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Abstract

Peptide hormones serve as genome-encoded signal transduction molecules that play

essential roles in multicellular organisms, and their dysregulation can lead to various

health problems. In this study, we propose a method for predicting hormonal peptides

with high accuracy. The dataset used for training, testing, and evaluating our models

consisted of 1174 hormonal and 1174 non-hormonal peptide sequences. Initially, we

developed similarity-based methods utilizing BLAST and MERCI software. Although

these similarity-based methods provided a high probability of correct prediction, they

had limitations, such as no hits or prediction of limited sequences. To overcome these

limitations, we further developedmachine and deep learning-basedmodels. Our logis-

tic regression-based model achieved a maximum AUROC of 0.93 with an accuracy of

86% on an independent/validation dataset. To harness the power of similarity-based

andmachine learning-basedmodels, we developed an ensemblemethod that achieved

an AUROC of 0.96 with an accuracy of 89.79% and a Matthews correlation coeffi-

cient (MCC) of 0.8 on the validation set. To facilitate researchers in predicting and

designing hormone peptides, we developed a web-based server called HOPPred. This

server offers a unique feature that allows the identification of hormone-associated

motifs within hormone peptides. The server can be accessed at: https://webs.iiitd.edu.

in/raghava/hoppred/.
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1 INTRODUCTION

The peptide hormones are a varied group of genome-encoded regu-

latory molecules with a specialized and important purpose of trans-
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ferring specific information between cells and organs. This sort of

molecular communication emerged and developed into a sophisticated

system for regulating growth, development, and homeostasis in the

early stagesof evolution [1]. Awide rangeof reasons, includingmetabo-

lite deposition in cells, surgical removal of glands, or destruction of

glands, can cause inadequate production of hormones. A frequent

cause of hormone reduction is autoimmunity, and less frequently, it

is also caused by genetic anomalies. Altered levels of hormones can

disrupt the delicate equilibrium of the body and lead to endocrine dis-

orders like endocrineneoplasia anddiabetes [2]. It is thus indispensable

to focus on the therapeutics of endocrine disorders associated with

hormonal imbalances.
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Keypoints

∙ An ensemble method for predicting hormonal peptides

with high precision.

∙ BLAST-based similarity for searching hormonal peptides.

∙ MERCI software for searching hormone-associatedmotifs

in a peptide.

∙ Prediction models using machine and deep learning tech-

niques.

∙ A standalone software package and awebserver.

Peptide hormones, like all other peptides, are effective targeted

signaling molecules that attach to specific cell surface receptors

and cause intracellular effects. They are a great place to start

while developing novel treatments because of their appealing

pharmacological profile, target specificity, and inherent qualities.

It was, in fact, the foundational studies into natural hormones

like insulin and gonadotropin-releasing hormone (GnRH), which

marked the beginning of research into therapeutic peptides [3].

Their exceptional tolerability and efficacy have been demonstrated

to be a direct result of their specificity. This feature may also dis-

tinguish between peptides and conventional small molecules.

The depiction of the mechanism of peptide hormones is shown in

Figure 1.

Many peptidemedications act as “replacement therapies,” restoring

or supplanting peptide hormones when endogenous levels are insuf-

ficient or absent. They are intrinsic signaling molecules for a variety

of physiological functions, which opens the possibility for therapeutic

intervention emulating natural routes [4]. One such example is insulin

which has helped thousands of people with diabetes since its intro-

duction as the first peptide medication for commercial use in 1923 [3].

While replicatingpeptides generated fromnaturewas formerly thedis-

covery and development trend in the therapeutic peptide sector, it has

recently changed to the rational designof peptideswithdesirable phys-

iological and biochemical properties. Peptide-based natural hormone

analogshavebeendevelopedasdrug candidates.Given their enormous

therapeutic potential, it can be anticipated that therapeutic hormone

peptides will continue to draw research attention and see long-term

success.

Several methods have been proposed in the past for predict-

ing and designing therapeutic peptides. TPpred-ATMV improves

the prediction of therapeutic peptides, THPep predicts the

tumor-homing peptide (THP), AntiCP 2.0 for the prediction of

anti-cancer peptides, and PrMFTP has been developed to pre-

dict multi-functional therapeutic peptides [5–8]. As far as we

know, no method has been created particularly to predict peptide

hormones. In this study, we have proposed an approach HOP-

Pred, to classify the peptide hormone and non-hormone peptide

sequences.

Significance Statement

Problem: Peptide hormones have demonstrated promising

results in medical therapies since the very beginning. The

demand for efficient in-silico techniques arises from the

time-consuming and resource-intensive nature of identifying

and screeningpotential peptidehormones inwet lab settings.

What is already known: Several methods have been pro-

posed in the past for predicting and designing therapeutic

peptides. As far as we know, no method has been created

particularly to predict peptide hormones.

What this paper adds: This study introduces auniqueensem-

ble approach employing machine learning and deep learning

methods for predicting hormonal peptides. The develop-

ment of our method, HOPPred, not only provides a reliable

prediction tool but also offers a unique feature for identi-

fying hormone-associated motifs within peptides. We hope

this tool will aid researchers in accurately predicting hor-

mones and open avenues for unraveling intricate signaling

pathways.

2 METHODS

2.1 Dataset compilation and preprocessing

We took 5729 peptide hormone sequences for both plants and animals

from the Hmrbase2 database [9]. The Hmrbase2 database contains

comprehensive and updated information for peptide and non-peptide

hormones aswell as their receptors for about562organisms. These are

mature hormone sequences devoid of the signal and precursor areas.

All duplicate peptides were removed from the data to eliminate redun-

dancy from the dataset. Additionally, it was observed that the peptides

ranged from the length of 11 to 41 peptides. Redundant peptides were

removed using CD-HIT with a cut-off of 60% to make sure there was

no peptide in the dataset that had more than 60% similarity with any

other peptide [10]. CD-HIT is a standard practice used to get rid of

the similarity within dataset. Hence, we applied CD-HIT at various

cut-offs—90%, 80%, 70%, and so on. It was observed that 60% simi-

larity was retaining the most peptides and very few were the outliers

that were more than 60% similar. Ultimately, we obtained 1174 pep-

tide hormones, which we refer to in this work as the positive dataset.

For the non-hormone peptide dataset, that is, the negative dataset,

we used the PeptideAtlas database. PeptideAtlas is a freely available

database containing peptide sequences from a number of experiments

for a variety of organisms [11]. About 1174 non-hormone peptides

were selected randomly from PeptideAtlas, and the amino acid com-

position (AAC) for these peptides was calculated to assess if the

composition matches the standard AAC of proteins/peptides present

in nature to avoid the random non-biologically significant sequences.

 16159861, 2024, 20, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400004 by L
ibrary &

 Inform
ation C

entre Indraprastha Institute O
f, W

iley O
nline L

ibrary on [18/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3 of 15

F IGURE 1 Mechanism of action of peptide hormones.

The complete architecture and methodology followed in this study is

given in Figure 2.

2.2 Feature generation and selection

Structural and functional annotations of peptide sequences were

performed using Pfeature. It computes the descriptors of a sequence

and gives a vector of 9149 features [12]. Using Pfeature, we calculated

all 9149 features, which included 15 categories of characteristics and

descriptors, including AACs, tripeptide compositions, dipeptide com-

positions, etc. It is important to determine the few significant features

out of the plethora of a vast number of features for several reasons

[13]. Feature selection techniques allow us to select the most relevant

feature, which allows us to reduce noise in prediction. In addition,

feature selection can help reduce the overfitting of themodel, enhance

interpretability, and improve model performance [14]. In order to

perform feature selection, we deployed different feature selection

methods like filter methods, wrapper methods, and embedded meth-

ods. In this study, Recursive Feature Elimination (RFE)—a wrapper

method, performed better than other feature selection techniques

[15]. Hence, we utilized the Python programming language’s Scikit-

learn package to implement RFE, with Logistic Regression serving as

the estimator [16]. The features were chosen from the standardized

data obtained using the StandardScaler from the Scikit-learn package

[16]. Until a certain number of features have been attained, this fea-

ture selection approach recursively deletes the weakest features from

the set. Unlike the other feature selection methods, which focus on

individual properties of features, RFE focuses on features that affect

the performance of the model [17]. We performed RFE on different

numbers of features—10, 20, 30, 40, and so on. It was observed that

the top 50 most relevant features performed best in the machine

learning models; detailed description of these features is shown in

Table S1 [18].
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F IGURE 2 Architecture andmethodology followed in HOPPred—a hybrid approach to predict and design hormonal peptides.

2.3 Machine learning techniques

We classified peptide hormones and non-hormonal peptides using

a variety of machine-learning algorithms like Random Forest (RF),

Decision Tree (DT), K-Nearest Neighbors (KNN), Gaussian Naïve

Bayes (GNB), Logistic Regression (LR), and XGBoost (XGB) classifiers,

using a python-based toolkit called Scikit-learn. DT classifier is a

non-parametric supervised machine learning model that identifies

the output by learning decision rules from input, ensemble-based

RF classifier trains several decision trees to prodigy a single tree,

LR classifier calculates the likelihood of an event using a logistic

function, KNN classifier bases its forecast on the highest number of

votes cast in favor of the class that is closest to the nearest neigh-

boring data point, GNB classifier is a probabilistic classifier based

on Bayes’ theorem, and XGB classifier is a distributed gradient-

boosted decision tree machine learning library that avails parallel tree

boosting [19–24].

2.4 Deep learning techniques

2.4.1 Tabnet

We applied TabNet on a set of 9149 biological features, which were

extracted using Pfeature. TabNet is a deep learning model applied on

tabular data. At each stage of the model, it chooses which features to

use by providing sequential attention. This facilitates interpretability

and improved learning as the most useful features are used. Tabnet
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utilizes a single deep learning architecture for both feature selection

and reasoning, known as soft feature selection [25].

2.4.2 TextCNN

We also used the TextCNN method, where we considered sequences

as text and classified them using convolution neural networks. The

padding of sequences was done to make the lengths the same for

all sequences. Then, we took the word length of three alphabets

and divided the sequences into sets of words. We then applied

TextCNN to the matrix of 8000 features (20*20*20 = 8000), where

20 is the possible amino acids that can be present in a single

place [26].

2.5 Five-fold cross-validation

We implemented a five-fold cross-validation procedure to ensure that

our derived models are not biased and do not suffer from overfitting.

This is a standard technique commonly used to evaluate the perfor-

mance of newly developed methods. In this technique, the dataset is

randomly divided into five sets; four sets are used for training, and

the remaining set is for testing. This process is repeated five times in

such a way that each set is used once for testing. Finally average per-

formance is computed on all sets. As models are trained and tested

on different sets, the chances of overfitting are negligible. It ensures

that the model’s performance is consistent across different sets of

data. Five-fold cross-validation strikes a balance between computa-

tional efficiency and reliable estimation of the model’s performance. It

provides a good compromise between the number of folds and com-

putational resources required for training multiple models [27, 28].

The entire dataset was divided into training data and validation data,

following an 80:20 ratio. The 80:20 ratio for training and validation

datasets is a common choice in machine learning. It strikes a balance

between having enough data for training to learn complex patterns and

having enough data for validation to reliably estimate the model’s per-

formance [29]. We employed the 5-fold cross-validation technique on

the training data, where the training data was further divided into five

folds. In each iteration, four folds were used for training the model,

while the remaining fold served as the test set for internal validation.

This process was repeated five times, allowing each fold to serve as the

test set once. The20%of data thatwas kept aside during the initial split

was used for the external validation of themodel. This held-out dataset

provided an independent evaluation of the model’s performance. This

approach iswidely accepted and has been utilized in various studies for

robust validation of data [29–31].

2.6 Evaluation of parameters

The evaluation of the prediction model is one of the most important

processes. Several parameters, which may be threshold-dependent or

threshold-independent, can be used to evaluate the prediction mod-

els. Threshold-dependent parameters are sensitivity, which measures

howwell themodel can predict the hormones (Equation (1)); specificity

for the correct prediction of non-hormones (Equation (2)), accuracy

which shows the proportion of hormones and non-hormones thatwere

successfully predicted (Equation (3)); and Matthew’s correlation coef-

ficient (MCC) shows the relationship between predicted and observed

values (Equation (4)). Sensitivity measures the percent of correctly

predicted hormonal peptides, whereas specificity estimates correctly

predicted non-hormonal peptides. Accuracy measures the overall cor-

rectness of the model’s predictions, calculated as the ratio of correctly

predicted peptides to the total number of peptides. MCC is the most

robust parameter for evaluating amethod; it imposes a penalty on false

positive and false negative predictions. The threshold-independent

parameter is the area under the receiver operating characteristic

curve (AUC) between the sensitivity and 1-specificity. It provides an

aggregate measure of the model’s performance across all possible

classification thresholds. It is insensitive to class imbalance and pro-

vides a single scalar value that summarizes the model’s discriminatory

power. These evaluation metrics have been commonly used in various

bioinformatics studies [32, 33].

Sensitivity =
TP

TP + FN
× 100 (1)

Specificity =
TN

TN + FP
× 100 (2)

Accuracy =
TP + TN

TN + TP + FN + FP
× 100 (3)

MCC = (TN × TP) − (FN × FP)√
(FP + TP) (FN + TP) (FP + TN) (FN + TN)

(4)

where TP, TN, FP , and FN stand for true positive, true negative, false

positive, and false negative, respectively.

2.7 Similarity search

The Basic Local Alignment Search Tool (BLAST) is a commonly used

tool for annotating protein and nucleotide sequences [34]. In this

study, we utilized BLAST shortp, which is specifically designed for

peptide sequences, to identify hormonal sequences based on sequence

similarity. To ensure the reliability and accuracy of our methodol-

ogy, we followed established practices used by other researchers

[31, 35]. Specifically, we created the BLAST database using all the

sequences present in the training dataset. During the evaluation of

the training set sequences, we considered the first hit after exclud-

ing self-hits. For the validation set sequences, we used the first hit
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to determine their classification as hormonal or non-hormonal. By

employing BLAST and adopting these annotation procedures, we

aimed to leverage sequence similarity to identify and annotate peptide

hormones accurately. We performed BLAST for a set of e-values,

including 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, and 102,

using the default parameters. The results for BLAST are shown in

Table 3.

2.8 Motif analysis

TheMotif-EmeRging andClasses-Identification (MERCI) tool is utilized

in this study to identifymotifs within the set of peptide sequences [27].

Motif analysis provides valuable information about recurring patterns

observed in peptide hormone sequences. The input for the MERCI

tool is a FASTA file containing the peptide sequences, and the out-

put consists of a collection of recurring sequence patterns known as

motifs, along with their respective positions of occurrence within the

sequences. In this particular study, we focused on identifying motifs

that exclusively appear in hormonal and non-hormonal sequences. By

analyzing these motifs, we can gain insights into unique sequence pat-

terns associated with each class of peptides. By employing the MERCI

tool and examining the identified motifs, we aim to uncover important

information about thedistinctive sequence characteristics of hormonal

and non-hormonal peptides.

2.9 Ensemble approach

We combined three different techniques to calculate the score: (i)

BLAST search, (ii) MERCI motifs, and (iii) Machine learning models.

First, BLAST was used to categorize the protein sequence with an

E-value of 10−1. We gave the positive predictions (peptide hormones)

a score of “+0.5,” the negative predictions (non-hormone peptides)

a score of “−0.5,” and no hits a score of “0.” Second, MERCI was

used to categorize the same peptide sequence. When the hormonal

motifs were discovered, we gave them a score of “+0.5,” and when

they were not, we gave them a score of “0.” Third, ML techniques

were used to classify hormonal and non-hormonal peptides, where

we obtain a set of prediction probabilities for each class that varies

between 0 to 1, which are obtained using the predict_proba() function

in Python. We added the scores obtained from MERCI and BLAST to

the prediction probabilities obtained by ML model prediction. The

scoring system is explained in detail in Equations (5) and (6). In the

hybrid technique, the total score was computed by combining the

results of all three approaches. The peptide sequence is classified

as hormonal or non-hormonal on the overall hybrid score (M’’) as

defined in Equation (6). The overall hybrid score varies from the range

of−1 to 2.

M′ =
⎧⎪⎨⎪⎩

M + 0.5 If BLAST hit is against hormonal sequence

M − 0.5 If BLAST hit is against non − hormonal sequence

M If no BLAST hit is found

(5)

Here, M = prediction probability score obtained from ML-based

approach and M′ = score obtained after adding scores from

BLAST-based approach.

M′′ =
⎧⎪⎨⎪⎩

M′ + 0.5 If hormonal motif present

M′ − 0.5 If non − hormonal motifpresent

M′ If no motif is found

(6)

Here,M′′ = final score obtained from the ML-based approach, BLAST-

based approach, andmotif-based approach ranging from−1 to 2.

3 RESULTS

3.1 Analysis of amino acid composition

In our study, we conducted an AAC analysis to investigate the dif-

ferences between hormonal and non-hormonal peptides. Figure 3

illustrates the AAC of peptide hormones and non-hormonal peptides,

along with the corresponding p-values for each amino acid. The com-

positional differences between the two classes are evident from the

figure. To statistically compare the AAC values of the two groups,

namely hormonal peptides and non-hormonal peptides, we performed

a two-sided Mann–Whitney U test. This test allows us to determine

if there are significant differences between the groups. Our analysis

revealed that the composition of certain amino acids was significantly

higher in hormonal peptide sequences, including phenylalanine and

proline (p-values< 0.05). On the other hand, the composition of amino

acids such as glutamic acid, isoleucine, lysine, leucine, methionine,

glutamine, threonine, and valine was found to be significantly lower

in hormonal peptide sequences compared to non-hormonal peptide

sequences (p-values < 0.05). These findings indicate that the rela-

tive abundance of specific amino acids differs between hormonal and

non-hormonal peptides, potentially contributing to their functional

distinctions.

3.2 Machine learning-based models

First, we computed a variety of features using the Pfeature software

and removed the unnecessary features using the RFE feature selection

methodology, as mentioned in the Materials and Methods section. For

comparison purposes, we developed multiple models based on the

top 30 and top 50 features in the dataset and assessed them on the

training and validation datasets. All the machine learning methods

were used on the datasets with AAC, top 30, and top 50 features to

create peptide hormone prediction models. Hyperparameter tun-

ing was used to optimize parameters using a grid-search algorithm

on the sci-kit Learn [36]. Grid search is used to find the optimal

hyperparameters for the machine learning methods from a set of

hyperparameter values to explore [37]. Grid search is then performed

on the cross-validation fold of the model. Cross-validation involves

splitting the training data into multiple subsets (folds), training the
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F IGURE 3 Amino acid composition analysis for peptide hormones and non-hormone peptides.

model on some folds, and evaluating it on the remaining fold. This pro-

cess is repeated multiple times, with different folds used for training

and evaluation each time. For each combination of hyperparameters,

grid search calculates the performance metric (e.g., accuracy) based

on the average performance across all cross-validation folds. Once

all combinations have been evaluated, the grid search selects the

combination of hyperparameters that results in the best performance

metric. This combination is typically chosen based on maximizing

accuracy or minimizing error on a validation set. We specified all

possible values for each parameter for the grid search algorithm.

The best model—Logistic regression (C = 1.623776739188721,

class_weight = ‘balanced’, solver = ‘liblinear’) was employed in both

the web server and standalone software. The hyperparameters for

other ML models are given in Supplementary Table S3. This model

was chosen due to its high performance and robustness. It gave a

standard deviation of 0.01494, a standard error of 0.00668, and an

average AUC of 0.94 for five folds in the training dataset. It also per-

formed well on the test (independent validation) dataset with an AUC

of 0.93.

The set of top 50 features that performed best was chosen as

the final features in our prediction model, as evidenced by the

results—LR (training: 0.94 AUROC and validation: 0.93 AUROC)

is the best model, followed by RF (training: 0.91 AUROC and

validation: 0.90 AUROC). The performance of various models

employed on AAC, top 30, and top 50 features are demonstrated

in Figure 4, and detailed information is given in Table 1. The

parameters for best performing (50 features) models are given in

Table S2.

3.3 Performance of deep learning techniques

3.3.1 TextCNN

TextCNN is a deep learningmethod to perform text classification tasks

[26]. We divided the sequences into the words of length = 3 and used

them to build our deep learning model. This model was able to achieve

an AUROC of 0.98 on the training dataset. However, it was not able to

performwell on the testingdataset, giving anAUROCof0.90. TheMCC

was also seen to decrease from 0.88 in the training dataset to 0.67 in

the testing dataset.

3.3.2 TabNet

TabNet is a deep learningmethod that uses tabular data as input and is

trained using gradient-descent-based optimization [25]. The 9149 fea-

tures generated from the Pfeature were passed as features through

the TabNet model to get the train AUROC as 0.81 and the valida-

tion AUROC as 0.75 with an MCC of 0.61 for the training dataset and

0.57 for the validation dataset. The performances of the deep learning

models TextCNN and TabNet are summarized in Table 2.

3.4 Motif performance

Themotifs exclusively seen in peptide hormones havebeen foundusing

the MERCI software. The list of motifs found in hormone peptides is
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F IGURE 4 Comparison of performance forMLmodels developed on amino acid composition, top 30 features, and top 50 features on the basis
of (A) sensitivity, (B) specificity, (C) accuracy, (D) AUC, and (E)MCC (here tr, training set; val, validation set).

mentioned in Table 3. A total of 12 motifs have been identified in hor-

mones with a coverage of 59 hormone sequences. It was observed that

amino acids like phenylalanine (F), glycine (G), leucine (L), proline (P),

arginine (R), tryptophan (W), andmethionine (M), Cysteine (C), andSer-

ine (S), are the most recurring amino acids in the motifs of hormonal

peptide sequences.

3.5 Performance of BLAST

In this study, we performed a BLAST search to identify hormonal

sequences based on the similarity between the two sequences. To

perform this algorithm, we used BLAST shortp, which is used for the

small protein sequences, that is, peptides. We used the standard top-

hit approach on various e-values. The results of BLAST for e-values

varying from 10−6 to 102 are explained in Table 4.

3.6 Ensemble or hybrid approach

In the end, various strategies were combined to get around the

shortcomings of distinct approaches. These methods were created to

more accurately detect the peptide hormones. This combines BLAST

and motif-based methods with machine learning models. At first,

peptides were categorized using the motif-search method followed

by BLAST at various e-values. Not all peptides were categorized
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TABLE 1 The performance of machine learning-basedmodels developed for amino acid composition, with the top 30 and top 50 features
selected using RFE.

Machine learningmethods

Amino acid composition (AAC)

Model

Training Validation

Sens (%) Spec (%) Acc (%) AUROC MCC Sens (%) Spec (%) Acc (%) AUROC MCC

RF 80.79 80.34 80.56 0.89 0.61 79.31 84.03 81.70 0.89 0.63

LR 72.19 73.08 72.63 0.81 0.45 74.57 70.17 72.34 0.80 0.45

XGB 80.68 80.23 80.46 0.88 0.61 77.59 81.93 79.79 0.87 0.60

KNN 62.10 63.25 62.67 0.68 0.25 71.12 63.02 67.02 0.72 0.34

GNB 71.231 70.62 70.93 0.79 0.42 75.43 71.43 73.40 0.79 0.47

DT 66.67 67.20 66.93 0.72 0.34 60.78 66.39 63.62 0.70 0.27

SVC 74.10 72.33 73.22 0.81 0.46 76.72 68.49 72.55 0.79 0.45

Top 30 features

Model

Training Validation

Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC

RF 80.68 80.77 80.72 0.90 0.61 77.59 83.61 80.64 0.88 0.61

LR 85.99 86.11 86.05 0.92 0.72 84.05 83.61 83.83 0.90 0.68

XGB 81.10 81.52 81.31 0.90 0.63 80.17 80.25 80.21 0.89 0.60

KNN 77.81 76.60 77.21 0.86 0.54 76.72 76.47 76.60 0.84 0.53

GNB 65.39 66.45 65.92 0.74 0.32 78.45 56.30 67.23 0.75 0.36

Top 50 features

Model

Training Validation

Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC

RF 84.29 84.08 84.18 0.91 0.68 80.17 84.03 82.13 0.90 0.64

LR 87.05 87.40 87.22 0.94 0.74 85.34 86.55 85.96 0.93 0.72

XGB 84.18 84.29 84.24 0.92 0.68 77.59 84.45 81.06 0.90 0.62

KNN 56.37 46.79 51.60 0.52 0.03 57.33 47.90 52.55 0.56 0.05

GNB 24.52 95.94 60.12 0.76 0.29 22.84 97.06 60.43 0.83 0.30

DT 72.72 72.11 72.42 0.78 0.45 72.41 73.95 73.19 0.79 0.46

TABLE 2 The performance of deep learning (DL) models (TextCNN and TabNet).

Deep LearningMethods

Model

Training Validation

Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC

Text CNN 96.00 93.00 94.00 0.98 0.88 87.00 79.00 83.00 0.90 0.67

TabNet 79.00 80.00 8.00 0.81 0.61 73.00 75.00 74.00 0.75 0.57

using these methods. Hence ML approach was also used in combina-

tion. The coverage and precision were much improved by the hybrid

approach,whichwas not possiblewhenusing each of these approaches

separately.

Firstly, we combined the motif-search approach with ML models

to boost the performance of the classification model. The best-

performing algorithm—Logistic Regression (LR) achieves an AUROC of

0.94, which was increased from an AUC of 0.93 on the validation set

whenonlyMLwas applied. In addition, after addingmotif search toML,

theMCCwas increased from 0.72 to 0.74 for the validation set.

Secondly, we combined both BLAST for e-value = 10−1 and motif-

search with the ML model to boost the performance of our clas-

sification model. The ML model, when combined with BLAST at

e-value = 10−1, gave the best results for all ML algorithms compared

to other e-values. The performance of the LR-based model increased

from 0.94 to 0.96 on the validation dataset for the performance when
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TABLE 3 List of motifs and their frequency hormone peptides.

Motifs in

hormone

sequences

No of

hormone

sequences

Motifs in

hormone

sequences

No of

hormone

sequences

FG P R 32 L CG S 27

WFGP 32 MWF 25

WFGPR 32 MWFG 25

FG P R L 30 MWFGP 25

G P R L 30 MWFGPR 25

WFGPR L 30 MWFGPR L 25

we combined BLAST with the previous model (ML + Motif-search

+BLAST). The combined performance for both hybrid approaches (ML

+ Motif-search) and (ML + Motif-search + BLAST) is displayed in

Table 5, and the AUROC plots comparing only the ML model and our

best performing hybrid model (ML+Motif-search+ BLAST) is given in

Figure 5.

3.7 Webserver and standalone software

The web server that we created for HOPPred (https://webs.iiitd.

edu.in/raghava/hoppred/) can distinguish between peptide hormones

and non-hormone peptides. The front end and back end of the web

server were created using HTML5, Java, CSS3, and PHP scripts. All

of the most recent gadgets, including smartphones, tablets, iMacs,

and desktop PCs, are all compatible with this web server. Predict,

design, and peptide design modules are the primary modules on

HOPPred.

4 DISCUSSIONS

Over the past few decades, peptide therapeutics have attracted much

attention. The rise in publications and the creation of in silico tools

and databases are evidence of this. Several peptide-based medica-

tions have previously received FDA approval due to their benefits

over conventional small molecule-based medications. Peptide hor-

mones have demonstrated promising results in replacement therapies

since the very beginning [3]. There is a need for in-silico techniques

that can predict peptide hormones with high confidence because the

identification and screening of putative peptide hormones as drugs

in the wet lab is a time-consuming, expensive, and labor-intensive

operation.

We created a novel model for the current study using 1174 peptide

hormones and 1174 non-hormone peptides for the prediction of

peptide hormones. We have used multiple approaches to classify

hormonal and non-hormonal peptides—a) motif-search, b) BLAST

search, c) Machine Learning models, d) Deep Learning models, and e)

hybrid models. In motif search, we found motifs that were exclusively

present in hormonal sequences. However, this approach only covered

59 hormonal sequences in total. It was found that phenylalanine

(F), glycine (G), leucine (L), proline (P), arginine (R), tryptophan (W),

Cysteine (C), Serine (S), and methionine (M) amino acids recurred

in the most of the motifs found in hormonal sequences. We identi-

fied motifs like—LCGS, and MWFGPRL with various variations, for

example,—FGPR, WFGP, WFGPR, etc., present in about 59 hormonal

peptide sequences. LCGS is also one of the knownmotif found in chain

B of Insulin, a well-known peptide hormone. In BLAST-search, we

used the top-hit method on various e-values ranging from 10−6 to

102. Similar to the motif approach, BLAST was not able to cover all

sequences.

Despite being powerful techniques, MERCI and BLAST have some

limitations. Merci might struggle with detecting complex motifs that

vary significantly from the canonical forms or are hidden within highly

variable regions of the sequences. Similarly, high background noise

in the sequence data can obscure motif signals [38]. High sequence

similarity does not always correlate with similar functions, espe-

cially for sequences that have undergone neofunctionalization. BLAST

may identify sequences as similar without acknowledging functional

divergence. BLAST’s effectiveness is contingent upon the sequences

available in the database. Novel or poorly represented sequences

may not be identified, limiting coverage. BLAST might struggle with

extremely short sequences or those that have diverged significantly

from any database sequence, resulting in incomplete or inaccurate

alignments.

Therefore, in addition to BLAST and MERCI, we extracted 9149

compositional features using Pfeature software and selected the top-

performing features to develop ourmodel.We used an array ofML and

DL models to classify hormonal and non-hormonal peptides, namely—

RF,DT, KNN,GNB, LR, XGB, TextCNN, andTabNet. Each of these brings

a unique set of advantages and capabilities to the analysis of pep-

tide sequences. RF is an ensemble method that is great for handling

the complexity that might arise from the diverse and high-dimensional

space of peptide sequences. DTs offer interpretability, which is valu-

able in a biological context where understanding the decision process

can provide insights into which features (amino acids or motifs) are

most important for classification. Although they are prone to overfit-

ting, they serve as a good baseline and can be used as a part of RFs.

KNN is a non-parametric method that makes no assumptions about

the underlying data distribution [39]. It is intuitive and can be partic-

ularly useful when the classification decision is based on the similarity

of sequencepatterns,which is often the casewith peptides.GNBworks

on the assumption of feature independence and can be quite effective

when the number of features (amino acids in the peptide sequence)

is large, which is often the case in bioinformatics [23]. LR is a sim-

ple and fast method providing probabilistic results, which is useful for

binary classification tasks like hormonal versus non-hormonal peptide

classification [21]. XGB is a gradient-boosting framework known for

its performance and speed [25, 40]. It can handle a variety of data

structures and distributions, which makes it suitable for the complex

patterns in peptide sequences. Its regularization component helps to

prevent overfitting, making it robust for biological data. TabNet, a deep

learning-basedmodel designed for tabular data, leverages the sequen-
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TABLE 4 BLAST-based search results for training and validation dataset (here,Whits, wrong hits; Chits, correct hits; Nhits, no hits).

e-values

Training Validation

Hormonal Non-hormonal Hormonal Non-hormonal

Chits Whits Nhits Chits Whits Nhits Chits Whits Nhits Chits Whits Nhits

10−6 269

(14.32%)

0 (0.00%) 673

(35.84%)

0 (0.00%) 0 (0.00%) 936

(49.84%)

65

(13.83%)

0 (0.00%) 167

(35.53%)

0 (0.00%) 0 (0.00%) 238

(50.64%)

10−5 302

(16.08%)

0 (0.00%) 640

(34.08%)

4 (0.21%) 0 (0.00%) 932

(49.63%)

78

(16.60%)

0 (0.00%) 154

(32.77%)

0 (0.00%) 0 (0.00%) 238

(50.64%)

10−4 350

(18.64%)

0 (0.00%) 592

(31.52%)

4 (0.21%) 0 (0.00%) 932

(49.63%)

90

(19.15%)

0 (0.00%) 142

(30.21%)

0 (0.00%) 0 (0.00%) 238

(50.64%)

10−3 427

(22.74%)

0 (0.00%) 515

(27.42%)

8 (0.43%) 0 (0.00%) 928

(49.41%)

107

(22.77%)

0 (0.00%) 125

(26.60%)

0 (0.00%) 0 (0.00%) 238

(50.64%)

10−2 527

(28.06%)

0 (0.00%) 415

(22.1%)

8 (0.43%) 0 (0.00%) 928

(49.41%)

126

(26.81%)

0 (0.00%) 106

(22.55%)

2 (0.43%) 0 (0.00%) 236

(50.21%)

10−1 628

(33.44%)

1 (0.05%) 313

(16.67%)

8 (0.43%) 1 (0.05%) 927

(49.36%)

144

(30.64%)

0 (0.00%) 88

(18.72%)

2 (0.43%) 0 (0.00%) 236

(50.21%)

1 705

(37.54%)

3 (0.16%) 234

(12.46%)

21 (1.12%) 10 (0.53%) 905

(48.19%)

163

(34.68%)

4 (0.85%) 65

(13.83%)

10 (2.13%) 2 (0.43%) 226

(48.09%)

101 766

(40.79%)

40 (2.13%) 136

(7.24%)

165

(8.79%)

114

(6.07%)

657

(34.98%)

180

(38.3%)

19 (4.04%) 33 (7.02%) 51

(10.85%)

34 (7.23%) 153

(32.55%)

102 754

(40.05%)

179

(9.53%)

9 (0.48%) 520

(27.69%)

374

(19.91%)

42 (2.24%) 176

(37.45%)

55

(11.70%)

1 (0.21%) 140

(29.79%)

89

(18.94%)

9 (1.91%)

TABLE 5 The performance of ensemblemethod that combineML-basedmodels, Motif-search and BLAST (e-value= 10−1) based similarity.

ML+Motif-search

Model

Training Validation

Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC

RF 84.5 83.55 84.03 0.92 0.68 81.03 86.13 83.62 0.92 0.67

LR 87.90 87.93 87.91 0.95 0.76 86.64 87.39 87.02 0.94 0.74

XGB 85.03 84.51 84.77 0.92 0.70 80.17 85.29 82.77 0.91 0.66

KNN 58.39 52.46 55.43 0.59 0.11 58.19 57.56 57.87 0.67 0.16

GNB 26.86 96.05 61.34 0.78 0.32 25.43 97.9 62.13 0.85 0.34

DT 73.78 73.82 73.8 0.80 0.48 64.22 75.21 69.79 0.76 0.40

ML+Motif-search+BLAST

Model

Training Validation

Sens (%) Spec (%) Acc (%) AUC MCC Sens (%) Spec (%) Acc (%) AUC MCC

RF 88.96 85.90 87.43 0.95 0.75 86.21 88.66 87.45 0.95 0.75

LR 91.19 90.38 90.79 0.97 0.82 90.09 89.5 89.79 0.96 0.80

XGB 88.96 87.71 88.71 0.96 0.77 85.34 87.82 86.6 0.95 0.73

KNN 77.18 72.54 73.87 0.85 0.50 74.14 75.63 74.89 0.86 0.50

GNB 69.43 96.26 82.80 0.90 0.68 64.66 97.9 81.49 0.91 0.67

DT 81.95 79.70 80.83 0.89 0.62 77.16 76.89 77.02 0.86 0.54

tial attention mechanism to choose which features to reason from at

each decision step [25]. It was particularly useful for our big set of 9149

features. TextCNN applies convolutional neural networks to text clas-

sification, treating peptide sequences as a kind of language [26]. This

model can capture local patterns (motifs)within thepeptide sequences,

and due to the weight sharing of convolutional layers, it can efficiently

process variable-length sequences.

The ML model alone was able to achieve an AUROC of 0.89, 0.90,

and 0.93 for independent validation set on AAC, top 30 features and

top 50 features, respectively. For DL models—TextCNN and TabNet,
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the performance of AUROC were 0.90 and 0.75, respectively, for

the independent validation set, as it was observed that the top 50

features were giving the best performance on logistic regression (ML

model). The top 50 compositional features included features like AAC,

dipeptide composition (DPC), tripeptide composition (TPC), physic-

ochemical properties (PCP), distance distribution (DDR), Shannon

entropy (SEP), conjoint triad descriptors (CTC), composition enhanced

transition and distribution (CeTD), and quasi-sequence order (QSO).

These top 50 features also align with themotifs identified in this study.

The motifs identified includeWFGPRL, WFGP, FGPRL, LCGS, etc., and

some of the top features include—DPC1_CF (Dipeptide composition

of Cysteine-Phenylalanine), TPC_FRP (Tripeptide Composition of

Phenylalanine, Arginine, Proline), TPC_GNF (Tripeptide Composition

of Glycine, Asparagine, Phenylalanine), TPC_LMG (Tripeptide Com-

position of Leucine, Methionine, Glycine), and TPC_RGL (Tripeptide

Composition of Arginine, Glycine, Leucine). The Motif ‘WFGP’ shares

‘F’ and ‘P’ with TPC_FRP, indicating the potential importance of these

residues.‘G’ and ‘P’ are also present in the motifs ‘FGPRL’, ‘WFGPR’,

and ‘GPR’, which suggests that these amino acids are key components

in the hormone function, supported by their presence in the tripeptide

composition features like TPC_GNF. TPC_RGL has ‘R’, ‘G’, and ‘L’, which

are present in the ‘FGPRL’ motif. This can indicate the significance of

Arginine (R) and Glycine (G) in the structure or function of these hor-

mones, as these residues also appear in themotifs with high frequency.

Phenylalanine (F) and Proline (P) are found inmultiplemotifs, and their

involvement in dipeptide and tripeptide features suggests they might

play a critical role in hormone activity or stability. Arginine (R), seen

in TPC_FRP and TPC_RGL and also part of the ‘WFGPR’ motif, could

indicate a role in binding or molecular interaction given its positive

charge. There’s a recurring pattern of ‘W’, ‘F’, ‘G’, ‘P’, and ‘R’ in both

motifs and top features. This suggests these motifs could be involved

in critical interactions or structural configurations necessary for the

peptides’ hormonal activity. DDR_C (Distance distribution of Cysteine)

might be relevant for motifs with ‘C’, as the spatial distribution of

Cysteine can be crucial for disulfide bond formation, influencing

the three-dimensional structure of peptide hormones. Features like

dipeptide and tripeptide compositions reflect the frequency of spe-

cific amino acid pairings and triplets, which have been determined

to be significant through machine learning techniques. Shannon

entropy and distance distribution features provide insight into the

variability and spatial arrangement of these amino acids within the

hormones.

We decided to combine the best-performing ML model with other

approaches used in the study and called it a hybrid model. Firstly,

we combined the ML model with motif search, which achieved an

AUROC of 0.94 on the validation set. Secondly, we merged our best

ML model with both motif-search and BLAST-search (e-value = 10−1),

which achieved the highest AUROC of 0.96 with an accuracy of

89.70%, specificity of 90.09% and sensitivity of 89.50%. In addition,

we performed AAC analysis on the sequences to identify which

amino acids are more or less likely to be found in hormones. It was

observed that cysteine, aspartic acid, phenylalanine, glycine, arginine,

serine, asparagine, proline, and tyrosine were significantly increased

in hormonal peptide sequences, whereas the compositions of amino

acids like glutamic acid, isoleucine, leucine, methionine, glutamine,

lysine, threonine, and valine were significantly decreased in hormonal

peptide sequences than non-hormonal peptide sequences. In the

comparative analysis of AAC between hormonal and non-hormonal

peptides, significant differences might suggest specialized roles for

these residues in hormone function. Statistically heightened levels

of hydrophobic amino acids, such as leucine and valine, in hormonal

peptides could imply an evolutionary adaptation for interactions with

lipid membranes and hydrophobic receptor domains, essential for

hormone signaling pathways [41]. Elevated proportions of charged

residues like lysine and arginine could indicate a propensity for binding

and active sites recognition, reflecting the necessity for precise cellular

interactions [42, 43]. The presence of cysteine, potentially more

abundant in hormonal peptides, can point to the importance of disul-

fide bridges in maintaining structural integrity for hormonal activity

[44]. Aromatic amino acids, if increased, might play a role in receptor

binding through complex interaction mechanisms like π-π stacking,

which could enhance the specificity and strength of hormone-receptor

interactions [45, 46]. The presence of amino acids like serine (S), thre-

onine (T), and tyrosine (Y), which can be phosphorylated, may suggest

that hormonal peptides could be regulated through post-translational

modifications [47]. These compositional characteristics underscore

the biological implications: hormones are fine-tuned for high-

affinity receptor interactions, possess structural features conducive

to stability and storage, and are primed for regulation via post-

translational modifications. This detailed understanding paves theway

for more focused hypotheses on hormone function and interaction

dynamics.

The study is one of its kind as it tries to classify peptides into

hormonal and non-hormonal, which has not been attempted before.

Moreover, it also identifies unique motifs found in hormonal peptides.

We have employed our best-performing hybrid model, which achieves

an AUROC of 0.96 and is chosen to be put on the web server of HOP-

Pred as it is able to differentiate between hormonal and non-hormonal

peptides accurately and does not take much more time than only the

ML model being applied. We have developed a comprehensive plat-

form that enables users to categorize both hormone and non-hormone

peptide sequences. We have provided the users with a website and

a standalone version for a better user experience. It provides users

with a choice of using the ML model or an ensemble model according

to the user’s needs with no significant difference in the amount of

time taken by the web server in the prediction. The users can either

predict or design novel hormonal peptides and also display various

physicochemical properties like charge, hydrophobicity, hydrophilicity,

molecular weight, steric hindrance, etc. We believe our research will

also be helpful for a variety of areas of biological research, like the

development of peptide-based treatments, synthetically designing

a novel peptide with hormonal activity, development of growth

enhancers or inhibitors for agricultural biotechnology, and more. The

server can be accessed at https://webs.iiitd.edu.in/raghava/hoppred/,

with the codes available on Github: https://github.com/raghavagps/

HOPPRED.
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F IGURE 5 AUC plots for (A) training set in theMLmodel, (B) validation set in theMLmodel, (C) training set in the hybrid model (ML+
Motif-search+BLAST), and (D) validation set in the hybrid model (ML+Motif-search+BLAST).

5 LIMITATIONS

We acknowledge potential biases arising from random negative data

selection and the inherent assumptions of our computational model. In

addition, when we develop models on AAC, the model assumes a

direct correlation between amino acid frequency and peptide function,

which simplifies the complex nature of peptide bioactivity. Further-

more, post-translational modifications, crucial in modulating peptide

functions, were not accounted for in this study. Hence, experimental

validation can add value to the computational predictions made by our

model.

AUTHOR CONTRIBUTIONS

Dashleen Kaur and Akanksha Arora collected and processed the data.

Dashleen Kaur, Palani Vigneshwar, and Akanksha Arora implemented

the algorithms.DashleenKaur, Palani Vigneshwar, andAkankshaArora

developed the prediction models. Dashleen Kaur and Akanksha Arora

developed the front end and back end of the web server. Dash-

leen Kaur, Akanksha Arora, and Gajendra P.S. Raghava prepared the

manuscript. Gajendra P.S. Raghava conceived and coordinated the

project. All authors have read and approved the final manuscript.

ACKNOWLEDGMENTS

The authors are thankful to the Council of Scientific and Industrial

Research (CSIR) and the All India Council for Technical Education

for providing fellowships and financial support. The authors are also

thankful to the Department of Computational Biology, IIITD, New

Delhi for its infrastructure and facilities. We thank the Department

of Biotechnology (DBT) for providing an infrastructure grant to the

institute (Grant BT/PR40158/BTIS/137/24/2021). We would like to

acknowledge that figures were created using BioRender, and English

was corrected using Grammarly.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

All the datasets generated in this study are available at https://webs.

iiitd.edu.in/raghava/hoppred/dataset.php. The codes are available at—

https://github.com/raghavagps/HOPPRED.

BIORXIV LINK

https://www.biorxiv.org/content/10.1101/2023.05.15.540764v1

 16159861, 2024, 20, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400004 by L
ibrary &

 Inform
ation C

entre Indraprastha Institute O
f, W

iley O
nline L

ibrary on [18/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://webs.iiitd.edu.in/raghava/hoppred/dataset.php
https://webs.iiitd.edu.in/raghava/hoppred/dataset.php
https://github.com/raghavagps/HOPPRED
https://www.biorxiv.org/content/10.1101/2023.05.15.540764v1


14 of 15

ORCID

GajendraP. S. Raghava https://orcid.org/0000-0002-8902-2876

REFERENCES

1. Kołodziejski, P. A., Pruszyńska-Oszmałek, E., Wojciechowicz, T.,

Sassek, M., Leciejewska, N., Jasaszwili, M., Billert, M., Małek, E.,
Szczepankiewicz, D., Misiewicz-Mielnik, M., Hertig, I., Nogowski, L.,

Nowak, K. W., Strowski, M. Z., & Skrzypski, M. (2021). The Role of

peptide hormones discovered in the 21st century in the regulation of

adipose tissue functions.Genes (Basel), 12, 756.
2. Thakur, S. S. (2021). Proteomics and its application in endocrine dis-

orders. Biochimica et Biophysica Acta-Proteins and Proteomics, 1869,
140701.

3. Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang,

X., Wang, R., & Fu, C. (2022). Therapeutic peptides: Current applica-

tions and future directions. Signal Transduction and Targeted Therapy, 7,
48.

4. Lau, J. L., & Dunn, M. K. (2018). Therapeutic peptides: Histori-

cal perspectives, current development trends, and future directions.

Bioorganic &Medicinal Chemistry, 26, 2700–2707.
5. Yan, K., Lv, H., Guo, Y., Chen, Y.,Wu, H., & Liu, B. (2022). TPpred-ATMV:

Therapeutic peptide prediction by adaptivemulti-view tensor learning

model. Bioinformatics, 38, 2712–2718.
6. Shoombuatong, W., Schaduangrat, N., Pratiwi, R., & Nantasenamat,

C. (2019). THPep: A machine learning-based approach for predict-

ing tumor homing peptides. Computational Biology and Chemistry, 80,
441–451.

7. Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., & Raghava, G. P.

S. (2021). AntiCP 2.0: An updated model for predicting anticancer

peptides. Briefings in Bioinformatics, 22(3), bbaa153.
8. Yan, W., Tang, W., Wang, L., Bin, Y., & Xia, J. (2022). PrMFTP:

Multi-functional therapeutic peptides prediction based on multi-head

self-attention mechanism and class weight optimization. Plos Compu-
tational Biology, 18, e1010511.

9. Kaur, D., Arora, A., Patiyal, S., & Raghava, G. P. S. (2023). Hmrbase2: a

comprehensive database of hormones and their receptors. Hormones
(Athens), 22(3), 359–366.

10. Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated

for clustering the next-generation sequencing data. Bioinformatics, 28,
3150–3152.

11. Deutsch, E. W., Lam, H., & Aebersold, R. (2008). PeptideAtlas: A

resource for target selection for emerging targeted proteomics

workflows. European Molecular Biology Organization Reports, 9, 429–
434.

12. Pande, A., Patiyal, S., Lathwal, A., Arora, C., Kaur, D., Dhall, A., Mishra,

G., Kaur, H., Sharma, N., Jain, S., Usmani, S. S., Agrawal, P., Kumar, R.,

Kumar, V., & Raghava, G. P. S. (2023). Pfeature: A tool for computing

wide range of protein features and building prediction models. Journal
of Computational Biology, 30, 204–222.

13. Ren, K., Zeng, Y., Cao, Z., & Zhang, Y. (2022). ID-RDRL: A deep rein-

forcement learning-based feature selection intrusiondetectionmodel.

Scientific Reports, 12, 15370.
14. Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O’Sullivan, J. M.

(2022). A review of feature selection methods for machine learning-

based disease risk prediction. Frontiers in Bioinformatics, 2, 927312.
15. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer

NewYork.

16. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A.,

Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine

learning for neuroimaging with scikit-learn. Front Neuroinform, 8, 14.
17. DiNoto, T., von Spiczak, J.,Mannil,M., Gantert, E., Soda, P.,Manka, R., &

Alkadhi, H. (2019). Radiomics for distinguishing myocardial infarction

frommyocarditis at late gadoliniumenhancement atMRI: Comparison

with subjective visual analysis.Radiol Cardiothorac Imaging,1, e180026.

18. Arora, A., Patiyal, S., Sharma, N., Devi, N. L., Kaur, D., & Raghava, G. P. S.

(2024). A random forest model for predicting exosomal proteins using

evolutionary information andmotifs. Proteomics, 24, e2300231.
19. Flayer, C. H., Perner, C., & Sokol, C. L. (2021). A decision tree model

for neuroimmune guidance of allergic immunity. Immunology and Cell
Biology, 99, 936–948.

20. Yi, Y., Sun, D., Li, P., Kim, T.-K., Xu, T., & Pei, Y. (2022). Unsupervised ran-

dom forest for affinity estimation. Computational Visual Media (Beijing),
8, 257–272.

21. Stoltzfus, J. C. (2011). Logistic regression: A brief primer. Academic
EmergencyMedicine, 18, 1099–1104.

22. Miao, Y., Hunter, A., & Georgilas, I. (2021). An occupancy mapping

method based on K-nearest neighbours. Sensors (Basel), 22(1), 139.
23. Joshi, D., Mishra, A., & Anand, S. (2012). A naïve Gaussian Bayes classi-

fier for detectionofmental activity in gait signature.ComputerMethods
in Biomechanics and Biomedical Engineering, 15, 411–416.

24. Hou, N., Li, M., He, L., Xie, B., Wang, L., Zhang, R., Yu, Y., Sun, X., Pan, Z.,

&Wang,K. (2020). Predicting30-daysmortality forMIMIC-III patients

with sepsis-3: A machine learning approach using XGboost. Journal of
Translational Medicine, 18, 462.

25. Arık, S. Ö., & Pfister, T. (2021). TabNet: Attentive Interpretable Tabular

Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35,
6679–6687.

26. Kalchbrenner, N., Grefenstette, E., & Blunsom, P., in: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), Association for Computational Linguistics,
Stroudsburg, PA, USA. (2014), pp. 655–665.

27. Rathore, A. S., Arora, A., Choudhury, S., Tijare, P., & Raghava, G. P. S.

(2023). ToxinPred 3.0: An improvedmethod for predicting the toxicity

of peptides. bioRxiv 2023.08.11.552911.
28. Wang, Z., Wu, M., Liu, Q., Wang, X., Yan, C., & Song, T. (2024). Multi-

classification of hepatic cystic echinococcosis by using multiple kernel

learning framework and ultrasound images. Ultrasound in Medicine &
Biology. https://doi.org/10.1016/j.ultrasmedbio.2024.03.018

29. Sharma, N., Naorem, L. D., Jain, S., & Raghava, G. P. S. (2022). Tox-

inPred2: An improved method for predicting toxicity of proteins.

Briefings in Bioinformatics, 23, bbac174.
30. Sharma, N., Patiyal, S., Dhall, A., Pande, A., Arora, C., & Raghava, G. P.

S. (2021). AlgPred 2.0: An improved method for predicting allergenic

proteins and mapping of IgE epitopes. Briefings in Bioinformatics, 22(4),
bbaa294.

31. Aggarwal, S., Dhall, A., Patiyal, S., Choudhury, S., Arora, A., & Raghava,

G. P. S. (2023). An ensemble method for prediction of phage-based

therapy against bacterial infections. Frontiers in Microbiology, 14,
1148579.

32. Le, N. Q. K., Li, W., & Cao, Y. (2023). Sequence-based prediction model

of protein crystallization propensity using machine learning and two-

level feature selection. Briefings in Bioinformatics, 24(5), bbad319.
33. Kha, Q.-H., Ho, Q.-T., & Le, N. Q. K. (2022). Identifying SNARE proteins

using an alignment-free method based on multiscan convolutional

neural network and PSSM profiles. Journal of Chemical Information and
Modeling, 62, 4820–4826.

34. Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma,

N.,Madden, T. L.,Matten,W. T.,McGinnis, S.D.,Merezhuk, Y., Raytselis,

Y., Sayers, E. W., Tao, T., Ye, J., & Zaretskaya, I. (2013). BLAST: A more

efficient report with usability improvements. Nucleic Acids Research,
41, W29–W33.

35. Arora, A., Patiyal, S., Sharma, N., Devi, N. L., Kaur, D., & Raghava,

G. P. S. (2024). A random forest model for predicting exosomal

proteins using evolutionary information and motifs. Proteomics, 24(6),
e2300231.

36. Agrawal, T. (2021).Hyperparameter optimization inmachine learning (pp.
31–51) Apress.

37. Belete, D.M., &Huchaiah,M.D. (2022). Grid search in hyperparameter

optimization of machine learning models for prediction of HIV/AIDS

 16159861, 2024, 20, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400004 by L
ibrary &

 Inform
ation C

entre Indraprastha Institute O
f, W

iley O
nline L

ibrary on [18/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-8902-2876
https://orcid.org/0000-0002-8902-2876
https://doi.org/10.1016/j.ultrasmedbio.2024.03.018


15 of 15

test results. International Journal of Computers and Applications, 44,
875–886.

38. Vens, C., Rosso, M.-N., & Danchin, E. G. J. (2011). Identifying discrimi-

native classification-basedmotifs in biological sequences. Bioinformat-
ics, 27, 1231–1238.

39. Wu, Y., Ianakiev, K., & Govindaraju, V. (2002). Improved k-nearest

neighbor classification. Pattern Recognition, 2311–2318.
40. Chen, T., &Guestrin, C. Proceedings of theACMSIGKDD International

Conference on Knowledge Discovery andDataMining. (2016).

41. Al Mughram, M. H., Catalano, C., Herrington, N. B., Safo, M. K., &

Kellogg, G. E. (2023). 3D interaction homology: The hydrophobic

residues alanine, isoleucine, leucine, proline and valine play differ-

ent structural roles in soluble and membrane proteins. Frontiers in
Molecular Biosciences, 10, 1116868.

42. Vidya, J., Ushasree, M. V., & Pandey, A. (2014). Effect of surface charge

alteration on stability of L-asparaginase II from Escherichia sp. Enzyme
andMicrobial Technology, 56, 15–19.

43. Strickler, S. S., Gribenko, A. V., Gribenko, A. V., Keiffer, T. R., Tomlinson,

J., Reihle, T., Loladze, V. V., & Makhatadze, G. I. (2006). Protein stabil-

ity and surface electrostatics: A charged relationship.Biochemistry,45,
2761–2766.

44. Wiedemann, C., Kumar, A., Lang, A., & Ohlenschläger, O. (2020). Cys-

teines and disulfide bonds as structure-forming units: Insights from

different domains of life and the potential for characterization by

NMR. Frontiers in Chemistry, 8, 280.
45. Meyer, E. A., Castellano, R. K., & Diederich, F. (2003). Inter-

actions with aromatic rings in chemical and biological recogni-

tion. Angewandte Chemie (International ed in English), 42, 1210–

1250.

46. Shao, J., Kuiper, B. P., Thunnissen, A.-M. W. H., Cool, R. H., Zhou, L.,

Huang, C., Dijkstra, B. W., & Broos, J. (2022). The role of tryptophan

in π interactions in proteins: An experimental approach. Journal of the
American Chemical Society, 144, 13815–13822.

47. Santos, A. L., & Lindner, A. B. (2017). Protein posttranslational modifi-

cations: Roles in aging and age-related disease.Oxidative Medicine and
Cellular Longevity, 2017, 5716409.

SUPPORTING INFORMATION

Additional supporting information may be found online

https://doi.org/10.1002/pmic.202400004 in the Supporting

Information section at the end of the article.

How to cite this article: Kaur, D., Arora, A., Vigneshwar, P., &

Raghava, G. P. S. (2024). Prediction of peptide hormones using

an ensemble of machine learning and similarity-based

methods. Proteomics, 24, e2400004.

https://doi.org/10.1002/pmic.202400004

 16159861, 2024, 20, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202400004 by L
ibrary &

 Inform
ation C

entre Indraprastha Institute O
f, W

iley O
nline L

ibrary on [18/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/pmic.202400004
https://doi.org/10.1002/pmic.202400004

	Prediction of peptide hormones using an ensemble of machine learning and similarity-based methods
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Dataset compilation and preprocessing
	2.2 | Feature generation and selection
	2.3 | Machine learning techniques
	2.4 | Deep learning techniques
	2.4.1 | Tabnet
	2.4.2 | TextCNN

	2.5 | Five-fold cross-validation
	2.6 | Evaluation of parameters
	2.7 | Similarity search
	2.8 | Motif analysis
	2.9 | Ensemble approach

	3 | RESULTS
	3.1 | Analysis of amino acid composition
	3.2 | Machine learning-based models
	3.3 | Performance of deep learning techniques
	3.3.1 | TextCNN
	3.3.2 | TabNet

	3.4 | Motif performance
	3.5 | Performance of BLAST
	3.6 | Ensemble or hybrid approach
	3.7 | Webserver and standalone software

	4 | DISCUSSIONS
	5 | LIMITATIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	BIORXIV LINK
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


