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Abstract

Background: Aminoacyl tRNA synthetases (aaRSs) catalyse the first step of protein synthesis in all organisms. They
are responsible for the precise attachment of amino acids to their cognate transfer RNAs. There are twenty
different types of aaRSs, unique for each amino acid. These aaRSs have been divided into two classes, each
comprising ten enzymes. It is important to predict and classify aaRSs in order to understand protein synthesis.

Results: In this study, all models were developed on a non-redundant dataset containing 117 aaRSs and an equal
number of non-aaRSs, in which no two sequences have more than 30% similarity. First, we applied the similarity
search technique, BLAST, and achieved a maximum accuracy of 67.52%. We observed that 62% of tRNA
synthetases contain one or more domains from amongst the following four PROSITE domains: PS50862, PS00178,
PS50860 and PS50861. An SVM-based model was developed to discriminate between aaRSs, and non-aaRSs, and
achieved a maximum MCC of 0.68 with accuracy of 83.73%, using selective dipeptide composition. We developed
a hybrid approach and achieved a maximum MCC of 0.72 with accuracy of 85.49%, where SVM model developed
using selected dipeptide composition and information of four PROSITE domains. We further developed an SVM-
based model for classifying the aaRSs into class-1 and class-2, using selective dipeptide composition and achieved
an MCC of 0.79. We also observed that two domains (PS00178, PS50889) in class-1 and three domains (PS50862,
PS50860, PS50861) in class-2 were preferred. A hybrid method was developed using these domains as descriptor,
along with selected dipeptide composition, and achieved an MCC of 0.87 with a sensitivity of 94.55% and an
accuracy of 93.19%. All models were evaluated using a five-fold cross-validation technique.

Conclusions: We have analyzed protein sequences of aaRSs (class-1 and class-2) and non-aaRSs and identified
interesting patterns. The high accuracy achieved by our SVM models using selected dipeptide composition
demonstrates that certain types of dipeptide are preferred in aaRSs. We were able to identify PROSITE domains
that are preferred in aaRSs and their classes, providing interesting insights into tRNA synthetases. The method
developed in this study will be useful for researchers studying aaRS enzymes and tRNA biology. The web-server
based on the above study, is available at http://www.imtech.res.in/raghava/icaars/.

Background
Aminoacyl tRNA synthetases (aaRSs) play a central role
in protein translation by covalently linking the correct
amino acid to its cognate transfer RNA [1]. This cova-
lent linkage is a two-step aminoacylation reaction and
ensures the fidelity of translation of the genetic code. In
the first step, an amino acid (aa) activated by ATP,
releases pyrophosphate (PPi) and is converted into the
aminoacyl-adenylate (aa-AMP) complex. This complex
remains bound to the tRNA synthetase. In the second
step, the activated amino acid is transferred onto the

2′-terminal or 3′-terminal ribose of the corresponding
tRNA (aa-tRNA). The aaRSs also perform editing activ-
ity by clearance of mischarged tRNA [2]. The editing
activity is shown by both class-1 (ValRS, IleRS and
LeuRS) and class-2 (ThrRS, AlaRS, ProRS and PheRS)
tRNA synthetases [3]. The defects in editing activity of
aaRSs can be lethal and may lead to many pathological
problems e.g. neuronal pathologies (encephalopathy, cer-
ebellar ataxia and peripheral neuropathy), autoimmune
disorders and disrupted metabolic conditions [4-8].
Studies of tRNA and tRNA synthetases from bacteria,

fungi, plants and mammals have shown that there are
twenty aminoacyl tRNA synthetases in all organisms* Correspondence: raghava@imtech.res.in
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and each is specific for a single amino acid [9]. Aminoa-
cyl-tRNA synthetases differ in amino acid sequence
length, three-dimensional structure, molecular weight,
and subunit organization, and have limited sequence
homology [10-12]. Based on the multiple sequence ana-
lysis and the architecture of catalytic sites, aaRSs are
divided into two classes of ten aaRSs each [13]. The
structural characteristics of the catalytic domains of all
aaRSs reveal that the active sites of class-1 enzymes con-
tain the classical Rossmann dinucleotide-binding fold
and two signature peptides, HIGH and KMSKS. The
active sites of class-2 aaRSs contain an anti-parallel b-
sheet flanked by helices on both sides, and have three
(motif 1, motif 2 and motif 3) signature motifs [14,15].
The catalytic site-based partition of aaRSs into two
classes provides a strong correlation with function. An
amino acid is transferred onto the 2′-OH group of the
ribose of last nucleotide of tRNA by class-1 (ArgRS,
CysRS, GlnRS, IleRS, LeuRS, GluRS, MetRS, TrpRS,
TyrRS & ValRS) and the 3′-OH group by class-2
(AlaRS, AsnRS, AspRS, GlyRS, HisRS, LysRS, PheRS,
ProRS, SerRS & ThrRS) tRNA synthetases [13]. Two
synthetases PheRSs and LysRSs are exceptions to this
rule. All known PheRSs belong to class-2, going by their
structural characteristics, but transfer amino acids onto
the 2′-OH group [16,17]. The lysyl-tRNA synthetases
are found to belong both class-1 and class-2. Most of
the LysRSs are found in class-2 in many eubacteria and
all eukaryotes, while class-1 LysRSs are mainly found in
archea and some eubacteria [18,19]. This class-determi-
nation is very important for the functional annotation of
tRNA synthetases. At the present time, genome sequen-
cing projects continuously produce huge amounts of
sequence data, but the function of several proteins is
still unclear. Some aaRSs have been recognized as vali-
dated drug targets and one representing a potential drug
target has been identified from each of the essential
twenty aaRSs [20]. Earlier many methods have been
developed for the prediction of DNA or RNA binding
proteins [21-25] and further classification into mRNA,
rRNA, tRNA & snRNA binding protein [21,22]. In this
paper, an attempt has been made to predict and classify
aaRSs from the primary structure of protein. A novel
hybrid approach based on SVM and PROSITE has been
adopted in order to predict the aaRSs and further clas-
sify them into two classes. In this hybrid approach, most
distinguishable domains were selected from the PRO-
SITE database by using the ProfileScan method of Inter-
ProScan, and integrated in composition-based SVM
models. The domains PS50862, PS00178, PS50860 and
PS50861 were used for the prediction of aaRSs and one
additional domain PS50889 was integrated with SVM
for the classification of aaRSs into class-1 and class-2.

Results
Sequence Similarity Search
It is a common trend to annotate a protein sequence
using similarity-based approach like BLAST. Thus, we
developed a BLAST- based approach for discriminating
aaRSs and non-aaRSs. As shown in Table 1, we achieved
a maximum of 67.52% accuracy at 10E-value. We have
used the same strategy for the BLAST-based discrimina-
tion between class-1 and class-2 aaRSs and found that
the accuracy of BLAST at 10E-value was 72.77%. It is
possible to develop methods that result in higher accu-
racy with respect to BLAST-like method. Thus, there is
a need to develop models based on machine learning
techniques to discriminate aaRSs versus non-aaRSs with
high accuracy.
We have developed two different types of prediction

methods: (1) prediction of aaRSs, and (2) discrimination
between class-1 and class-2 aaRSs. For each prediction,
we applied five approaches: (i) domain-based approach,
(ii) SVM modules using amino acid composition, (iii)
SVM modules using dipeptide composition, (iv) Hybrid
approach1 based on SVM using composition and PRO-
SITE domains and (v) Hybrid approach2 based on SVM
using dipeptide composition and PROSITE domains.
We trained and tested all our models on a 30% non-
redundant dataset of aaRSs, non-aaRSs, class-1 and
class-2 aaRSs.

(1) Prediction of aminoacyl tRNA Synthetases
First we developed prediction tools for discriminating
between aaRSs and non-aaRS. We used aaRSs and non-
aaRSs as positive and negative instances respectively.
(i) Domain-based approach
The weight matrix based signature profile gives evolu-
tionary information of any protein family or group of
protein sequences. It is possible to discriminate some
protein families based on the distinguishable constant
and variable regions [26]. So we used PROSITE from
the ProfileScan method of InterProScan [27]. We used
aaRSs and non-aaRSs protein sequences, each group
represented by 117 sequences. We analysed all profiles
and selected the four most distinguishable domains
which were PS50862, PS00178, PS50860 and PS50861.
The accession numbers of ProfileScan and the short
names of these domains are AA_TRNA_LIGASE_II,
AA_TRNA_LIGASE_I, AA_TRNA_LIGASE_II_ALA and
AA_TRNA_LIGASE_II_GLYAB respectively. It has been
observed that 62% of aaRSs contain at least one of these
PROSITE domains; about 9.4% of non-aaRSs also con-
tain one of the above-mentioned domains. This indi-
cates that a domain based approach is not sufficient for
discriminating amongst all aaRSs. Thus, there is a need
to develop sophisticated techniques, in combination
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with domain-based approaches. An SVM-based classifier
has been developed, using four dimensions of vector,
one for each domain; this achieved 61.41% sensitivity,
90.65% specificity, 76.08% accuracy and 0.54 MCC. In
this dataset ~38% tRNA synthetases lacked any distin-
guishable PROSITE domains.
(ii) SVM modules using amino acid composition
It has been shown in the past that amino acid composi-
tion can be used to classify the different classes of pro-
teins and developments of prediction tools using
machine learning techniques [28,29]. We analysed
amino acid compositions of aaRS and non-aaRS proteins
(Figure 1). It has been observed that amino acid compo-
sition of aaRS and non-aaRS protein was significantly
different from each other. Thus, it was possible to dis-
criminate aaRS proteins from other proteins based on
amino acid composition. The SVM-based classifier has
been developed using 20 dimensions of vector, one for
each amino acid. Different kernels and parameters of
SVM have been tried and optimized for the best

discrimination between aaRSs and non-aaRSs. We
achieved 74.38% sensitivity, 82.97% specificity, 78.63%
accuracy and 0.60 MCC.
(iii) SVM modules using dipeptide composition
In the previous studies, it has been shown that dipeptide
composition-based methods are more successful than
amino acid composition-based methods in the classifica-
tion of proteins [30], because the former incorporate the
fraction of amino acids as well as their local order
(which make them more informative than amino acid
composition). An SVM-based classifier was developed
using 400 dimensions of vector (20 × 20) of dipeptide
compositions, one for each dipeptide and this achieved
93.99% sensitivity, 62.43% specificity, 78.20% accuracy
and 0.60 MCC. We used SVM attribute selection
method by using WEKA and selected 18 distinguishable
dipeptides (CL, DR, FY, GM, GR, GS, IN, MV, ND, PL,
QI, QR, RD, RF, ST, WF, YD and YV). The composi-
tions of these 18 dipeptides were significantly different
in aaRS and non-aaRS protein sequences (figure 2).

Table 1 The performance of BLAST at E-value threshold 10

S. No. Method Sensitivity Specificity Accuracy*

1 Discrimination between aaRSs and Non-aaRSs 74.36 60.68 67.52

2 Discrimination between class-1 and class-2 aaRSs 71.7 73.85 72.77

* The number of aaRSs/class-1 and non-aaRSs/class-2 having no hit (target) were considered as false negative and false positive respectively.

Figure 1 Percent composition of each of 20 amino acids in aaRS and non-aaRS proteins.
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Different kernels and parameters of SVM were tried,
optimized and achieved maximum 87.14% sensitivity,
80.15% specificity, 83.74% accuracy and 0.68 MCC.
(iv) Hybrid approach1 based on SVM using Composition
and PROSITE domains
In this hybrid approach1, we combined the 20 features
of amino acid composition and 4 features of selected
four domains of PROSITE and generated a vector of 24
dimensions. We developed SVM based model and
achieved 80.36% sensitivity, 79.64% specificity, 79.93%
accuracy and 0.60 MCC.
(v) Hybrid approach2 based on SVM using Dipeptide and
PROSITE domains
We generated a vector of 404 dimensions, which con-
tain 400 features of dipeptide composition and 4 fea-
tures of the selected four domains of PROSITE. We
applied SVM based learning using this vector and
achieved 84.53% sensitivity, 70.91% specificity, 77.76%
accuracy and 0.57 MCC. In the hybrid approach2, we
generated a vector of 22 dimensions, using composition
of 18 selected dipeptides and 4 features of PROSITE
domains. We developed SVM model using above vector
of dimensions 22 and achieved 83.73% sensitivity,
87.10% specificity, 85.49% accuracy and 0.72 MCC. We
observed that hybrid approach2 performed much better
than any other approaches developed in this study for
predicting aaRSs (figure 3 and table 2).

(2) Discriminating class-1 and class-2 aaRSs
We further developed tools for discriminating class-1
and class-2 aaRSs. We used class-1 and class-2 aaRSs as
positive and negative instances respectively. We applied
same approaches and techniques, which have been used
for the prediction of aaRSs.

Figure 2 Percent composition of selected 18 dipeptides in aaRS and non-aaRS proteins.

Figure 3 Performance of aminoacyl tRNA synthetases
prediction of different (amino acid composition, dipeptide
composition, domain based hybrid approach1, and hybrid
approach2) SVM modules in a threshold-independent manner
by receiver operating characteristic plot.
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(i) Domain-based approach
We analysed all protein sequences of class-1 and class-2
aaRSs by using ProfileScan. We selected five most dis-
tinguishable domains, which were PS50862, PS00178,
PS50860, PS50861 and PS50889 (accession number of
ProfileScan). Domains PS50862, PS00178, PS50860 and
PS50861 have been already used for the prediction of
aaRSs. One additional domain PS50889 is an S4 RNA-
binding domain profile and commonly found in tyrosyl-
tRNA synthetases (class-1). It was observed that two
domains (PS00178, PS50889) in class-1 and three
domains (PS50862, PS50860, PS50861) in class-2 are
preferred. A SVM-based classifier was developed using 5
features, one for each domain, and achieved 100.00%
sensitivity, 53.85% specificity, 74.64% accuracy and 0.56
MCC. In this case, class-1 was considered as positive
and class-2 as negative instances. It is shown in the
results that the method was able to predict class-1 with
100% accuracy but failed to predict class-2. Thus there
is a need to develop a method which can discriminate
two classes with reasonable accuracy.
(ii) SVM modules using amino acid composition
We analysed and compared amino acid composition of
class-1 and class-2 aaRS proteins, and observed signifi-
cant differences between amino acid compositions
(Figure 4). We applied SVM using amino acid composi-
tion for discriminating two classes and achieved 68.00%
sensitivity, 64.62% specificity, 66.09% accuracy and 0.33
MCC.
(iii) SVM modules using dipeptide composition
An SVM classifier has been developed using a vector of
400 dimensions (dipeptide composition) and it achieved
88.55% sensitivity, 61.54% specificity, 73.51% accuracy
and 0.52 MCC. We used SVM attribute selection
method by using WEKA and selected 14 distinguishable
dipeptides (AY, DP, DW, EN, EV, GH, IG, KM, PW,
QW, SG, WD, YA and YV). The composition of these
14 dipeptides was significantly different in class-1 and

class-2 aaRS protein sequences (figure 5). Different
kernels and parameters of SVM were tried, optimized
and achieved 85.27% sensitivity, 92.31% specificity,
88.99% accuracy and 0.79 MCC.
(iv) Hybrid approach1 based on SVM using composition
and PROSITE domain
In the hybrid approach1, a vector of 25 dimensions was
created from five domains and the 20 features of amino
acid composition. Finally, an SVM-based model has
been developed using the above vector and this achieved
81.09% sensitivity, 83.08% specificity, 82.18% accuracy
and 0.65 MCC.
(v) Hybrid approach based on SVM using Dipeptide and
PROSITE domain
We generated a total of 405 dimensions of vector by
using 400 features of dipeptide composition and 5 fea-
tures of the selected five domains of PROSITE. We
applied SVM-based learning and achieved 86.55% sensi-
tivity, 80.00% specificity, 82.94% accuracy and 0.68
MCC. In the hybrid approach2, we generated a total of
19 dimensions of vector by using 14 features of selected
dipeptides and 5 features of PROSITE domains. We
achieved maximum 94.55% sensitivity, 92.31% specificity,
93.19% accuracy and 0.87 MCC. Here also we observed
that SVM-based hybrid approaches2 performed much
better than other four approaches for the discrimination
between class-1 and class-2 aaRSs (figure 6 and table 3).

Performance on the realistic dataset
In this study, we trained and tested our models on a
dataset containing equal numbers of aaRSs and non-
aaRSs. In reality, the number of aaRSs in a genome is
not very high. Thus, we created a realistic dataset,
which contains 117 aaRSs and 1200 non-aaRSs (nearly
1:10 ratio of aaRSs/positive and non-aaRSs/negative
instances). We developed models using Hybrid
approach2 (selected dipeptide composition and domain
features) for discriminating aaRSs and non-aaRSs on
this realistic dataset. We achieved maximum 95.90%
accuracy with 0.71 MCC (figure 7). These results
demonstrate that our approach is also effective on rea-
listic dataset.

Performance on independent dataset
It is important to evaluate a newly developed model on
an independent dataset, not used for its training or test-
ing. In order to create independent dataset, we retrieved
total 1293 newly added tRNA synthetases (08th July
2009 to 18th May 2010) from Swiss-Prot database. All
the aaRSs having more than 30% sequence similarity
with any other aaRSs have been removed. Thus, the
final independent dataset contains 44 non-redundant
aaRSs. We have further created negative datasets of 450
non-aaRSs. The performances of our model developed

Table 2 The performance of SVM modules developed for
discriminating aaRSs and non-aaRSs

S.
No.

Name of Approach Sensitivity Specificity Accuracy MCC

1 Domain-based model 61.41 90.65 76.08 0.54

2 Amino acid
Composition

74.38 82.97 78.63 0.6

3 Dipeptide
composition

87.14 80.15 83.74 0.68

4 Hybrid approach1* 80.36 79.64 79.93 0.6

5 Hybrid approach2** 83.73 87.1 85.49 0.72

* Hybrid approach1 SVM model based on amino acid composition domain
features

**Hybrid approach2 SVM model based on selected dipeptide composition and
domain features
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Figure 4 Percent composition of each of 20 amino acids in class-1 aaRS and class-2 aaRS proteins.

Figure 5 Percent composition of selected 14 dipeptides in class-1 aaRS and class-2 aaRS proteins.
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using Hybrid approach2 have been evaluated at various
thresholds. We observed the performance of hybrid
approach2 based SVM model and achieved maximum
95.75% accuracy with 0.71 MCC. Here also both the
sensitivity and specificity shifted toward negative and
positive thresholds respectively (table 4). The indepen-
dent dataset contains 18 sequences of class-1 and 26
sequences of class-2 aaRSs. The Hybrid approach2 based
SVM model predicted 14 (77.78%) class-1 aaRSs and all
26 (100%) class-2 correctly.

Comparison with SVM-Prot
In the past, numbers of methods have been developed
for predicting RNA-binding proteins and class of
Enzymes (21-23). To the best of our knowledge, in this
study, for the first time a method has been developed
for prediction and classification of tRNA synthetases.

SVM-Prot is one of the comprehensive methods devel-
oped for predicting enzyme families which includes
tRNA synthetase. Thus, we evaluated the performance

Figure 6 Performance of discrimination between class-1 and
class-2 aaRSs of different (amino acid composition, dipeptide
composition, domain based hybrid approach1, and hybrid
approach2) SVM modules in a threshold-independent manner
by receiver operating characteristic (ROC) plot.

Table 3 The performance of SVM modules developed for
discriminating class-1 and class-2 aaRSs

S.
No.

Name of Approach Sensitivity Specificity Accuracy MCC

1 Domain-based
model

100 53.85 74.64 0.56

2 Amino acid
composition

68 64.62 66.09 0.33

3 Dipeptide
composition

85.27 92.31 88.99 0.79

4 Hybrid approach1* 81.09 83.08 82.18 0.65

5 Hybrid approach2** 94.55 92.31 93.19 0.87

* Hybrid approach1 SVM model based on amino acid composition domain
features

** Hybrid approach2 SVM model based on selected dipeptide composition
and domain features

Figure 7 The ROC plot of the SVM model performance (Hybrid
approach2) on realistic dataset.

Table 4 The performance of Hybrid approach2 based
SVM model on independent dataset

Threshold Sensitivity Specificity Accuracy MCC

-1.0 100.00 43.11 48.18 0.25

-0.9 97.73 63.56 66.60 0.35

-0.8 81.82 82.44 82.39 0.43

-0.7 72.73 92.22 90.49 0.54

-0.6 63.64 97.11 94.13 0.63

-0.5 54.55 99.56 95.55 0.69

-0.4 52.27 100.00 95.75 0.71

-0.3 52.27 100.00 95.75 0.71

-0.2 52.27 100.00 95.75 0.71

-0.1 52.27 100.00 95.75 0.71

0.0 52.27 100.00 95.75 0.71

0.1 52.27 100.00 95.75 0.71

0.2 52.27 100.00 95.75 0.71

0.3 52.27 100.00 95.75 0.71

0.4 52.27 100.00 95.75 0.71

0.5 47.73 100.00 95.34 0.67

0.6 43.18 100.00 94.94 0.64

0.7 36.36 100.00 94.33 0.59

0.8 22.73 100.00 93.12 0.46

0.9 18.18 100.00 92.71 0.41

1.0 11.36 100.00 92.11 0.32
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of SVM-Prot (22) on 117 aaRSs used in our main data-
set. SVM-Prot predicts various possible enzyme classes
for query protein, with probability score. We used the
highest probability score (first hit of prediction) of
SVM-Prot (table 5) for analyzing predictions. It was
observed that only 13.68% of tRNA synthetases correctly
predicted by SVM-Prot method. This demonstrates that
our method is important for predicting and classifying
aaRSs.

Discussion
In recent years, rapid advances in genomics and proteo-
mic studies have yielded a tremendous amount of data.
The functional annotation of all these sequences using
experimental approaches is a very labour-intensive and
time-consuming process. Therefore, computational
approaches are required to fill the gap. The prediction
based functional annotation of all protein classes is not
possible. Thus, it is important to concentrate on a single
class of functionally important proteins. The aaRSs
enzymes constitute a major protein class and play a vital
role in protein synthesis. The catalytic activities of these
aaRSs affect the determination of the genetic code. For
this reason, they are essential for protein synthesis and
cell viability. The catalytic specificity of aaRSs is neces-
sary for cell survival. Many natural compounds and

antibiotics specifically target aaRSs, and inhibit the
growth or survival of the target bacteria. The aaRSs
have been already recognized as validated drug targets.
In the present scenario, drug-resistance is continuously
increasing for existing antibiotics and we need more
novel antimicrobial agents directed against the novel
targets. From all essential twenty aaRSs, each one repre-
sents a potential drug target. But these are still poorly
exploited drug targets and only one aaRS inhibitor
mupirocin is a marketed drug, which is specifically tar-
geted against the isoleucyl-tRNA synthetase [20]. The
investigation of aaRS families by genomic and biochem-
ical research has been suggested. In this respect, aaRSs
constitute a promising platform for the development of
novel-antibiotics, and these are predicted to have no
cross-resistance to other classical antibiotics [31]. This
protein family has limited sequence homology, therefore
we need more powerful computational tools than
BLAST and other similarity based methods.
In order to assist biologists in assigning the function

of unknown aaRS proteins, a systematic attempt has
been made for predicting aaRS proteins and their
classes. We obtained aaRSs protein sequences from the
ENZYME database of ExPASy and created class-1 and
class-2 specific datasets. The creation of a negative data-
set (non-aaRSs) is as important as positive datasets

Table 5 Prediction results of SVM-Prot by using 117 aaRSs of main dataset

S.No. Predicted Result of SVM-Prot Number of aaRSs

1 Zinc-binding 55

2 EC 6.1.-.-: Ligases - Forming Carbon-Oxygen Bonds 13

3 All DNA-binding 8

4 Iron-binding 8

5 EC 2.7.-.-: Transferases - Transferring Phosphorus-Containing Groups 5

6 Magnesium-binding 4

7 EC 3.6.-.-: Hydrolases - Acting on Acid Anhydrides 3

8 All lipid-binding proteins 3

9 Manganese-binding 3

10 Metal-binding 3

11 EC 3.1.-.-: Hydrolases - Acting on Ester Bonds 2

12 Aptamer-binding protein 1

13 EC 2.4.-.-: Transferases - Glycosyltransferases 1

14 EC 5.4.-.-: Isomerases - Intramolecular Transferases 1

15 Ligases - Forming Carbon-Oxygen Bonds 1

16 Photosystem II 1

17 RNA-binding Proteins 1

18 TC 3.A.5 Type II (general) secretory pathway (IISP) family 1

19 Transmembrane 1

20 tRNA-binding Proteins 1

21 Tyrosine Kinase Receptors 1

*Broad-level correctly predicted tRNA synthetase by SVM-Prot method is highlighted by bold font.
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(aaRSs) for developing any classification method. Thus,
we manually extracted non-aaRSs from Swiss-Prot by
using appropriate searching options. We selected four
most distinguishable PS50862, PS00178, PS50860 and
PS50861 domains from PROSITE, which can discrimi-
nate aaRSs from non-aaRSs. In the classification
between class-1 and class-2 aaRSs, we selected one
more PS50889 (S4 RNA-binding) domain. The S4 is a
small globular domain consisting of 60-65 amino acid
residues, found in class-1 (tyrosyl-tRNA synthetases)
and many other RNA-related protein families but absent
in class-2 aaRSs. Domain PS00178 contains the ‘HIGH’
signature, which is a part of the adenylate binding site
of class-1 aaRSs. Class-2 aaRSs do not share a high
degree of similarity; however, at least three conserved
regions are present and PS50862 is a domain of these
conserved regions. PS50860 and PS50861 are the
domains of AlaRS and GlyRS respectively and both
belong to class-2 aaRSs. This information of domains
was used for discrimination between class-1 (PS00178
and PS50889) and class-2 (PS50862, PS50860 and
PS50861) aaRSs. We have also found domain PS50886,
which is a signature of tRNA binding domain. This is
widely distributed among different tRNA synthetases
(class-1 and class-2 both) and found in their association
factors (such as p43, ARC1, and Trbp111 isolated from
various species) [26]; this is because we have not used it
in our hybrid approach. The main limitation is that
~38% aaRSs do not contain any of these distinguishable
domains. We implemented SVM for the prediction and
classification of aaRSs because machine learning-based
approaches were essential for the development of pre-
diction tools. We have found that composition of 18
dipeptides (CL, DR, FY, GM, GR, GS, IN, MV, ND, PL,
QI, QR, RD, RF, ST, WF, YD, YV) were significantly dif-
ferent in aaRSs and non-aaRSs. The fraction of 14
dipeptides (AY, DP, DW, EN, EV, GH, IG, KM, PW,
QW, SG, WD, YA, YV) is different in class-1 and class-
2 aaRSs. The SVM module based on hybrid approach2

[Dipeptide composition and PROSITE] achieved higher
accuracy in comparison to amino acid composition,
dipeptide composition and hybrid approach1 [amino
acid composition and PROSITE], both in the prediction
of aaRSs and class-specific predictions. It showed that
the aaRSs or class-specific aaRSs that failed to be pre-
dicted by dipeptide composition could be predicted by
hybrid approaches2 containing additional information of
PROSITE. These domains contain information about
the constant regions inside the aaRSs protein sequences
during their development and throughout evolution.
Therefore, it is better to use the combined approach for
functional analysis where there are unique domains. We
implemented all approaches in our web-server “icaars”
and by default, it uses a hybrid approach2. We anticipate

that users will be willing to query many sequences at a
time and our online server “icaars“ will take time
accordingly. We are in the process of developing stand-
alone version to help annotation faster. We hope that
an annotation of aaRSs enzyme will be helpful for the
designing of new drug-targets and drug-discovery
processes.

Conclusions
To conclude, the present work is an attempt to predict
and classify aminoacyl tRNA synthetases. We analysed
protein sequences of aaRSs (class-1 and class-2) and
non-aaRSs and selected the distinguishable patterns.
These were amino acid, dipeptide, hybrid approach1 and
hybrid approach2. We used these features as a SVM
input based machine learning. We were able to model
an efficient classifier from hybrid approach2 based infor-
mation. A server icaars has been developed based on
the SVM modules obtained.

Methods
Datasets
The aaRSs dataset of total 11318 protein sequences was
obtained from the ENZYME database release 57.5 of 07-
07-2009 [32], which is available through the ExPASy
WWW server http://www.expasy.ch/enzyme/. These
total 11318 protein sequences of aaRSs, had 4840 class-
1 aaRSs and 6478 class-2 aaRSs sequences. We selected
non-aaRSs (negative dataset) from the Swiss-Prot data-
base, which were proteins but not tRNA synthetases and
removed the sequence similarity from the CD-HIT soft-
ware [33]. We have further created different non-redun-
dant datasets for aaRSs, aaRS class-1 and aaRSs class-2
by using CD-HIT. The total number of protein
sequences in different datasets is given in Table 6. In
this study, we have used only 30% non-redundant data-
sets. This main dataset contains 117, 117, 53 and 65
protein sequences of aaRSs, non-aaRSs, class-1 aaRSs
and class-2 aaRSs respectively. Furthermore, we created

Table 6 Number of protein sequences of aaRSs, class-1
aaRSs and class-2 aaRSs at different redundancy level by
using CD-HIT software

Redundancy aaRSs aaRSs (class-1) aaRSs (class-2)

100% 9889 4346 5547

90% 6487 2939 3551

80% 4998 2305 2695

70% 3686 1750 1938

60% 2369 1157 1214

50% 1330 666 666

40% 669 346 325

30% 117 53 65
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a realistic dataset of total 117 aaRSs and 1200 non-
aaRSs. In addition, we also created independent dataset
of aaRSs from 1293 newly added tRNA synthetases in
Swiss-Prot database. The 30% non-redundant indepen-
dent dataset contains 44 aaRSs having 18 sequences of
class-1 and 26 sequences of class-2 aaRSs. We have also
created independent negative dataset of 450 non-aaRSs.

Evaluation method
Firstly, we have used aaRSs as positive dataset and non-
aaRSs as negative dataset for the development of the
tools for prediction of aaRSs. Proteins sequences of both
positive and negative datasets were divided into five
parts. Each of these five sets consists of one-fifth of
aaRSs and one-fifth of non-aaRSs. For training, testing
and evaluating our methods, we have used a five-fold
cross-validation technique. In this technique, the train-
ing and testing was carried out five times, each time
using one distinct set for testing and the remaining four
sets for training [34]. Secondly, we used aaRSs class-1 as
positive dataset and aaRSs class-2 as negative dataset,
repeated above mentioned five-fold cross-validation
method for the tools development for discrimination
between class-1 and class-2 aaRSs.

PROSITE and InterProScan
PROSITE is a database of protein families and domains.
It is apparent, when studying protein sequences, that
during evolution all protein families conserve some por-
tion of protein sequences for efficient function/perfor-
mance and/or stability of three-dimensional structure,
which distinguishes its members from all other unre-
lated proteins [26]. InterProScan (iprscan) is a Perl-
based stand-alone tool that combines different proteins’
signature-recognition methods into a single resource
[27]. PROSITE database is an integrated part of Inter-
ProScan. We applied 4.3 version of InterProScan tool
for the PROSITE-based ProfileScan method for the all
datasets of aaRSs, aaRSs class-1, aaRSs class-2 and Non-
aaRSs. This is a weight matrix-based technique and use-
ful for the detection of diverse protein sequences.

Amino acid and Dipeptide Composition
The aim of calculating the composition of proteins is to
perform the variable length of protein sequences to
fixed length feature vectors. This is important and cru-
cial step because SVM machine learning techniques
require fixed length patterns. The amino acid composi-
tion is the fraction of each amino acid in a protein
sequence and provides vector of 20 dimensions. The
dipeptide composition was used to encapsulate the glo-
bal information about each protein sequence, which
gives a fixed length pattern of 400 (20 × 20) dimensions
of vector. Both amino acids and dipeptide composition

was calculated, and used as input to classification
between aaRSs and non-aaRSs as well as aaRS Class-1
and aaRSs class-2 by using machine learning of SVM.

Support Vector Machine (SVM)
In this study, a highly successful machine learning tech-
nique termed as a Support Vector Machine was used.
SVM is based on the structural risk minimization princi-
ple of statistics learning theory and SVMs are a set of
related supervised learning methods used for classifica-
tion and regression [35]. SVM allows us to choose a
number of parameters and kernels (e.g. Linear, polyno-
mial, radial basis function and sigmoidal) or any user-
defined kernel. In this study, we implemented SVMlight

Version 6.01 package [36] of SVM and learning was car-
ried out by using three (linear, polynomial and radial
basis function) kernels. SVM takes a set of feature vec-
tors as input, along with their output, which is used for
training of model. After training, learned model can be
used for prediction of unknown examples [37]. In this
work, the SVM training has been carried out by the
optimization of various kernel function parameters and
the value of the regularization parameter C. Preliminary
tests showed that the radial basis function (RBF) kernel
gives better results than other kernels. Therefore, in this
work, the RBF kernel was used for all the experiments.
Total four methods, are used for the SVM-based
machine learning and these methods were amino acid
composition, dipeptide composition, hybrid approach1

[amino acid composition and PROSITE] and hybrid
approach2 [dipeptide composition and PROSITE] based.

Hybrid approach of SVM and PROSITE
It is very beneficial to combine two or more (different)
approaches for machine learning techniques. Previously
many studies used this approach for the prediction of
specific protein families, but in these earlier hybrid-
based predictions, at a time one approach was used (e.g.
Pfam) but if that did not work then the second
approach was utilized [38]. However, in our hybrid
approach PROSITE and SVM have been used simulta-
neously in generating the input patterns for machine
learning. This hybrid approach of SVM and PROSITE
was the first time used to exploit the benefits of both de
novo prediction of SVM and PROSITE-based evolution-
ary information of domains. We analysed that many
aaRSs lack any domain by PROSITE. In the prediction
between aaRSs and non-aaRSs, four most informative
and distinguishable domains were selected from PRO-
SITE by using ProfileScan method of InterProScan tool
and prepared hybrid with amino acids and dipeptide
composition. We used 1 for the presence and 0 for the
absence of domain in particular protein sequence. Total
length of input of SVM is increased by four; now there
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are a total of 24 dimensions of vector for hybrid
approach1 [amino acid and PROSITE] and 404 for the
all dipeptide composition and PROSITE. In the hybrid
approach2, we combined 18 selected dipeptides with 4
PROSITE domain features and created total 22 dimen-
sions of vector (figure 8). In the case of prediction
between class-1 and class-2 aaRSs total five domains
were used: Total 25 vector for hybrid approach1 and
405 for the all dipeptide composition and PROSITE. In
the hybrid approach2, we combined 14 selected dipep-
tides with 5 PROSITE domain features and created total
19 dimensions of vector. This hybrid approach contains
additional information of the domain-based evolutionary
information and SVM-based machine learning technique
used this information for the better discrimination
between aaRSs and non-aaRSs or class-1 and class-2
aaRSs.
BLAST based approach
One of the common practices for predicting the func-
tion of a new protein is to perform a similarity search
against a database of well-annotated proteins. In this
study, we used BLAST for predicting tRNA synthetase

proteins using 5-fold cross-validation where four sets of
aaRS and non-aaRS proteins were used to create a
BLAST database and aaRSs proteins of the correspond-
ing test set were searched against this BLAST database.
This process was repeated five times so the BLAST
search was performed once for each tRNA synthetase
protein. We have calculated performance of BLAST in
term of accuracy (percentage coverage); it indicates the
correctly predicted proteins from the BLAST search.
The number of positive and negative sequence those
have not any hit (target) considered as false negative
and false positive respectively.
Feature Selection method
We have selected most significant dipeptides from
all datasets by using WEKA 3.6.0 version [39]. WEKA
is a package of java programs for machine learning.
We have used attribute evaluator for SVMAttributeE-
val (parameter -X 1 -Y 0 -Z 0 -P 1.0E-25 -T 1.0E-
10 -C 1.0 -N 0) method with ranker (parameter -T
-1.7976931348623157E308 -N -1). We have used these
selected dipeptide composition with PROSITE domains
for the hybrid approaches.

Figure 8 A flow chart of the SVM input pattern preparation for all five approaches from single example protein sequence.
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Evaluation Parameters
The evaluation of performance of method done by cal-
culating the sensitivity, specificity, accuracy and the
MCC of the prediction, which were routinely used in
these types of studies [40,41]. These parameters can be
calculated using equation 1-4,

Sensitivity TP TP FN= + ×[ / ( )] 100 (1)

Specificity TN TN FP= + ×[ / ( )] 100 (2)

Accuracy TP TN TP TN FP FN= + + + + ×[( ) / ( )] 100 (3)

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
= −

+ + + +
( )( ) ( )( )

[ ][ ][ ][ ]
(4)

Where is:
(i) In the case of prediction between aaRSs and non-

aaRSs -
TP is correctly predicted positive (aaRSs) proteins
TN is correctly predicted negative (non-aaRSs)

proteins
FP is wrongly predicted positive (aaRSs) proteins
FN is wrongly predicted negative (non-aaRSs)

proteins.
(ii) In the case of prediction between aaRSs class-1

and aaRSs class-2 -
TP is correctly predicted positive (aaRSs class-1)

proteins
TN is correctly predicted negative (aaRSs class-2)

proteins
FP is wrongly predicted positive (aaRSs class-1)

proteins
FN is wrongly predicted negative (aaRSs class-2)

proteins.
The performance of a method is an average of five sub

sets, created by five-fold cross validation technique. For
the evaluation of any prediction method MCC is consid-
ered to the most robust parameter [42]. The MCC value
of 1 corresponds to a perfect prediction, whereas 0 cor-
responds to a completely random prediction. The limita-
tion of all above described parameters that they are
threshold-dependent and they require proper optimiza-
tion for the better performance. We manually optimized
all these parameters and selected the one which gives
best performance. All the measures described above
have a common drawback that their performance
depends on threshold selected. A known threshold inde-
pendent parameter is Receiver Operating Curve (ROC).
It is a plot between true positive proportion (TP/TP
+FN) and false positive proportion (FP/FP+TN). We
have used SPSS package to plot ROC.

Web-server
We have developed a user-friendly web-server “icaars”
for the prediction of aaRSs. This prediction method is
freely available from URL http://www.imtech.res.in/
raghava/icaars/. It is developed under Solaris envron-
ment on SUN system, using CGI-PERL. This server
predicts whether query protein sequence is aaRSs or
non-aaRSs. If a protein sequence is predicted as aaRSs
then it will further predict whether the protein sequence
belongs to class-1 or class-2 aaRSs. All datasets used in
this study are available from this server.
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