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1 | INTRODUCTION

Akanksha Arora |

Palani Vigneshwar | GajendraP.S. Raghava

Abstract

Peptide hormones serve as genome-encoded signal transduction molecules that play
essential roles in multicellular organisms, and their dysregulation can lead to various
health problems. In this study, we propose a method for predicting hormonal peptides
with high accuracy. The dataset used for training, testing, and evaluating our models
consisted of 1174 hormonal and 1174 non-hormonal peptide sequences. Initially, we
developed similarity-based methods utilizing BLAST and MERCI software. Although
these similarity-based methods provided a high probability of correct prediction, they
had limitations, such as no hits or prediction of limited sequences. To overcome these
limitations, we further developed machine and deep learning-based models. Our logis-
tic regression-based model achieved a maximum AUROC of 0.93 with an accuracy of
86% on an independent/validation dataset. To harness the power of similarity-based
and machine learning-based models, we developed an ensemble method that achieved
an AUROC of 0.96 with an accuracy of 89.79% and a Matthews correlation coeffi-
cient (MCC) of 0.8 on the validation set. To facilitate researchers in predicting and
designing hormone peptides, we developed a web-based server called HOPPred. This
server offers a unique feature that allows the identification of hormone-associated
motifs within hormone peptides. The server can be accessed at: https://webs.iiitd.edu.

in/raghava/hoppred/.
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ferring specific information between cells and organs. This sort of

molecular communication emerged and developed into a sophisticated

The peptide hormones are a varied group of genome-encoded regu-

latory molecules with a specialized and important purpose of trans-
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system for regulating growth, development, and homeostasis in the
early stages of evolution [1]. Awide range of reasons, including metabo-
lite deposition in cells, surgical removal of glands, or destruction of
glands, can cause inadequate production of hormones. A frequent
cause of hormone reduction is autoimmunity, and less frequently, it
is also caused by genetic anomalies. Altered levels of hormones can
disrupt the delicate equilibrium of the body and lead to endocrine dis-
orders like endocrine neoplasia and diabetes [2]. It is thus indispensable
to focus on the therapeutics of endocrine disorders associated with

hormonal imbalances.
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Keypoints

* An ensemble method for predicting hormonal peptides
with high precision.

* BLAST-based similarity for searching hormonal peptides.

* MERCI software for searching hormone-associated motifs
in a peptide.

* Prediction models using machine and deep learning tech-
niques.

* Astandalone software package and a webserver.

Peptide hormones, like all other peptides, are effective targeted
signaling molecules that attach to specific cell surface receptors
and cause intracellular effects. They are a great place to start
while developing novel treatments because of their appealing
pharmacological profile, target specificity, and inherent qualities.
It was, in fact, the foundational studies into natural hormones
like insulin and gonadotropin-releasing hormone (GnRH), which
marked the beginning of research into therapeutic peptides [3].
Their exceptional tolerability and efficacy have been demonstrated
to be a direct result of their specificity. This feature may also dis-
tinguish between peptides and conventional small molecules.
The depiction of the mechanism of peptide hormones is shown in
Figure 1.

Many peptide medications act as “replacement therapies,” restoring
or supplanting peptide hormones when endogenous levels are insuf-
ficient or absent. They are intrinsic signaling molecules for a variety
of physiological functions, which opens the possibility for therapeutic
intervention emulating natural routes [4]. One such example is insulin
which has helped thousands of people with diabetes since its intro-
duction as the first peptide medication for commercial use in 1923 [3].
While replicating peptides generated from nature was formerly the dis-
covery and development trend in the therapeutic peptide sector, it has
recently changed to the rational design of peptides with desirable phys-
iological and biochemical properties. Peptide-based natural hormone
analogs have been developed as drug candidates. Given their enormous
therapeutic potential, it can be anticipated that therapeutic hormone
peptides will continue to draw research attention and see long-term
success.

Several methods have been proposed in the past for predict-
ing and designing therapeutic peptides. TPpred-ATMV improves
the prediction of therapeutic peptides, THPep predicts the
tumor-homing peptide (THP), AntiCP 2.0 for the prediction of
anti-cancer peptides, and PrMFTP has been developed to pre-
dict multi-functional therapeutic peptides [5-8]. As far as we
know, no method has been created particularly to predict peptide
hormones. In this study, we have proposed an approach HOP-
Pred, to classify the peptide hormone and non-hormone peptide

sequences.

Significance Statement

Problem: Peptide hormones have demonstrated promising
results in medical therapies since the very beginning. The
demand for efficient in-silico techniques arises from the
time-consuming and resource-intensive nature of identifying
and screening potential peptide hormones in wet lab settings.
What is already known: Several methods have been pro-
posed in the past for predicting and designing therapeutic
peptides. As far as we know, no method has been created
particularly to predict peptide hormones.

What this paper adds: This study introduces a unique ensem-
ble approach employing machine learning and deep learning
methods for predicting hormonal peptides. The develop-
ment of our method, HOPPred, not only provides a reliable
prediction tool but also offers a unique feature for identi-
fying hormone-associated motifs within peptides. We hope
this tool will aid researchers in accurately predicting hor-
mones and open avenues for unraveling intricate signaling
pathways.

2 | METHODS
2.1 | Dataset compilation and preprocessing

We took 5729 peptide hormone sequences for both plants and animals
from the Hmrbase2 database [9]. The Hmrbase2 database contains
comprehensive and updated information for peptide and non-peptide
hormones as well as their receptors for about 562 organisms. These are
mature hormone sequences devoid of the signal and precursor areas.
All duplicate peptides were removed from the data to eliminate redun-
dancy from the dataset. Additionally, it was observed that the peptides
ranged from the length of 11 to 41 peptides. Redundant peptides were
removed using CD-HIT with a cut-off of 60% to make sure there was
no peptide in the dataset that had more than 60% similarity with any
other peptide [10]. CD-HIT is a standard practice used to get rid of
the similarity within dataset. Hence, we applied CD-HIT at various
cut-offs—90%, 80%, 70%, and so on. It was observed that 60% simi-
larity was retaining the most peptides and very few were the outliers
that were more than 60% similar. Ultimately, we obtained 1174 pep-
tide hormones, which we refer to in this work as the positive dataset.
For the non-hormone peptide dataset, that is, the negative dataset,
we used the PeptideAtlas database. PeptideAtlas is a freely available
database containing peptide sequences from a number of experiments
for a variety of organisms [11]. About 1174 non-hormone peptides
were selected randomly from PeptideAtlas, and the amino acid com-
position (AAC) for these peptides was calculated to assess if the
composition matches the standard AAC of proteins/peptides present

in nature to avoid the random non-biologically significant sequences.
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FIGURE 1 Mechanism of action of peptide hormones.
The complete architecture and methodology followed in this study is
givenin Figure 2.

2.2 | Feature generation and selection

Structural and functional annotations of peptide sequences were
performed using Pfeature. It computes the descriptors of a sequence
and gives a vector of 9149 features [12]. Using Pfeature, we calculated
all 9149 features, which included 15 categories of characteristics and
descriptors, including AACs, tripeptide compositions, dipeptide com-
positions, etc. It is important to determine the few significant features
out of the plethora of a vast number of features for several reasons
[13]. Feature selection techniques allow us to select the most relevant
feature, which allows us to reduce noise in prediction. In addition,
feature selection can help reduce the overfitting of the model, enhance

interpretability, and improve model performance [14]. In order to
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perform feature selection, we deployed different feature selection
methods like filter methods, wrapper methods, and embedded meth-
ods. In this study, Recursive Feature Elimination (RFE)—a wrapper
method, performed better than other feature selection techniques
[15]. Hence, we utilized the Python programming language’s Scikit-
learn package to implement RFE, with Logistic Regression serving as
the estimator [16]. The features were chosen from the standardized
data obtained using the StandardScaler from the Scikit-learn package
[16]. Until a certain number of features have been attained, this fea-
ture selection approach recursively deletes the weakest features from
the set. Unlike the other feature selection methods, which focus on
individual properties of features, RFE focuses on features that affect
the performance of the model [17]. We performed RFE on different
numbers of features—10, 20, 30, 40, and so on. It was observed that
the top 50 most relevant features performed best in the machine
learning models; detailed description of these features is shown in
Table S1[18].
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FIGURE 2 Architecture and methodology followed in HOPPred—a hybrid approach to predict and design hormonal peptides.

2.3 | Machine learning techniques

We classified peptide hormones and non-hormonal peptides using
a variety of machine-learning algorithms like Random Forest (RF),
Decision Tree (DT), K-Nearest Neighbors (KNN), Gaussian Naive
Bayes (GNB), Logistic Regression (LR), and XGBoost (XGB) classifiers,
using a python-based toolkit called Scikit-learn. DT classifier is a
non-parametric supervised machine learning model that identifies
the output by learning decision rules from input, ensemble-based
RF classifier trains several decision trees to prodigy a single tree,
LR classifier calculates the likelihood of an event using a logistic
function, KNN classifier bases its forecast on the highest number of
votes cast in favor of the class that is closest to the nearest neigh-

boring data point, GNB classifier is a probabilistic classifier based

on Bayes’ theorem, and XGB classifier is a distributed gradient-
boosted decision tree machine learning library that avails parallel tree
boosting [19-24].

2.4 | Deep learning techniques

241 | Tabnet

We applied TabNet on a set of 9149 biological features, which were
extracted using Pfeature. TabNet is a deep learning model applied on
tabular data. At each stage of the model, it chooses which features to
use by providing sequential attention. This facilitates interpretability

and improved learning as the most useful features are used. Tabnet
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utilizes a single deep learning architecture for both feature selection
and reasoning, known as soft feature selection [25].

242 | TextCNN

We also used the TextCNN method, where we considered sequences
as text and classified them using convolution neural networks. The
padding of sequences was done to make the lengths the same for
all sequences. Then, we took the word length of three alphabets
and divided the sequences into sets of words. We then applied
TextCNN to the matrix of 8000 features (20*20*20 = 8000), where
20 is the possible amino acids that can be present in a single
place [26].

2.5 | Five-fold cross-validation

We implemented a five-fold cross-validation procedure to ensure that
our derived models are not biased and do not suffer from overfitting.
This is a standard technique commonly used to evaluate the perfor-
mance of newly developed methods. In this technique, the dataset is
randomly divided into five sets; four sets are used for training, and
the remaining set is for testing. This process is repeated five times in
such a way that each set is used once for testing. Finally average per-
formance is computed on all sets. As models are trained and tested
on different sets, the chances of overfitting are negligible. It ensures
that the model’s performance is consistent across different sets of
data. Five-fold cross-validation strikes a balance between computa-
tional efficiency and reliable estimation of the model’s performance. It
provides a good compromise between the number of folds and com-
putational resources required for training multiple models [27, 28].
The entire dataset was divided into training data and validation data,
following an 80:20 ratio. The 80:20 ratio for training and validation
datasets is a common choice in machine learning. It strikes a balance
between having enough data for training to learn complex patterns and
having enough data for validation to reliably estimate the model’s per-
formance [29]. We employed the 5-fold cross-validation technique on
the training data, where the training data was further divided into five
folds. In each iteration, four folds were used for training the model,
while the remaining fold served as the test set for internal validation.
This process was repeated five times, allowing each fold to serve as the
test set once. The 20% of data that was kept aside during the initial split
was used for the external validation of the model. This held-out dataset
provided an independent evaluation of the model’s performance. This
approach is widely accepted and has been utilized in various studies for
robust validation of data [29-31].

2.6 | Evaluation of parameters

The evaluation of the prediction model is one of the most important
processes. Several parameters, which may be threshold-dependent or

Proteomics and Systems Biology

threshold-independent, can be used to evaluate the prediction mod-
els. Threshold-dependent parameters are sensitivity, which measures
how well the model can predict the hormones (Equation (1)); specificity
for the correct prediction of non-hormones (Equation (2)), accuracy
which shows the proportion of hormones and non-hormones that were
successfully predicted (Equation (3)); and Matthew’s correlation coef-
ficient (MCC) shows the relationship between predicted and observed
values (Equation (4)). Sensitivity measures the percent of correctly
predicted hormonal peptides, whereas specificity estimates correctly
predicted non-hormonal peptides. Accuracy measures the overall cor-
rectness of the model’s predictions, calculated as the ratio of correctly
predicted peptides to the total number of peptides. MCC is the most
robust parameter for evaluating a method; it imposes a penalty on false
positive and false negative predictions. The threshold-independent
parameter is the area under the receiver operating characteristic
curve (AUC) between the sensitivity and 1-specificity. It provides an
aggregate measure of the model’s performance across all possible
classification thresholds. It is insensitive to class imbalance and pro-
vides a single scalar value that summarizes the model’s discriminatory
power. These evaluation metrics have been commonly used in various
bioinformatics studies [32, 33].

. Tp

S tivity = x 100 1
ensitivity v Fo (1)
Specificity = — ™ x 100 (2)

P y= TN + Fp

_ Tp + TN
Accuracy = T T T, i Fs x 100 (3)

T % Tp) — (Fy X F,

MCC = (T X Tp) — (Fy X Fp) @)

VI(Fp +Tp) (Fy + Tp) (Fp + Tn) (Fy + Ty)

where Tp, Ty, Fp, and Fy stand for true positive, true negative, false

positive, and false negative, respectively.

2.7 | Similarity search

The Basic Local Alignment Search Tool (BLAST) is a commonly used
tool for annotating protein and nucleotide sequences [34]. In this
study, we utilized BLAST shortp, which is specifically designed for
peptide sequences, to identify hormonal sequences based on sequence
similarity. To ensure the reliability and accuracy of our methodol-
ogy, we followed established practices used by other researchers
[31, 35]. Specifically, we created the BLAST database using all the
sequences present in the training dataset. During the evaluation of
the training set sequences, we considered the first hit after exclud-
ing self-hits. For the validation set sequences, we used the first hit
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to determine their classification as hormonal or non-hormonal. By
employing BLAST and adopting these annotation procedures, we
aimed to leverage sequence similarity to identify and annotate peptide
hormones accurately. We performed BLAST for a set of e-values,
including 106, 10-3, 10~4, 1073, 102, 10-%, 109, 10, and 102,
using the default parameters. The results for BLAST are shown in
Table 3.

2.8 | Motif analysis

The Motif-EmeRging and Classes-Identification (MERCI) tool is utilized
in this study to identify motifs within the set of peptide sequences [27].
Motif analysis provides valuable information about recurring patterns
observed in peptide hormone sequences. The input for the MERCI
tool is a FASTA file containing the peptide sequences, and the out-
put consists of a collection of recurring sequence patterns known as
motifs, along with their respective positions of occurrence within the
sequences. In this particular study, we focused on identifying motifs
that exclusively appear in hormonal and non-hormonal sequences. By
analyzing these motifs, we can gain insights into unique sequence pat-
terns associated with each class of peptides. By employing the MERCI
tool and examining the identified motifs, we aim to uncover important
information about the distinctive sequence characteristics of hormonal

and non-hormonal peptides.

2.9 | Ensemble approach

We combined three different techniques to calculate the score: (i)
BLAST search, (ii) MERCI motifs, and (iii) Machine learning models.
First, BLAST was used to categorize the protein sequence with an
E-value of 10~1. We gave the positive predictions (peptide hormones)
a score of “+0.5,” the negative predictions (non-hormone peptides)
a score of “~0.5,” and no hits a score of “0.” Second, MERCI was
used to categorize the same peptide sequence. When the hormonal
motifs were discovered, we gave them a score of “+0.5,” and when
they were not, we gave them a score of “0.” Third, ML techniques
were used to classify hormonal and non-hormonal peptides, where
we obtain a set of prediction probabilities for each class that varies
between O to 1, which are obtained using the predict_proba() function
in Python. We added the scores obtained from MERCI and BLAST to
the prediction probabilities obtained by ML model prediction. The
scoring system is explained in detail in Equations (5) and (6). In the
hybrid technique, the total score was computed by combining the
results of all three approaches. The peptide sequence is classified
as hormonal or non-hormonal on the overall hybrid score (M”) as
defined in Equation (6). The overall hybrid score varies from the range
of —1to 2.

M + 0.5 If BLAST hit is against hormonal sequence
M’ ={ M — 0.5 If BLAST hit is against non — hormonal sequence  (5)
M If no BLAST hit is found

Here, M = prediction probability score obtained from ML-based
approach and M’ = score obtained after adding scores from
BLAST-based approach.

M’ + 0.5 If hormonal motif present
M" =4 M’ — 0.5 If non — hormonal motifpresent (6)
M’ If no motif is found

Here, M"" = final score obtained from the ML-based approach, BLAST-
based approach, and motif-based approach ranging from —1to 2.

3 | RESULTS
3.1 | Analysis of amino acid composition

In our study, we conducted an AAC analysis to investigate the dif-
ferences between hormonal and non-hormonal peptides. Figure 3
illustrates the AAC of peptide hormones and non-hormonal peptides,
along with the corresponding p-values for each amino acid. The com-
positional differences between the two classes are evident from the
figure. To statistically compare the AAC values of the two groups,
namely hormonal peptides and non-hormonal peptides, we performed
a two-sided Mann-Whitney U test. This test allows us to determine
if there are significant differences between the groups. Our analysis
revealed that the composition of certain amino acids was significantly
higher in hormonal peptide sequences, including phenylalanine and
proline (p-values < 0.05). On the other hand, the composition of amino
acids such as glutamic acid, isoleucine, lysine, leucine, methionine,
glutamine, threonine, and valine was found to be significantly lower
in hormonal peptide sequences compared to non-hormonal peptide
sequences (p-values < 0.05). These findings indicate that the rela-
tive abundance of specific amino acids differs between hormonal and
non-hormonal peptides, potentially contributing to their functional

distinctions.

3.2 | Machine learning-based models

First, we computed a variety of features using the Pfeature software
and removed the unnecessary features using the RFE feature selection
methodology, as mentioned in the Materials and Methods section. For
comparison purposes, we developed multiple models based on the
top 30 and top 50 features in the dataset and assessed them on the
training and validation datasets. All the machine learning methods
were used on the datasets with AAC, top 30, and top 50 features to
create peptide hormone prediction models. Hyperparameter tun-
ing was used to optimize parameters using a grid-search algorithm
on the sci-kit Learn [36]. Grid search is used to find the optimal
hyperparameters for the machine learning methods from a set of
hyperparameter values to explore [37]. Grid search is then performed
on the cross-validation fold of the model. Cross-validation involves

splitting the training data into multiple subsets (folds), training the
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Amino acid composition of hormonal and non-hormonal peptides
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FIGURE 3 Amino acid composition analysis for peptide hormones and non-hormone peptides.

model on some folds, and evaluating it on the remaining fold. This pro-
cess is repeated multiple times, with different folds used for training
and evaluation each time. For each combination of hyperparameters,
grid search calculates the performance metric (e.g., accuracy) based
on the average performance across all cross-validation folds. Once
all combinations have been evaluated, the grid search selects the
combination of hyperparameters that results in the best performance
metric. This combination is typically chosen based on maximizing
accuracy or minimizing error on a validation set. We specified all
possible values for each parameter for the grid search algorithm.
The best model—Logistic regression (C = 1.623776739188721,
class_weight = ‘balanced’, solver = ‘liblinear’) was employed in both
the web server and standalone software. The hyperparameters for
other ML models are given in Supplementary Table S3. This model
was chosen due to its high performance and robustness. It gave a
standard deviation of 0.01494, a standard error of 0.00668, and an
average AUC of 0.94 for five folds in the training dataset. It also per-
formed well on the test (independent validation) dataset with an AUC
of 0.93.

The set of top 50 features that performed best was chosen as
the final features in our prediction model, as evidenced by the
results—LR (training: 0.94 AUROC and validation: 0.93 AUROC)
is the best model, followed by RF (training: 0.91 AUROC and
validation: 0.90 AUROC). The performance of various models
employed on AAC, top 30, and top 50 features are demonstrated
in Figure 4, and detailed information is given in Table 1. The
parameters for best performing (50 features) models are given in
Table S2.

3.3 | Performance of deep learning techniques

3.3.1 | TextCNN

TextCNN is a deep learning method to perform text classification tasks
[26]. We divided the sequences into the words of length = 3 and used
them to build our deep learning model. This model was able to achieve
an AUROC of 0.98 on the training dataset. However, it was not able to
perform well on the testing dataset, givingan AUROC of 0.90. The MCC
was also seen to decrease from 0.88 in the training dataset to 0.67 in
the testing dataset.

3.3.2 | TabNet

TabNet is a deep learning method that uses tabular data as input and is
trained using gradient-descent-based optimization [25]. The 9149 fea-
tures generated from the Pfeature were passed as features through
the TabNet model to get the train AUROC as 0.81 and the valida-
tion AUROC as 0.75 with an MCC of 0.61 for the training dataset and
0.57 for the validation dataset. The performances of the deep learning
models TextCNN and TabNet are summarized in Table 2.

3.4 | Motif performance

The motifs exclusively seen in peptide hormones have been found using
the MERCI software. The list of motifs found in hormone peptides is
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FIGURE 4 Comparison of performance for ML models developed on amino acid composition, top 30 features, and top 50 features on the basis
of (A) sensitivity, (B) specificity, (C) accuracy, (D) AUC, and (E) MCC (here tr, training set; val, validation set).

mentioned in Table 3. A total of 12 motifs have been identified in hor-
mones with a coverage of 59 hormone sequences. It was observed that
amino acids like phenylalanine (F), glycine (G), leucine (L), proline (P),
arginine (R), tryptophan (W), and methionine (M), Cysteine (C), and Ser-
ine (S), are the most recurring amino acids in the motifs of hormonal
peptide sequences.

3.5 | Performance of BLAST

In this study, we performed a BLAST search to identify hormonal
sequences based on the similarity between the two sequences. To
perform this algorithm, we used BLAST shortp, which is used for the

small protein sequences, that is, peptides. We used the standard top-
hit approach on various e-values. The results of BLAST for e-values
varying from 1076 to 102 are explained in Table 4.

3.6 | Ensemble or hybrid approach

In the end, various strategies were combined to get around the
shortcomings of distinct approaches. These methods were created to
more accurately detect the peptide hormones. This combines BLAST
and motif-based methods with machine learning models. At first,
peptides were categorized using the motif-search method followed
by BLAST at various e-values. Not all peptides were categorized
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TABLE 1 The performance of machine learning-based models developed for amino acid composition, with the top 30 and top 50 features

selected using RFE.

Machine learning methods

Amino acid composition (AAC)

Training Validation
Model Sens (%) Spec (%) Acc (%) AUROC MCC Sens (%) Spec (%) Acc (%) AUROC MCC
RF 80.79 80.34 80.56 0.89 0.61 79.31 84.03 81.70 0.89 0.63
LR 72.19 73.08 72.63 0.81 0.45 74.57 70.17 72.34 0.80 0.45
XGB 80.68 80.23 80.46 0.88 0.61 77.59 81.93 79.79 0.87 0.60
KNN 62.10 63.25 62.67 0.68 0.25 71.12 63.02 67.02 0.72 0.34
GNB 71.231 70.62 70.93 0.79 0.42 75.43 71.43 73.40 0.79 0.47
DT 66.67 67.20 66.93 0.72 0.34 60.78 66.39 63.62 0.70 0.27
SvC 74.10 72.33 73.22 0.81 0.46 76.72 68.49 72.55 0.79 0.45
Top 30 features

Training Validation
Model Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC
RF 80.68 80.77 80.72 0.90 0.61 77.59 83.61 80.64 0.88 0.61
LR 85.99 86.11 86.05 0.92 0.72 84.05 83.61 83.83 0.90 0.68
XGB 81.10 81.52 81.31 0.90 0.63 80.17 80.25 80.21 0.89 0.60
KNN 77.81 76.60 77.21 0.86 0.54 76.72 76.47 76.60 0.84 0.53
GNB 65.39 66.45 65.92 0.74 0.32 78.45 56.30 67.23 0.75 0.36
Top 50 features

Training Validation
Model Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC
RF 84.29 84.08 84.18 0.91 0.68 80.17 84.03 82.13 0.90 0.64
LR 87.05 87.40 87.22 0.94 0.74 85.34 86.55 85.96 0.93 0.72
XGB 84.18 84.29 84.24 0.92 0.68 77.59 84.45 81.06 0.90 0.62
KNN 56.37 46.79 51.60 0.52 0.03 57.33 47.90 52.55 0.56 0.05
GNB 24.52 95.94 60.12 0.76 0.29 22.84 97.06 60.43 0.83 0.30
DT 72.72 72.11 7242 0.78 0.45 7241 73.95 73.19 0.79 0.46

TABLE 2 The performance of deep learning (DL) models (TextCNN and TabNet).

Deep Learning Methods

Training Validation
Model Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC
Text CNN 96.00 93.00 94.00 0.98 0.88 87.00 79.00 83.00 0.90 0.67
TabNet 79.00 80.00 8.00 0.81 0.61 73.00 75.00 74.00 0.75 0.57

using these methods. Hence ML approach was also used in combina-
tion. The coverage and precision were much improved by the hybrid
approach, which was not possible when using each of these approaches
separately.

Firstly, we combined the motif-search approach with ML models
to boost the performance of the classification model. The best-
performing algorithm—Logistic Regression (LR) achieves an AUROC of

0.94, which was increased from an AUC of 0.93 on the validation set

when only ML was applied. In addition, after adding motif search to ML,
the MCC was increased from 0.72 to 0.74 for the validation set.
Secondly, we combined both BLAST for e-value = 10-1 and motif-
search with the ML model to boost the performance of our clas-
sification model. The ML model, when combined with BLAST at
e-value = 1071, gave the best results for all ML algorithms compared
to other e-values. The performance of the LR-based model increased

from 0.94 to 0.96 on the validation dataset for the performance when
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TABLE 3 List of motifs and their frequency hormone peptides.

Motifs in No of Motifs in No of
hormone hormone hormone hormone
sequences sequences sequences sequences
FGPR 32 LCGS 27
WFGP 32 MW F 25
WFGPR 32 MWFG 25
FGPRL 30 MWEFGP 25

GPRL 30 MWFGPR 25
WFGPRL 30 MWFGPRL 25

we combined BLAST with the previous model (ML + Motif-search
+BLAST). The combined performance for both hybrid approaches (ML
+ Motif-search) and (ML + Motif-search + BLAST) is displayed in
Table 5, and the AUROC plots comparing only the ML model and our
best performing hybrid model (ML + Motif-search + BLAST) is given in
Figure 5.

3.7 | Webserver and standalone software

The web server that we created for HOPPred (https://webs.iiitd.
edu.in/raghava/hoppred/) can distinguish between peptide hormones
and non-hormone peptides. The front end and back end of the web
server were created using HTML5, Java, CSS3, and PHP scripts. All
of the most recent gadgets, including smartphones, tablets, iMacs,
and desktop PCs, are all compatible with this web server. Predict,
design, and peptide design modules are the primary modules on
HOPPred.

4 | DISCUSSIONS

Over the past few decades, peptide therapeutics have attracted much
attention. The rise in publications and the creation of in silico tools
and databases are evidence of this. Several peptide-based medica-
tions have previously received FDA approval due to their benefits
over conventional small molecule-based medications. Peptide hor-
mones have demonstrated promising results in replacement therapies
since the very beginning [3]. There is a need for in-silico techniques
that can predict peptide hormones with high confidence because the
identification and screening of putative peptide hormones as drugs
in the wet lab is a time-consuming, expensive, and labor-intensive
operation.

We created a novel model for the current study using 1174 peptide
hormones and 1174 non-hormone peptides for the prediction of
peptide hormones. We have used multiple approaches to classify
hormonal and non-hormonal peptides—a) motif-search, b) BLAST
search, c¢) Machine Learning models, d) Deep Learning models, and e)
hybrid models. In motif search, we found motifs that were exclusively

present in hormonal sequences. However, this approach only covered

59 hormonal sequences in total. It was found that phenylalanine
(F), glycine (G), leucine (L), proline (P), arginine (R), tryptophan (W),
Cysteine (C), Serine (S), and methionine (M) amino acids recurred
in the most of the motifs found in hormonal sequences. We identi-
fied motifs like—LCGS, and MWFGPRL with various variations, for
example,—FGPR, WFGP, WFGPR, etc., present in about 59 hormonal
peptide sequences. LCGS is also one of the known motif found in chain
B of Insulin, a well-known peptide hormone. In BLAST-search, we
used the top-hit method on various e-values ranging from 10~¢ to
102. Similar to the motif approach, BLAST was not able to cover all
sequences.

Despite being powerful techniques, MERCI and BLAST have some
limitations. Merci might struggle with detecting complex motifs that
vary significantly from the canonical forms or are hidden within highly
variable regions of the sequences. Similarly, high background noise
in the sequence data can obscure motif signals [38]. High sequence
similarity does not always correlate with similar functions, espe-
cially for sequences that have undergone neofunctionalization. BLAST
may identify sequences as similar without acknowledging functional
divergence. BLAST’s effectiveness is contingent upon the sequences
available in the database. Novel or poorly represented sequences
may not be identified, limiting coverage. BLAST might struggle with
extremely short sequences or those that have diverged significantly
from any database sequence, resulting in incomplete or inaccurate
alignments.

Therefore, in addition to BLAST and MERCI, we extracted 9149
compositional features using Pfeature software and selected the top-
performing features to develop our model. We used an array of ML and
DL models to classify hormonal and non-hormonal peptides, namely—
RF, DT, KNN, GNB, LR, XGB, TextCNN, and TabNet. Each of these brings
a unique set of advantages and capabilities to the analysis of pep-
tide sequences. RF is an ensemble method that is great for handling
the complexity that might arise from the diverse and high-dimensional
space of peptide sequences. DTs offer interpretability, which is valu-
able in a biological context where understanding the decision process
can provide insights into which features (amino acids or motifs) are
most important for classification. Although they are prone to overfit-
ting, they serve as a good baseline and can be used as a part of RFs.
KNN is a non-parametric method that makes no assumptions about
the underlying data distribution [39]. It is intuitive and can be partic-
ularly useful when the classification decision is based on the similarity
of sequence patterns, which is often the case with peptides. GNB works
on the assumption of feature independence and can be quite effective
when the number of features (amino acids in the peptide sequence)
is large, which is often the case in bioinformatics [23]. LR is a sim-
ple and fast method providing probabilistic results, which is useful for
binary classification tasks like hormonal versus non-hormonal peptide
classification [21]. XGB is a gradient-boosting framework known for
its performance and speed [25, 40]. It can handle a variety of data
structures and distributions, which makes it suitable for the complex
patterns in peptide sequences. Its regularization component helps to
prevent overfitting, making it robust for biological data. TabNet, a deep

learning-based model designed for tabular data, leverages the sequen-
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TABLE 4 BLAST-based search results for training and validation dataset (here, Whits, wrong hits; Chits, correct hits; Nhits, no hits).

Training

Validation

Hormonal Non-hormonal

Hormonal Non-hormonal

e-values  Chits Whits Nhits Chits Whits Nhits

Chits Whits Nhits Chits Whits Nhits

10-¢ 269 0(0.00%) 673 0(0.00%) 0(0.00%) 936 65 0(0.00%) 167 0(0.00%) 0(0.00%) 238
(14.32%) (35.84%) (49.84%) (13.83%) (35.53%) (50.64%)
10-° 302 0(0.00%) 640 4(0.21%) 0(0.00%) 932 78 0(0.00%) 154 0(0.00%) 0(0.00%) 238
(16.08%) (34.08%) (49.63%) (16.60%) (32.77%) (50.64%)
104 350 0(0.00%) 592 4(0.21%) 0(0.00%) 932 90 0(0.00%) 142 0(0.00%) 0(0.00%) 238
(18.64%) (31.52%) (49.63%) (19.15%) (30.21%) (50.64%)
10-3 427 0(0.00%) 515 8(0.43%) 0(0.00%) 928 107 0(0.00%) 125 0(0.00%) 0(0.00%) 238
(22.74%) (27.42%) (49.41%) (22.77%) (26.60%) (50.64%)
102 527 0(0.00%) 415 8(0.43%) 0(0.00%) 928 126 0(0.00%) 106 2(0.43%) 0(0.00%) 236
(28.06%) (22.1%) (49.41%) (26.81%) (22.55%) (50.21%)
10! 628 1(0.05%) 313 8(0.43%) 1(0.05%) 927 144 0(0.00%) 88 2(0.43%) 0(0.00%) 236
(33.44%) (16.67%) (49.36%) (30.64%) (18.72%) (50.21%)
1 705 3(0.16%) 234 21(1.12%) 10(0.53%) 905 163 4(0.85%) 65 10(2.13%) 2(0.43%) 226
(37.54%) (12.46%) (48.19%) (34.68%) (13.83%) (48.09%)
10t 766 40(2.13%) 136 165 114 657 180 19 (4.04%) 33(7.02%) 51 34(7.23%) 153
(40.79%) (7.24%)  (8.79%)  (6.07%)  (34.98%) (38.3%) (10.85%) (32.55%)
102 754 179 9(0.48%) 520 374 42(2.24%) 176 55 1(0.21%) 140 89 9(1.91%)
(40.05%) (9.53%) (27.69%) (19.91%) (37.45%) (11.70%) (29.79%) (18.94%)

TABLE 5 The performance of ensemble method that combine ML-based models, Motif-search and BLAST (e-value = 10~1) based similarity.

ML + Motif-search

Training Validation
Model Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC
RF 84.5 83.55 84.03 0.92 0.68 81.03 86.13 83.62 0.92 0.67
LR 87.90 87.93 87.91 0.95 0.76 86.64 87.39 87.02 0.94 0.74
XGB 85.03 84.51 84.77 0.92 0.70 80.17 85.29 82.77 0.91 0.66
KNN 58.39 52.46 55.43 0.59 0.11 58.19 57.56 57.87 0.67 0.16
GNB 26.86 96.05 61.34 0.78 0.32 25.43 97.9 62.13 0.85 0.34
DT 73.78 73.82 73.8 0.80 0.48 64.22 75.21 69.79 0.76 0.40
ML + Motif-search + BLAST

Training Validation
Model Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC
RF 88.96 85.90 87.43 0.95 0.75 86.21 88.66 87.45 0.95 0.75
LR 91.19 90.38 90.79 0.97 0.82 90.09 89.5 89.79 0.96 0.80
XGB 88.96 87.71 88.71 0.96 0.77 85.34 87.82 86.6 0.95 0.73
KNN 77.18 72.54 73.87 0.85 0.50 74.14 75.63 74.89 0.86 0.50
GNB 69.43 96.26 82.80 0.90 0.68 64.66 97.9 81.49 0.91 0.67
DT 81.95 79.70 80.83 0.89 0.62 77.16 76.89 77.02 0.86 0.54

tial attention mechanism to choose which features to reason from at
each decision step [25]. It was particularly useful for our big set of 9149
features. TextCNN applies convolutional neural networks to text clas-
sification, treating peptide sequences as a kind of language [26]. This
model can capture local patterns (motifs) within the peptide sequences,

and due to the weight sharing of convolutional layers, it can efficiently
process variable-length sequences.

The ML model alone was able to achieve an AUROC of 0.89, 0.90,
and 0.93 for independent validation set on AAC, top 30 features and
top 50 features, respectively. For DL models—TextCNN and TabNet,
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the performance of AUROC were 0.90 and 0.75, respectively, for
the independent validation set, as it was observed that the top 50
features were giving the best performance on logistic regression (ML
model). The top 50 compositional features included features like AAC,
dipeptide composition (DPC), tripeptide composition (TPC), physic-
ochemical properties (PCP), distance distribution (DDR), Shannon
entropy (SEP), conjoint triad descriptors (CTC), composition enhanced
transition and distribution (CeTD), and quasi-sequence order (QSO).
These top 50 features also align with the motifs identified in this study.
The motifs identified include WFGPRL, WFGP, FGPRL, LCGS, etc., and
some of the top features include—DPC1_CF (Dipeptide composition
of Cysteine-Phenylalanine), TPC_FRP (Tripeptide Composition of
Phenylalanine, Arginine, Proline), TPC_GNF (Tripeptide Composition
of Glycine, Asparagine, Phenylalanine), TPC_LMG (Tripeptide Com-
position of Leucine, Methionine, Glycine), and TPC_RGL (Tripeptide
Composition of Arginine, Glycine, Leucine). The Motif ‘WFGP’ shares
‘F’ and ‘P’ with TPC_FRP, indicating the potential importance of these
residues.'G’ and ‘P’ are also present in the motifs ‘FGPRL, ‘WFGPR,,
and ‘GPR’, which suggests that these amino acids are key components
in the hormone function, supported by their presence in the tripeptide
composition features like TPC_GNF. TPC_RGL has ‘R’, ‘G’, and ‘L, which
are present in the ‘FGPRL’ motif. This can indicate the significance of
Arginine (R) and Glycine (G) in the structure or function of these hor-
mones, as these residues also appear in the motifs with high frequency.
Phenylalanine (F) and Proline (P) are found in multiple motifs, and their
involvement in dipeptide and tripeptide features suggests they might
play a critical role in hormone activity or stability. Arginine (R), seen
in TPC_FRP and TPC_RGL and also part of the ‘WFGPR’ motif, could
indicate a role in binding or molecular interaction given its positive
charge. There’s a recurring pattern of ‘W, ‘F), ‘G, ‘P’, and ‘R’ in both
motifs and top features. This suggests these motifs could be involved
in critical interactions or structural configurations necessary for the
peptides’ hormonal activity. DDR_C (Distance distribution of Cysteine)
might be relevant for motifs with ‘C) as the spatial distribution of
Cysteine can be crucial for disulfide bond formation, influencing
the three-dimensional structure of peptide hormones. Features like
dipeptide and tripeptide compositions reflect the frequency of spe-
cific amino acid pairings and triplets, which have been determined
to be significant through machine learning techniques. Shannon
entropy and distance distribution features provide insight into the
variability and spatial arrangement of these amino acids within the
hormones.

We decided to combine the best-performing ML model with other
approaches used in the study and called it a hybrid model. Firstly,
we combined the ML model with motif search, which achieved an
AUROC of 0.94 on the validation set. Secondly, we merged our best
ML model with both motif-search and BLAST-search (e-value = 10~1),
which achieved the highest AUROC of 0.96 with an accuracy of
89.70%, specificity of 90.09% and sensitivity of 89.50%. In addition,
we performed AAC analysis on the sequences to identify which
amino acids are more or less likely to be found in hormones. It was
observed that cysteine, aspartic acid, phenylalanine, glycine, arginine,

serine, asparagine, proline, and tyrosine were significantly increased

in hormonal peptide sequences, whereas the compositions of amino
acids like glutamic acid, isoleucine, leucine, methionine, glutamine,
lysine, threonine, and valine were significantly decreased in hormonal
peptide sequences than non-hormonal peptide sequences. In the
comparative analysis of AAC between hormonal and non-hormonal
peptides, significant differences might suggest specialized roles for
these residues in hormone function. Statistically heightened levels
of hydrophobic amino acids, such as leucine and valine, in hormonal
peptides could imply an evolutionary adaptation for interactions with
lipid membranes and hydrophobic receptor domains, essential for
hormone signaling pathways [41]. Elevated proportions of charged
residues like lysine and arginine could indicate a propensity for binding
and active sites recognition, reflecting the necessity for precise cellular
interactions [42, 43]. The presence of cysteine, potentially more
abundant in hormonal peptides, can point to the importance of disul-
fide bridges in maintaining structural integrity for hormonal activity
[44]. Aromatic amino acids, if increased, might play a role in receptor
binding through complex interaction mechanisms like 7-7 stacking,
which could enhance the specificity and strength of hormone-receptor
interactions [45, 46]. The presence of amino acids like serine (S), thre-
onine (T), and tyrosine (Y), which can be phosphorylated, may suggest
that hormonal peptides could be regulated through post-translational
modifications [47]. These compositional characteristics underscore
the biological implications: hormones are fine-tuned for high-
affinity receptor interactions, possess structural features conducive
to stability and storage, and are primed for regulation via post-
translational modifications. This detailed understanding paves the way
for more focused hypotheses on hormone function and interaction
dynamics.

The study is one of its kind as it tries to classify peptides into
hormonal and non-hormonal, which has not been attempted before.
Moreover, it also identifies unique motifs found in hormonal peptides.
We have employed our best-performing hybrid model, which achieves
an AUROC of 0.96 and is chosen to be put on the web server of HOP-
Pred as it is able to differentiate between hormonal and non-hormonal
peptides accurately and does not take much more time than only the
ML model being applied. We have developed a comprehensive plat-
form that enables users to categorize both hormone and non-hormone
peptide sequences. We have provided the users with a website and
a standalone version for a better user experience. It provides users
with a choice of using the ML model or an ensemble model according
to the user’s needs with no significant difference in the amount of
time taken by the web server in the prediction. The users can either
predict or design novel hormonal peptides and also display various
physicochemical properties like charge, hydrophobicity, hydrophilicity,
molecular weight, steric hindrance, etc. We believe our research will
also be helpful for a variety of areas of biological research, like the
development of peptide-based treatments, synthetically designing
a novel peptide with hormonal activity, development of growth
enhancers or inhibitors for agricultural biotechnology, and more. The
server can be accessed at https://webs.iiitd.edu.in/raghava/hoppred/,
with the codes available on Github: https://github.com/raghavagps/
HOPPRED.
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FIGURE 5 AUC plots for (A) training set in the ML model, (B) validation set in the ML model, (C) training set in the hybrid model (ML +
Motif-search +BLAST), and (D) validation set in the hybrid model (ML + Motif-search +BLAST).

5 | LIMITATIONS

We acknowledge potential biases arising from random negative data
selection and the inherent assumptions of our computational model. In
addition, when we develop models on AAC, the model assumes a
direct correlation between amino acid frequency and peptide function,
which simplifies the complex nature of peptide bioactivity. Further-
more, post-translational modifications, crucial in modulating peptide
functions, were not accounted for in this study. Hence, experimental
validation can add value to the computational predictions made by our
model.
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