
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sequence-based features including composition and binary profiles for 
each peptide was computed using Pfeature tool [38]. We developed 
several machine-learning models utilising these features to predict IL-5 
inducers with better accuracy and the best model was incorporated into 
the web server that can efficiently classify IL-5 inducers and 
non-inducers. 

2. Materials and methods 

2.1. Dataset preparation 

The most challenging aspect of designing a bioinformatics tool is 
gathering enough experimentally validated data. The current study 
retreived IL-5 inducing and non-IL-5 inducing peptides from IEDB [37], 
a freely accessible database that consists of a huge amount of experi
mentally verified immune epitopes. We created two datasets: main 
dataset and alternate dataset. 

2.1.1. Main dataset 
We extracted 2802 IL-5 inducing peptides and 8674 non-IL-5 

inducing peptides, which are experimentally validated MHC class II 
binders from IEDB tested on Homo sapiens. Further, all peptides con
taining non-standard characters (i.e., ‘B,’ ‘J,’ ‘O’, ‘U,’ ‘X’ and ‘Z’) and 
duplicates were removed. We have chosen unique linear peptides with 
lengths ranging from 9 to 20 amino acids. The peptides found to be 
common or exactly matched in both datasets were also eliminated. 
Finally, 1907 IL-5 inducing and 7759 non-IL-5 inducing peptides were 
obtained and labelled as positive and negative datasets, respectively. 

2.1.2. Alternate dataset 
We have also created an alternate dataset comprising IL-5 inducing 

as a positive dataset and random peptides as a negative dataset 
(generated from the Swiss-Prot database) [39]. We randomly extracted 
1907 peptides and assigned them as negative peptides to create a 
balanced dataset. Finally, the alternate dataset comprises 1907 IL-5 
inducing peptides and 1907 random peptides. 

2.2. Sequence logos 

To investigate the preference of individual amino acids at a partic
ular position, we generated the sequence logo using the R package 
“ggseqlogo” [40]. It gives the graphical representation with residue 
positions on x-axis and the bit score indicating the conservation of res
idues at a specific position on y-axis. This package processes a 
fixed-length input vector, thus, we considered the minimum length of 9 
amino acids from N-terminal for each peptide sequence. 

2.3. Motif identification using MERCI 

The detection of motifs in peptides is crucial for annotating the 
function of the sequence. The current study employed a publicly avail
able software, Motif-EmeRging and with Classes-Identification (MERCI) 
[41] to search motifs in IL-5 inducing peptides. This software used a Perl 
script to find the motifs exclusively present in positive and negative 
peptide sequences. This MERCI program examined both the positive and 
negative peptide sequences to extract the specific patterns. Thus, we 
adopted a two-step strategy to identify the motifs exclusively present in 
positive and negative peptide sequences. Initially, we retrieved the 
motifs present in IL-5 inducing peptides by inputting IL-5 inducing 
peptides as positive and IL-5 non-inducing peptides as negative. We next 
flipped the datasets providing MERCI with IL-5 non-inducing peptides as 
positive datasets and inducing peptides as negative, thus obtaining the 
motifs for IL-5 non-inducing peptides. 

2.4. Feature generation 

In order to develop any prediction model, it is necessary to extract a 
set of pertinent features for each protein or peptide sequence. Different 
feature extraction methods have been employed in various studies. Hong 
et al., have proposed novel protein encoding strategies by integrating 
them with convolution neural networks [42] and deep learning methods 
to annotate the proteins as well as to restrain false predictions [43]. 
Another study by Xia et al. has developed a method named PFmulDL, in 
which multiple deep-learning algorithms have been amalgamated for 
protein function interpretation. In this study, authors have combined 
recurrent neural network (RNN) along with the multi-kernel CNN 
method to annotate the function and then transfer learning has been 
implemented for improving the efficiency of the model [44]. 
SVM-Prot-2016 is another machine learning-based method incorpo
rating K nearest neighbour (kNN) and probabilistic neural networks 
(PNN) for predicting the functions of the proteins from their sequence 
regardless of their similarity [45]. 

In the study, we have used Pfeature [38], a standalone tool, to 
generate distinct features from peptide sequence information. Using this 
tool, we computed several compositional-based features as well as bi
nary profile-based features for each peptide sequence. The major 
composition features such as amino acid composition (AAC), dipeptide 
composition (DPC), tripeptide composition (TPC), atom composition 
(ATC), Physico-chemical properties repeat composition (PRI) along with 
their vector length are tabulated in Table S1. Following are some of the 
descriptions of the composition-based features used in the current study 
to develop several alignment-free prediction models using machine 
learning (ML) techniques. 

2.5. Amino acid composition-based features 

AAC has been used efficaciously in a number of sequence-based 
classification techniques [46]. It is the primary feature that describes 
the fraction of each amino acid residue present in a peptide sequence 
with 20 length vector. Equation (1) is used to calculate AAC for each 
amino acid residue. 

AAC(i) =
Ri
N

× 100 (1) 

AAC(i) represents the per cent amino acid composition of residue 
type (i); Ri represents the number of residues of type i, and N represents 
the length of the sequence. 

2.6. Dipeptide composition-based features 

DPC is another frequently utilised input parameter for peptide 
composition-based classification. It captures comprehensive informa
tion about the pairwise composition of the amino acids in the peptide 
sequence with a fixed vector of length 400 (20*20). The following 
equation is used to calculate DPC. 

DPC(i) =
Total number of dipeptides (i)

N − 1
× 100 (2) 

DPC(i) represents the per cent of dipeptide composition of residue 
type i, and N represents the length of the sequence. 

2.7. Selection and ranking of features 

A total of 9553 features were computed for both main and alternate 
datasets. Only relevant features are used for developing the classifica
tion model. Thus, selecting relevant features from a larger set of features 
is the most important step but challenging. Although there are a number 
of techniques for feature selection, we employed a support vector clas
sifier (SVC) with L1 regularization employing the Scikit-learn package 
[47]. This method chooses the non-zero coefficients and implements the 
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L1 penalty to select the small set of relevant features. During the opti
mization process, the L1 regularization handles the sparse matrix by 
selecting some model features. Another important regularization 
parameter used in this technique is “C” parameter which is set to the 
default value (i.e. 0.01), and as lower the C value, fewer features are 
selected [48]. Feature-selector tool was further used to rank these fea
tures based on their importance. This tool rank features that are 
frequently used to divide the dataset among all trees, using the DT-based 
algorithm Light Gradient Boosting Machine [49]. 

2.8. Binary profile-based features 

Previous research studies have shown that the binary profile is one of 
the essential features for classifying peptides [50]. Generally, it is 
challenging to create a fixed-length pattern given the varied length of 
the peptides. In our study, the length of the peptides varies from 9 to 20, 
thus we generated a fixed length binary profile by extracting the fixed 
length segments from either N or C terminus of the peptide [50]. Since 
the minimum length of the peptides is 9, thus we created binary profiles 
for N9, C9 and also for combined terminal residues N9C9 after calculating 
the fixed length patterns. 

2.9. Alignment-based search using BLAST 

In this study, BLAST has been used for alignment-based search. It is 
the most frequently used tool for annotating protein/peptide and 
nucleotide sequences [51]. We implemented blastp-short for short 
peptide sequences (8–30 amino acids) to identify IL-5 inducing peptides 
based on the similarity of peptides with IL-5 inducers and non-inducers. 
To identify IL-5 inducers and non-inducers, the top hit of BLAST was 
considered at different E-value cut-offs. 

2.10. Alignment-free approach for classification 

To generate more accurate prediction methods, several studies have 
employed alignment-free approach using different ML techniques [52, 
53]. For this, Random Forest (RF) [54], K-nearest neighbour (KNN) 
[55], Decision Tree (DT) [56], Gaussian Naïve Bayes (GNB) [57], 
XGBoost (XGB) [58], and Logistic Regression (LR) [59] were employed 
using Scikit’s sklearn package from Python [47]. Different hyper
parameters were tuned in these classification algorithms, and the results 
achieved on the best parameters were reported. 

2.11. Five-fold cross-validation 

The datasets were split into 80:20 ratio, in which 80% of the data was 
utilised for training and 20% for validation purposes. Five-fold cross- 
validation (CV) was used on 80% training dataset to train, test and 
evaluate the classification models. The training dataset is split into five 
equal folds, four of which are utilised for training and the remaining for 
testing. This method is iterated five times, with each fold being tested 
separately. This method has been extensively applied in several studies 
by researchers in the past [50,60]. The complete workflow of IL5pred is 
shown in Fig. 2. 

2.12. Performance evaluation metrics 

Model evaluation is a crucial stage in determining the model’s effi
ciency. Thus, the performance of different ML models was evaluated 
using standard evaluation metrics, including threshold-dependent and 
independent parameters. The threshold-dependent parameters consist 
of Accuracy (Acc), Sensitivity (Sens), Specificity (Spec), and Matthews 
correlation coefficient (MCC), and the Area under the receiver operating 
characteristic curve (AUC) is a threshold-independent metric. Sens 
(equation (3)) is also known as recall and can be defined as the true 

Fig. 2. Complete architecture of IL5pred, including dataset collection, feature generation, machine learning techniques and performance evaluation.  
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positive rate, while Spec (equation (4)) is the true negative rate. Acc 
(equation (5)) denotes the percentage of the correctly predicted IL-5 
inducers and non-inducers, and MCC (equation (6)) is the relation be
tween the predicted and actual values. These performance metrics are 
commonly used and well-annotated in the previous studies [61,62] and 
can be calculated as: 

Sens=
TP

TP + FN
× 100 (3)  

Spec=
TN

TN + FP
× 100 (4)  

Acc=
TP + TN

TP + TN + FN + FP
× 100 (5)  

MCC=
(TP × TN) − (FP × FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (6) 

TP, TN, FP, and FN annotate true positive, true negative, false pos
itive, and false negative respectively. 

2.13. Hybrid or ensemble approach 

The study explores the potential of a hybrid model that integrates 
BLAST, motif and alignment-free approach using ML. Initially, BLAST 
was used to predict the peptide sequence at E-value of 10− 1. The scores 
of ‘+0.5’ and ‘-0.5’ were assigned for the correct positive and negative 
predictions respectively, and the score of ‘0’ was provided for no hits. 
Second, the MERCI program was used to classify the same peptide 
sequence, and the scores of ‘+0.5’ and ‘-0.5’ were assigned if the motifs 
were present in positive and negative datasets and 0 for absent. The 
peptide sequences not identified using BLAST (no hits) and MERCI were 
further predicted using ML models. Ultimately, the overall score was 
calculated by combining BLAST, MERCI as well as ML prediction scores. 
Then, the peptides were assigned as IL-5 inducers and non-IL-5 inducers 
based on the overall score. This hybrid approach has been applied in 
different research studies in recent years [60,63]. 

3. Results 

3.1. Compositional analysis 

The AAC for IL-5 inducing and non-IL-5 inducing peptides was 
computed. It has been found that the average composition of Phe, Gly, 
Ile, Lys, Asn, Arg, and Tyr are higher in IL-5 inducing peptides. In 
contrast, residues like Ala, Thr, Glu, Pro and Val are not preferred in IL-5 
inducing peptides. Additionally, we also computed the AAC of random 
peptides generated from Swiss-Prot. The average AAC for IL-5 inducing, 
non-IL-5 inducing and random peptides is depicted in Fig. 3. 

3.2. HLA alleles distribution analysis 

The distribution of epitopes from IEDB database was also examined 
for different HLA alleles and is depicted in Fig. 4. It has been observed 
that 9 alleles were found common in both IL-5 inducing and non-IL-5 
inducing assays. 24 peptides showed IL-5 inducing whereas only one 
peptide showed non-IL-5 inducing response against HLA-DRB1*04:01 
allele. Similarly, the assays against the HLA-DR allele included 22 IL-5 
inducing peptides and 9 non-IL-5 inducing peptides. 

3.3. Positional preference of residues 

We generated the sequence logo for IL-5 inducing peptides to iden
tify the positional preference of individual amino acid residues at spe
cific positions. This analysis exhibited that hydrophobic residues such as 
Leu, Ile, Val, Phe and Ala are highly predominant in IL-5 inducing 
peptides. The sequence logo of 9 N-terminal residues of IL-5 inducers is 
depicted in Fig. 5. 

3.4. Alignment-based approach 

3.4.1. BLAST similarity search 
The study utilised BLAST for developing alignment-based models to 

distinguish between IL-5 inducing and non-IL-5 inducing peptides. A 
five-fold CV was carried out for evaluating the performance of BLAST. 
The training dataset was divided into five equal folds, out of which the 
peptides in four folds were used to build BLAST database, and the se
quences in the fifth fold were searched against that database. This pro
cess has been iterated five times to avoid any biasness. To evaluate the 

Fig. 3. Amino acid composition of IL-5, non-IL-5 and random peptides.  
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Fig. 4. Distribution of HLA alleles among assays reporting IL-5 inducers and non-IL-5 inducers. Green color denotes IL-5 inducers and blue color indicates non-IL- 
5 inducers. 

Fig. 5. Sequence logo depicting positional conservation of nine amino acid residues at N- terminus for IL-5 inducers. Amino acid residues such as Leu, Ile, Val, Phe 
and Ala are highly predominant in IL-5 inducing peptides. 
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performance of BLAST on the validation dataset, a BLAST database was 
generated using all the sequences of the training dataset and then each 
sequence in the validation dataset was searched against it. The peptide is 
assigned as IL-5 and non-IL-5 inducer based on the top hit generated by 
BLAST. For the main dataset, the number of correct hits (sensitivity) 
rises from 0.13% to 5.56% for the training and 0.1%–6.72% for the 
validation datasets. Besides this, it has attained a specificity of 36.39% 
for training and 40.74% for validation datasets with E-value ranging 
from 10− 6 to 10− 1. As shown in Table 1, the wrong hits (error) increase 
proportionally with the increase in correct hits for both datasets. Hence, 
it can be inferred from the result that alignment-based method using 
BLAST alone is not competent in classifying IL-5 and non-IL-5 inducers 
since it produces a large number of wrong hits as well as no hits. 

3.4.2. Motif-based approach 
In order to extract the motifs solely found in IL-5 inducing and non- 

IL-5 inducing peptides of the main dataset, we have used the MERCI 
program. The motifs such as ENSL, LYVGS, HFFN, and NANR are 
exclusively present in IL-5 inducing peptides. Alternatively, VGL, YYA, 
RSP, and PAG motifs are solely found in non-IL-5 inducing peptides. The 
detailed results are provided in Table 2. 

3.5. Alignment-free approach 

3.5.1. Binary-profile based features 
We also computed binary-profile-based features to develop 

alignment-free classification model using several ML techniques. We 
have built ML models for the N9, C9 and also for combined terminal 
residues N9C9. We found that RF-based model developed using binary 
profile of C9 achieved an AUC of 0.57 on training and 0.58 on validation 
dataset. RF-model developed using binary profile of N9 achieved an AUC 
of 0.55 on training and 0.57 on validation dataset. In the case of binary 
profile of N9C9, XGB-based model achieved an AUC of 0.59 on training 
and validation datasets. The performance of ML models developed using 
binary-profile-based features on main dataset is given in Table 3, while 
the result for the alternate dataset is provided in Table S2. We found that 
the binary profile-based model does not perform quite well when clas
sifying the peptide sequences. 

3.5.2. All compositional features 
A vector of 9553 features was computed against each sequence for 

both main and alternate datasets using Pfeature standalone tool [38]. 
We computed composition-based features including AAC, DPC, TPC and 
others to distinguish IL-5 and non-IL-5 inducing peptides. These 9553 
features were used to develop alignment-free classification model using 
several ML techniques. The performance of ML models developed using 
all compositional features on the main dataset is listed in Table 4. We 
found that LR-based model attained an AUC of 0.68 on training and 
validation datasets. In addition, the performance of ML models devel
oped using all compositional features on the alternate dataset is tabu
lated in Table S3. 

Alternatively, SVC-L1 method was then used to reduce these features 

to 318 (main dataset) and 164 (alternate dataset). These selected fea
tures for the main dataset were utilised to build several prediction 
models and their performance is tabulated in Table 5. The performance 
of machine learning models developed using selected features on the 
alternate dataset is shown in Table S4. 

Further, we ranked these reduced features using feature-selector tool 
based on their importance. The detailed results for the top-ranked fea
tures are tabulated in Table S5. Based on these top-ranked features (10, 
50, 100, 150, ….), several classification models were developed. The 
performance of the best models developed using the top-ranked features 
on the main dataset is listed in Table 6. In addition, the performance of 
other classification models developed using these ranked features on the 
main and alternate datasets was also computed and tabulated in 
Tables S6 and S7. 

3.5.3. Different types of compositional features 
These compositional features were used to develop alignment-free 

classification model using several ML techniques. The performance of 
the best models developed using different composition-based features on 
the main dataset is listed in Table 7. Among all, we found that DPC- 
based RF model achieved an AUC of 0.74 on training and validation 
datasets. It could be inferred from the results that alignment-free ML- 
based model using DPC has performed significantly better than other 
compositional-based features models. Furthermore, the performance of 
other classification models developed using compositional-based fea
tures on the main and alternate datasets was computed and tabulated in 
Supplementary Tables S8 and S9. 

3.5.4. Cascade machine-learning model 
In addition, we employed a bilayer cascade ML-based approach to 

distinguish IL-5 and non-IL-5 with improved accuracy. In this approach, 
the prediction was carried out using two layers of machine learning 
algorithms. In the first layer, 108 ML models were generated by amal
gamating the prediction scores of 18 different types of features 
computed using six different ML techniques. The second layer has been 
trained on the scores generated by the first layer. Hence, the second 

Table 1 
The performance of alignment-based method, developed using BLAST-based similarity on the main dataset.  

E-value Training Validation 

IL-5 inducers non-IL-5 inducers IL-5 inducers non-IL-5 inducers 

Chits* (Sens) Whits (error) Chits (Spec) Whits (error) Chits (Sens) Whits (error) Chits (Spec) Whits (error) 

10–1 430 (5.56%) 340 (4.4%) 2814 (36.39%) 354 (4.58%) 130 (6.72%) 99 (5.02%) 788 (40.74%) 97 (5.12%) 
10–2 249 (3.22%) 207 (2.68%) 1468 (18.99%) 219 (2.83%) 80 (4.14%) 66 (3.31%) 368 (19.03%) 64 (3.41%) 
10–3 149 (1.93%) 127 (1.64%) 729 (9.43%) 129 (1.67%) 49 (2.53%) 37 (1.71%) 193 (9.98%) 33 (1.91%) 
10–4 98 (1.27%) 73 (0.94%) 375 (4.85%) 71 (0.92%) 36 (1.86%) 20 (0.98%) 81 (4.19%) 19 (1.03%) 
10–5 28 (0.36%) 25 (0.32%) 70 (0.91%) 27 (0.35%) 12 (0.62%) 10 (0.47%) 13 (0.67%) 9 (0.52%) 
10–6 10 (0.13%) 2 (0.03%) 8 (0.1%) 4 (0.05%) 2 (0.1%) 3 (0.1%) 0 (0%) 2 (0.16%) 

* Chits: Correct hits; Whits: Wrong hits; Sens: Sensitivity; Spec: Specificity. 

Table 2 
Motifs exclusively present in IL-5 inducing and non-IL-5 inducing peptide 
sequences.  

S. 
No. 

Motifs (IL-5 
inducers) 

No. of 
sequences 

Motifs (Non-IL-5 
inducers) 

No. of 
sequences 

1 E N S L 10 V G L 42 
2 L E N S 10 Y Y A 35 
3 L E N S L 10 R S P 34 
4 H F F N 7 P A G 33 
5 L Y V G S 7 V K P 31 
6 L Y V G S K 7 F R V 29 
7 L Y V G S K T 7 V F A 29 
8 L Y V G S K T K 7 M L R 28 
9 N A N R 7 I G K 27 
10 V L E N S 7 L K Y 27 
11 V L E N S L 7    
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Table 3 
The performance of machine learning-based models developed using binary profile of terminal residues of peptides on main dataset.  

C9 

ML Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 26.65 76.98 67.11 0.52 0.03 26.6 78.48 67.99 0.53 0.05 
RF 52.9 56.19 55.55 0.57 0.07 58.82 53.27 54.4 0.58 0.1 
LR 51.65 53.91 53.47 0.54 0.04 54.99 52.95 53.36 0.55 0.06 
XGB 53.03 54.28 54.04 0.55 0.06 55.5 52.17 52.84 0.55 0.06 
KNN 67.15 36.65 42.63 0.53 0.03 67.01 36.49 42.66 0.53 0.03 
GNB 53.03 52.09 52.28 0.53 0.04 58.31 50.49 52.07 0.57 0.07 

N9 

DT 50.59 51.43 51.27 0.52 0.02 58.31 44.98 47.67 0.53 0.03 
RF 50.53 55.84 54.8 0.55 0.05 54.73 53.79 53.98 0.57 0.07 
LR 47.89 57.08 55.28 0.54 0.04 44.5 55.8 53.52 0.52 0 
XGB 52.77 53.27 53.17 0.54 0.05 51.15 51.72 51.6 0.52 0.02 
KNN 49.87 56.66 55.33 0.55 0.05 53.2 53.66 53.57 0.57 0.06 
GNB 50.86 51.05 51.01 0.52 0.02 54.22 46.66 48.19 0.52 0.01 

N9C9 

DT 24.27 78.88 68.17 0.52 0.03 27.88 78.61 68.36 0.53 0.06 
RF 57.65 54.1 54.8 0.59 0.09 62.4 50.23 52.69 0.58 0.1 
LR 53.5 52.61 52.78 0.54 0.05 59.08 52.11 53.52 0.56 0.09 
XGB 54.95 56.93 56.54 0.59 0.1 55.75 55.02 55.17 0.59 0.09 
KNN 66.56 40.44 45.56 0.56 0.06 62.4 40.31 44.78 0.54 0.02 
GNB 51.65 52.56 52.38 0.53 0.03 59.08 48.74 50.83 0.56 0.06 

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random 
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naïve Bayes; DT: Decision Tree. 

Table 4 
The performance of machine learning models developed using all compositional features on the main dataset.  

ML Parameters Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT c = entropy, 
md = 10, 
mf = auto 

52.97 53.02 53.01 0.55 0.05 80.31 29.29 39.61 0.57 0.09 

RF c = entropy, 
md = 100, 
mf = log2, 
ne = 1000 

61.74 62.61 62.44 0.68 0.20 61.38 59.17 59.62 0.67 0.17 

LR C = 0.01, p = I2, 
s = liblinear 

63.65 64.24 64.12 0.68 0.23 64.19 62.22 62.62 0.68 0.21 

XGB g = 0.5, 
it = gain, 
ne = 1000 

62.14 59.25 59.82 0.65 0.17 62.66 58.78 59.57 0.65 0.17 

KNN a = auto, 
m = Manhattan, 
nn = 91, 
w = distance 

53.63 54.09 54.00 0.56 0.06 61.13 50.94 53.00 0.58 0.10 

GNB var_smo = 1e-09 41.29 75.87 69.09 0.59 0.15 48.08 76.28 70.58 0.62 0.22 

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random 
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naïve Bayes; DT: Decision Tree, c: criterion; md: 
max_depth; mf: max_features; s: solver; g: gamma; it = importance_type; ne: n_estimators; m: metric; w: distance; nn: n_neighbors; var_smo: variance smoothing; p: 
penalty; a: algorithm. 

Table 5 
The performance of machine learning models developed using selected features on the main dataset.  

318 Features 

ML Training Validation 

Threshold Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

DT 0.48 57.98 53.96 54.75 0.58 0.10 49.87 60.60 58.43 0.56 0.09 
RF 0.19 69.86 65.03 65.97 0.74 0.28 68.80 59.88 61.69 0.70 0.23 
LR 0.48 67.41 66.92 67.02 0.74 0.28 61.64 62.87 62.62 0.67 0.20 
XGB 0.17 63.65 63.05 63.17 0.70 0.22 62.40 61.05 61.32 0.67 0.19 
KNN 0.18 63.52 59.20 60.05 0.65 0.18 61.89 56.32 57.45 0.62 0.15 
GNB 1 93.27 29.46 41.97 0.61 0.21 85.68 27.48 39.25 0.57 0.12 

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random 
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naïve Bayes; DT: Decision Tree. 
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layer learns from the results of the first layer classifiers and produces a 
final cascade ML model [64] (Fig. 6). We found that among all the ML 
models, XGB-based classifier attained an AUC of 0.69 on training and 
0.67 on validation dataset for the main dataset (Table S10). The per
formance of the alternate dataset using cascade approach is given in 
Table S10. 

3.5.5. Selected dipeptide compositional features 
Since we achieved the best performance on DPC features using RF- 

based model, thus we utilised these features to enhance the classifica
tion performance. Feature-selector tool was used to rank these features 
based on their importance. Using these top-ranked features, we devel
oped several machine learning-based models and their performances are 
tabulated in Table 8. We observed that RF-based model on DPC-250 
features attains the best performance with an AUC of 0.74 on training 

Table 6 
Performance of the best random forest-based models developed on top-ranked features of the main dataset.  

Features Parameters Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

Top10 c = entropy, md = 100, 
mf = auto, ne = 1000 

54.02 56.90 56.34 0.59 0.09 57.55 55.54 55.95 0.60 0.11 

Top50 c = entropy, md = 50, 
mf = log2, ne = 1000 

64.18 59.44 60.37 0.67 0.19 64.19 56.12 57.76 0.65 0.16 

Top100 c = entropy, md = 50, 
mf = log2, ne = 500 

62.53 65.15 64.64 0.69 0.22 62.66 63.38 63.24 0.67 0.21 

Top150 c = entropy, md = 50, 
mf = log2, ne = 1000 

64.51 64.11 64.19 0.71 0.23 66.24 60.73 61.84 0.70 0.22 

Top200 c = entropy, md = 50, 
mf = log2, ne = 1000 

64.91 66.06 65.83 0.73 0.25 65.47 62.67 63.24 0.70 0.23 

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; c: criterion; md: 
max_depth; mf: max_features; ne: n_estimators. 

Table 7 
Performance of best machine learning-based models developed on compositional-based features of the main dataset.  

Features ML Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

AAC RF 61.61 61.73 61.71 0.67 0.19 63.17 59.69 60.39 0.66 0.19 
AAI RF 59.57 58.72 58.89 0.63 0.15 60.61 56.38 57.24 0.62 0.14 
APAAC RF 63.26 61.68 61.99 0.68 0.20 60.10 59.37 59.51 0.65 0.16 
ATC GNB 54.29 51.98 52.43 0.54 0.05 57.55 47.89 49.85 0.54 0.04 
BTC XGB 49.54 60.28 58.17 0.57 0.08 49.11 59.88 57.70 0.56 0.07 
CTC RF 59.76 59.57 59.61 0.64 0.16 62.40 56.77 57.91 0.65 0.15 
DDR RF 56.86 59.27 58.80 0.62 0.13 59.59 56.90 57.45 0.62 0.13 
DPC RF 68.01 66.20 66.56 0.74 0.28 68.80 66.11 66.65 0.74 0.29 
PAAC RF 61.21 60.65 60.76 0.67 0.18 63.17 60.53 61.07 0.66 0.19 
PCP RF 58.58 62.56 61.78 0.66 0.17 58.31 61.24 60.65 0.66 0.16 
PRI RF 55.34 58.67 58.02 0.60 0.11 52.43 55.74 55.07 0.56 0.07 
QSO RF 62.01 57.26 58.19 0.64 0.15 63.17 54.18 56.00 0.62 0.14 
RRI RF 56.99 60.10 59.49 0.62 0.14 54.73 57.29 56.77 0.59 0.10 
SEP DT 51.19 58.41 57.00 0.57 0.08 53.45 52.60 52.74 0.56 0.05 
SER RF 61.94 60.76 60.99 0.67 0.18 60.87 60.34 60.45 0.66 0.17 
SOC LR 53.83 49.36 50.23 0.52 0.03 52.69 48.74 49.54 0.51 0.01 
SPC RF 61.28 58.70 59.21 0.65 0.16 60.10 60.01 60.03 0.66 0.16 
TPC RF 68.67 59.86 61.59 0.71 0.23 71.10 58.59 61.12 0.71 0.24 

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random 
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; GNB: Gaussian Naïve Bayes; DT: Decision Tree. 

Fig. 6. Diagrammatic representation of bilayer cascade ML-based approach. The first layer consists of different ML models based on individual features. The second 
layer has been trained on the scores of the output generated by the first layer. 
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and 0.75 on validation dataset respectively, with balanced sensitivity 
and specificity for main dataset. The same procedure was carried out on 
alternate dataset and the detailed results are provided in Supplementary 
Table S11. 

We developed several ML-based methods to predict IL-5 using 
compositional and binary profile-based features computed from the 
peptide sequence. We could infer from the results that alignment-free 
ML-based model using DPC-250 features has performed significantly 
better than other feature-based models. Hence, in the current study, the 
hybrid model was developed using DPC-250 features of the peptides. 

3.5.6. Hybrid approach 
To combat the shortcomings of individual techniques, we have 

explored the potential of our hybrid method that combines BLAST, motif 
with ML using DPC-250 features. This approach was built to classify the 
IL-5 inducers with high precision. For this, the composition-based model 
is integrated with MERCI and BLAST-based approaches. Followed by the 
MERCI approach, peptides were distinguished using BLAST with an E- 
value of 10− 1. The sequence is assigned as IL-5 and non-IL-5 inducers 
based on the top hit of BLAST, while the peptides that are unpredicted by 
BLAST were further predicted using DPC-based ML model. This hybrid 
method considerably improved the accuracy on validation dataset, 
hence overcoming the limitation of each method as shown in Table 9. 
RF-based model performed the best on main dataset and achieved AUC 
of 0.92 and 0.94 on the training and validation dataset. The results for 
the alternate dataset are provided in Supplementary Table S12. 

4. Implementation of IL5pred server 

A user-friendly web server IL5pred was developed for predicting IL-5 
inducing peptides with better efficiency. The main components of the 
web server are Predict, Design, Protein scan, Motif scan, and Blast scan. 
The modules are explained below.  

(i) Predict Module: Enables the user to submit single/multiple 
peptide sequences in FASTA format and will predict the peptides 
as IL-5 inducers or non-IL-5 inducers. The module will provide 

the user prediction scores and results (IL-5 inducers/non- 
inducers) based on the chosen threshold value.  

(ii) Design Module: Enables the user to design novel IL-5 inducers 
with better activity. The user can provide the input sequence in 
single-line format. It will generate all possible mutants peptides 
with a single mutation which are further predicted using the 
model.  

(iii) Protein scan: Allows the user to identify IL-5 inducing regions in 
the given protein sequence by generating overlapping patterns 
based on the chosen length.  

(iv) Motif scan: Allows the user to search for the motifs present in IL- 
5 inducing peptide sequences. This module used MERCI program 
to extract motifs from the given sequence.  

(v) Blast scan: Uses an alignment-based search method, BLAST. The 
module allows to search the query sequence against the database 
of known IL-5 inducing peptides and assign it as IL-5 inducers 
based on the match from the database. 

The web server can be accessed at (https://webs.iiitd.edu.in/ragha 
va/il5pred/). The python-based standalone package of IL5pred was 
also developed which can be downloaded from (https://webs.iiitd.edu. 
in/raghava/il5pred/stand.php). The web server is user-friendly and 
compatible with all contemporary gadgets, such as smartphones, tablets, 
and desktops. 

5. Discussion 

IL-5 is an eosinophil regulatory cytokine involved in the maturation, 
differentiation, activation and migration of eosinophils [5,65]. It plays a 
role in a wide variety of diseases such as asthma, dermatitis, eosinophilic 
esophagitis, and hyper-eosinophilic syndrome [12]. Several autoim
mune disorders, such as Hashimoto’s thyroiditis and Graves’ disease, are 
also associated with elevated IL-5 levels and eosinophilic infiltration 
[66]. A recent study by Lucas et al. reported that the level of IL-5 is found 
to be elevated in patients with severe COVID-19 conditions [67]. Past 
studies have revealed the role of IL-5 in treating several 
eosinophil-mediated disorders [68] and possess anti-tumor activity. For 

Table 8 
The performance of best random forest-based models developed using the composition of selected dipeptides.  

Features Parameters Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

Top50 c = entropy, md = 50, mf = log2, ne = 500 58.64 60.15 59.86 0.63 0.15 59.34 60.86 60.55 0.64 0.16 
Top100 c = entropy, md = 100, mf = log2, ne = 1000 63.33 63.11 63.15 0.69 0.21 67.52 63.19 64.06 0.72 0.25 
Top150 c = gini, md = 100, mf = log2, ne = 500 64.05 66.89 66.34 0.72 0.25 69.57 65.91 66.65 0.74 0.29 
Top200 c = gini, md = 100, mf = log2, ne = 1000 64.58 68.42 67.67 0.73 0.27 65.22 70.06 69.08 0.74 0.29 
Top250 c = gini, md = 100, mf = log2, ne = 800 65.70 68.21 67.72 0.74 0.28 66.24 69.15 68.56 0.75 0.29 
Top300 c = entropy, md = 100, mf = log2, ne = 800 68.34 65.01 65.66 0.74 0.27 71.36 65.65 66.81 0.75 0.30 
Top350 md = 100, mf = log2, ne = 1000 67.81 66.72 66.93 0.74 0.28 68.29 67.14 67.37 0.75 0.29 
All400 mf = log2, md = 100, ne = 1000 68.01 66.20 66.56 0.74 0.28 68.80 66.11 66.65 0.74 0.29 

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; c: criterion; md: 
max_depth; mf: max_features, ne: n_estimators. 

Table 9 
Performance of hybrid approach that combines BLAST, motif and selected dipeptide composition-based models on the main dataset.  

ML Threshold Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 0.2 79.68 82.14 81.66 0.92 0.54 82.86 84.71 84.33 0.94 0.60 
DT 0.38 76.52 76.66 76.63 0.83 0.45 82.35 78.55 79.32 0.86 0.52 
GNB 0.5 79.29 74.97 75.81 0.82 0.45 81.59 78.22 78.90 0.84 0.51 
KNN 0.24 78.63 80.04 79.76 0.91 0.50 76.47 84.06 82.52 0.92 0.54 
XGB 0.16 79.55 79.63 79.62 0.91 0.50 83.12 81.66 81.95 0.93 0.56 
LR 0.47 78.3 79.50 79.27 0.89 0.49 81.07 80.43 80.56 0.92 0.53 

*Sens: Sensitivity; Spec: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient; AUC: Area under receiver operating characteristic curve; RF: Random 
Forest; LR: Logistic Regression; XGB: eXtreme Gradient Boosting; KNN: K-nearest neighbour; GNB: Gaussian Naïve Bayes; DT: Decision Tree. 
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instance, Ikutani et al. have shown the role of IL-5 inducing cells to 
control eosinophil infiltration in lungs hence preventing tumor metas
tasis [69]. IL-5 can act as an appealing therapeutic target due to its 
pivotal role in the majority of eosinophil-mediated diseases [70–72]. 
Currently, three FDA-approved anti-IL-5 therapeutic agents, such as 
benralizumab, mepolizumab and reslizumab, are available in the market 
[9]. 

Taking into consideration, the role of IL-5 in several diseases there is 
a necessity to develop a computational method that can predict IL-5 
inducing peptides. In the current study, a prediction method, named 
IL5pred that can be used to anticipate the peptides as IL-5 inducers and 
non-IL-5 inducers. For this, we have created two datasets namely main 
and alternate. The main dataset comprises experimentally validated 
1907 IL-5 inducing and 7759 non-IL-5 inducing peptides obtained from 
IEDB. While the alternate dataset contains 1907 IL-5 inducing peptides 
from main dataset and 1907 random peptides generated from Swiss- 
Prot. The compositional analysis shows that IL-5 inducing peptides are 
abundant in Phe, Gly, Ile, Lys, Asn, Arg, and Tyr. Besides composition, 
the order of the residue is an essential feature and plays a vital role in 
defining its activity. For this, we also analyzed the residue preference 
and observed that hydrophobic residues such as Leu, Ile, Val, Phe and 
Ala are highly preferred at N-terminus of IL-5 inducing peptides. Along 
with this, we have extracted the motifs exclusively present in IL-5 
inducing peptides. 

Moreover, a number of sequence-based features including composi
tional and binary profiles were calculated for the peptides using Pfeature 
standalone tool [38]. We computed a total of 9553 features and devel
oped numerous prediction models using several classical ML techniques 
including LR, RF, DT, GNB, KNN and XGB. LR is a supervised learning 
algorithm used to predict the probability of a target variable [59]. DT is 
a non-parametric supervised machine learning algorithm. This classifier 
predicts the target variable using simple decision rules derived from 
input features [56]. RF is an ensemble learning method used for classi
fication, that combines multiple DTs during training and predicts a 
single tree as a response variable. Also, it controls the overfitting of the 
prediction models [54]. XGB classifier implements the gradient boosting 
algorithm, where an iterative approach is utilised to predict the final 
output [58]. GNB is a type of Naïve Bayes algorithm based on the Bayes 
theorem. This classifier is used when the features have continuous 
values and assume that the features follow Gaussian normal distribu
tions [57]. KNN is a non-parametric supervised learning classifier that 
classifies a new data point to the target class closer to the nearest 
neighbour data points [55]. Further, in our study, we attempt to select a 
minimum set of features with minimum loss in performance to avoid 
over-optimization of ML models. Taking this into account, we selected 
different combinations of feature sets using feature selection and 
ranking methods to accurately predict IL-5 inducers. We also employed a 
bilayer cascade ML-based approach to better distinguish IL-5 and 
non-IL-5. For this, we calculated all possible performance metrics to 
achieve maximum performance in terms of AUC. Further, we choose 
threshold values that minimise the discrepancy between sensitivity and 
specificity on the training dataset and compute threshold-dependent 
parameters such as accuracy and MCC. We found that RF-based model 
on DPC-250 features achieved an AUC of 0.74 on training and 0.75 on 
validation datasets with balanced sensitivity and specificity. This 
RF-based model that used DPC-250 features outperformed other 
feature-based models. 

Apart from this, the commonly used alignment-based method, 
BLAST was also employed to annotate the peptide sequence. If the query 
sequence shows a high degree of similarity with a known peptide, then 
the same function is assigned to the query peptide. It is found from 
Table 1 that BLAST can predict IL-5 inducers, but it also produces an 
enormous number of no-hits. To cope with this limitation, alignment- 
based, and alignment-free approaches using DPC-250 were combined 
to develop an improved method. This hybrid method, which combines 
two or more approaches, improved both AUC and accuracy while 

circumventing the limitations of individual methods. We observed that 
the hybrid model outperformed other models in the case of the main 
dataset. Nonetheless, the hybrid model based on DPC-250, motif and 
BLAST can accurately distinguish IL-5 and non-IL-5 inducing peptides in 
terms of accuracy. 

6. Conclusion 

To expedite the research community working in the field of immu
notherapy, we have incorporated the best-performing model into the 
web server. IL5pred is a user-friendly, freely accessible web server which 
is compatible with laptops and desktops. We expect that researchers will 
use our prediction method to develop more accurate peptide-based 
therapeutics for a variety of diseases. 

7. Limitation of the study 

This is the first systematic attempt to develop in silico models for 
identifying IL-5 inducing peptides. A large enough dataset is required to 
develop a more robust and accurate classification method. One limita
tion of this method is the limited number of experimentally validated IL- 
5 inducing peptides. We have made an effort to create more accurate and 
reliable method while keeping this constraint in mind. 

Author contributions 

NLD collected, compiled, and processed the data sets. NLD and NS 
developed computer programs. NLD and NS implemented the algo
rithms and prediction models. NLD and NS created the web server. NLD 
and NS analyzed the results. NLD, NS and GPSR wrote the manuscript. 
GPSR conceived and coordinated the project and provided overall su
pervision of the project. All authors have read and approved the final 
manuscript. 

Data availability statement 

All the datasets generated for this study are available at the 
“IL5pred” webserver, https://webs.iiitd.edu.in/raghava/il5pred/stand. 
php. The source code is hosted on GitHub and can be found at http 
s://github.com/raghavagps/il5pred. 

Declaration of competing interest 

The authors declare that they have no conflict of interest. 

Acknowledgement 

We are thankful to the Department of Biotechnology (DBT) for 
providing an infrastructure grant to the institute. NLD is thankful to 
DBT-RA program in Biotechnology and Life Sciences for providing 
Research Associate fellowship. NS is thankful to the Department of 
Science and Technology (DST-INSPIRE) for providing Senior Research 
Fellowship. NLD, and NS are thankful to Department of Computational 
Biology, IIIT-Delhi for infrastructure and facilities. We would like to 
acknowledge that Figures were created using BioRender.com. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2023.106864. 

References 

[1] J.S. Marshall, R. Warrington, W. Watson, H.L. Kim, An introduction to immunology 
and immunopathology, Allergy Asthma Clin. Immunol. 14 (2018) 49, https://doi. 
org/10.1186/s13223-018-0278-1. 

L.D. Naorem et al.                                                                                                                                                                                                                              

https://webs.iiitd.edu.in/raghava/il5pred/stand.php
https://webs.iiitd.edu.in/raghava/il5pred/stand.php
https://github.com/raghavagps/il5pred
https://github.com/raghavagps/il5pred
http://BioRender.com
https://doi.org/10.1016/j.compbiomed.2023.106864
https://doi.org/10.1016/j.compbiomed.2023.106864
https://doi.org/10.1186/s13223-018-0278-1
https://doi.org/10.1186/s13223-018-0278-1


Computers in Biology and Medicine 158 (2023) 106864

12

[2] J. Zhu, W.E. Paul, CD4 T cells: fates, functions, and faults, Blood 112 (2008) 
1557–1569, https://doi.org/10.1182/blood-2008-05-078154. 

[3] T. Kouro, K. Takatsu, IL-5- and eosinophil-mediated inflammation: from discovery 
to therapy, Int. Immunol. 21 (2009) 1303–1309, https://doi.org/10.1093/intimm/ 
dxp102. 

[4] I. Raphael, S. Nalawade, T.N. Eagar, T.G. Forsthuber, T cell subsets and their 
signature cytokines in autoimmune and inflammatory diseases, Cytokine 74 (2015) 
5–17, https://doi.org/10.1016/j.cyto.2014.09.011. 

[5] C. Pelaia, G. Paoletti, F. Puggioni, F. Racca, G. Pelaia, G.W. Canonica, E. Heffler, 
Interleukin-5 in the pathophysiology of severe asthma, Front. Physiol. 10 (2019) 
1514, https://doi.org/10.3389/fphys.2019.01514. 

[6] M.L. Moore, R.S. Peebles, Interleukins | IL-5, in: Encycl. Respir. Med., Elsevier, 
2006, pp. 359–363, https://doi.org/10.1016/B0-12-370879-6/00476-2. 

[7] M.M. Le Beau, R.S. Lemons, R. Espinosa, R.A. Larson, N. Arai, J.D. Rowley, 
Interleukin-4 and interleukin-5 map to human chromosome 5 in a region encoding 
growth factors and receptors and are deleted in myeloid leukemias with a del(5q), 
Blood 73 (1989) 647–650. http://www.ncbi.nlm.nih.gov/pubmed/2783863. 

[8] T. Adachi, R. Alam, The mechanism of IL-5 signal transduction, Am. J. Physiol. 275 
(1998) C623–C633, https://doi.org/10.1152/ajpcell.1998.275.3.C623. 

[9] S. Principe, C. Porsbjerg, S. Bolm Ditlev, D. Kjaersgaard Klein, K. Golebski, 
N. Dyhre-Petersen, Y.E. van Dijk, J.J.M.H. van Bragt, L.L.H. Dankelman, S.- 
E. Dahlen, C.E. Brightling, S.J.H. Vijverberg, A.H. Maitland-van der Zee, Treating 
severe asthma: targeting the IL-5 pathway, Clin. Exp. Allergy 51 (2021) 992–1005, 
https://doi.org/10.1111/cea.13885. 

[10] G. Varricchi, G.W. Canonica, The role of interleukin 5 in asthma, Expet Rev. Clin. 
Immunol. 12 (2016) 903–905, https://doi.org/10.1080/1744666X.2016.1208564. 

[11] S. Gopalakrishnan, S. Sen, J.S. Adhikari, P.K. Chugh, T. Sekhri, S. Rajan, The role of 
T-lymphocyte subsets and interleukin-5 blood levels among Indian subjects with 
autoimmune thyroid disease., Hormones (Basel). 9 (n.d.) 76–81. https://doi.org/1 
0.14310/horm.2002.1256.. 
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