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Abstract

Human leukocyte antigens (HLA) regulate various innate and adaptive immune responses and play a crucial immunomodulatory
role. Recent studies revealed that non-classical HLA-(HLA-E & HLA-G) based immunotherapies have many advantages over traditional
HLA-based immunotherapy, particularly against cancer and COVID-19 infection. In the last two decades, several methods have been
developed to predict the binders of classical HLA alleles. In contrast, limited attempts have been made to develop methods for
predicting non-classical HLA binding peptides, due to the scarcity of sufficient experimental data. Of note, in order to facilitate the
scientific community, we have developed an artificial intelligence–based method for predicting binders of class-Ib HLA alleles. All the
models were trained and tested on experimentally validated data obtained from the recent release of IEDB. The machine learning
models achieved more than 0.98 AUC for HLA-G alleles on validation dataset. Similarly, our models achieved the highest AUC of
0.96 and 0.94 on the validation dataset for HLA-E∗01:01 and HLA-E∗01:03, respectively. We have summarized the models developed
in the past for non-classical HLA and validated the performance with the models developed in this study. Moreover, to facilitate the
community, we have utilized our tool for predicting the potential non-classical HLA binding peptides in the spike protein of different
variants of virus causing COVID-19, including Omicron (B.1.1.529). One of the major challenges in the field of immunotherapy is to
identify the promiscuous binders or antigenic regions that can bind to a large number of HLA alleles. To predict the promiscuous
binders for the non-classical HLA alleles, we developed a web server HLAncPred (https://webs.iiitd.edu.in/raghava/hlancpred) and
standalone package.
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Introduction
Human leukocyte antigens (HLAs) are an essential part of
our immune system and are displayed on the cell surface
for antigen presentation to activate immune responses
[1, 2]. In humans, the major histocompatibility complex,
known as HLA, is the most polymorphic region of the
human genome and located at chromosome 6 (6p21.3) [3,
4]. More than 23 000 class-I and 8600 class-II HLA alleles
have been already reported across the globe in different
ethnic groups according to IMGT/HLA database, 2020
version [5]. HLA class-I genes are further categorized into
two major groups, i.e. classical (HLA-A, -B, -C) and non-
classical (HLA-G, -E, -F) genes. The classical genes present
antigenic peptide ligands on infected cells to CD8+ T
cells and activate the immune response. On the other
side, non-classical class-I alleles moderate the immune
response by inhibiting/activating the natural killer and
CD8+ T cells [6]. HLA alleles protect us from several

diseases by inducing and regulating immune responses
[7–9]. At the same time, adverse effects such as autoim-
mune disorders, cancer development, metastatic pro-
gression and poor prognosis have been shown in various
ethnic groups due to the alteration in the expression of
HLA alleles [10–13].

Recently, several studies report that the non-classical
alleles (HLA-G and HLA-E) play immunomodulatory roles
[9, 14–16] in both innate and adaptive immune system
(Figure 1). Of note, HLA-G possesses four membrane-
bound isoforms and three soluble isoforms; they interact
with immunoglobulin-like transcript (ILT2 and ILT4),
killer cell immunoglobulin-like receptor (KIR2DL4) and
natural killer cell receptors (NKG2A/CD94) [17–19].
Previously, researchers believed that HLA-G alleles are
only identified at the maternal–fetal interface. However,
recent studies reported that the HLA-G expression is
significantly higher during several disease conditions
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Figure 1. Schematic representation of non-classical HLAs (HLA-G and HLA-E) with immunomodulatory functions (inhibition/activation effects) when
interacting with the effective immune cells.

such as cancer, COVID-19 infection, auto-immune
and inflammatory diseases [20–28]. In addition, HLA-
G inhibits immune cell activation, including CD8+ T,
dendritic and natural killer cells during parasite and
viral infections (such as influenza A virus, herpes,
coronavirus) [29–31]. These viral infections lead to
the over-expression of HLA-G and build an immune
tolerance microenvironment. Whereas, HLA-E possesses
low polymorphism and binds to the highly conserved
peptides/epitopes. HLA-E regulates immune cells (nat-
ural killer and cytotoxic T cells) by interacting with
inhibiting receptors (NKG2A/CD94, NKG2B/CD94) and
activating receptor (NKG2C/CD94) [32].

There are two well-known mechanisms for antigen
representation by HLA-E alleles, which decide the cells’
fate. HLA-E binds to the peptide fragments descended
from the signal sequence of other class Ia HLA alleles.
This representation leads to the inhibition of NK
cell functions by interacting with the NKG2A/CD94
receptors. However, some studies revealed that the
peptides from the virus (such as SARS-CoV-2, Epstein-
Barr virus, cytomegalovirus and hepatitis C virus) are
presented by HLA-E on the cell surface and recog-
nized by virus-specific immune cells, which further
activate the immune responses [33–40]. Moreover, HLA-
E-restricted CD8+ T-cell leads to the production of
anti-inflammatory cytokines like transforming growth

factor (TGF-β), interleukin 4 (IL4) and interleukin 10
(IL10), which is responsible for the down-regulation of
pro-inflammatory cytokine production and, therefore,
inhibiting the cytokine storm, which plays a crucial
role in the COVID-19 pathogenesis. The inhibition of
cytokine storm also lowers the degree of tissue damage
[41]. Several studies reveal that HLA-E inhibits NK-
mediated lysis, cytotoxicity, cytokine secretion and tumor
proliferation [40, 42–44], as represented in Figure 1.
These findings suggest that HLA-G and HLA-E could be
essential immune checkpoint molecules for designing
novel immunotherapies or subunit vaccines against
many diseases.

Thus, there is a need to develop methods for pre-
dicting non-classical HLA binders. In the past, numer-
ous computational methods have been developed for
predicting HLA binder but majorly focused on classical
HLA [45–53]. Only a few tools incorporate models for
predicting binders for non-classical HLA alleles. Best of
our knowledge, no computational tool has been explic-
itly developed for predicting non-classical HLA binders.
This study is dedicated for non-classical HLA, where a
systematic attempt has been made to develop models
for predicting non-classical HLA binders. We obtained
and examined all experimentally validated non-classical
HLA binders from the immune epitope database (IEDB).
Based on the availability of sufficient data in IEDB, we

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/5/bbac192/6587168 by Indraprastha Institute of Inform

ation Technology user on 19 January 2026



HLAncPred: a method for predicting promiscuous non-classical HLA binding sites | 3

developed models for predicting binders for the follow-
ing non-classical alleles HLA-G∗01:01, HLA-G∗01:03, HLA-
G∗01:04, HLA-E∗01:01 and HLA-E∗01:03. We have used
various machine learning models to better predict non-
classical HLA binders.

Material and methods
Dataset collection and pre-processing
One of the significant challenges in bioinformatics is
obtaining a sufficient amount of experimentally vali-
dated data. In the current study, we have collected the
non-classical class-I HLA binding peptides from the IEDB,
accessed on 26 October 2021. We obtained a total of
1135 HLA-E and 5151 HLA-G binding peptides. Then, we
removed identical peptides from each dataset to prepare
non-redundant datasets. Further, we filtered-out those
peptides having length greater than 15 or less than 8
residues from each dataset. Finally, we obtained 142 and
723 unique peptides for HLA-E∗01:01 and -E∗01:03 alleles,
respectively. Similarly, we get 2633, 751 and 812 unique
binding peptides for HLA-G∗01:01, -G∗01:03 and -G∗01:04
alleles, respectively. The HLA-G alleles-associated bind-
ing peptides used in this study were derived from the
mass spectrometry data.

On the other side, HLA-E alleles-associated binders
were majorly derived from fluorescence-based (biophys-
ical techniques) and mass spectrometry techniques. In
case of HLA-E∗01:03, most of the data were derived from
mass spectrometry (i.e. 632 unique positive binders with
8–15 residues range), and 87 peptides were derived using
fluorescence-based techniques and 4 peptides from X-
ray crystallography. In order to maintain the uniformity
in the datasets, we considered only mass spectrometry–
derived peptides for HLA-G∗01:01, -G∗01:03 and -G∗01:04
-E∗01:03. However, HLA-E∗01:01 has very limited number
of experimentally validated binders derived from mass
spectrometry; hence, we have considered the complete
dataset, i.e. 142 binding peptides (114 derived from fluo-
rescence based and 28 peptides derived from mass spec-
trometry).

Due to the limited number of negative peptides in
IEDB, we randomly generated the HLA-G and HLA-
E non-binding peptides having length 8–15 residues
from the Swiss-Prot [54] database (March 2021 release).
Here, we have created two separate datasets; one is a
balanced dataset that incorporates an equal number of
negative peptides as positive peptides for each allele. The
other is the imbalanced/realistic dataset that comprises
ten times negative data in comparison to the positive
dataset. The complete distribution of positive and
negative datasets is shown in Table 1.

Amino acid composition
Amino acid composition (AAC) of the positive and nega-
tive dataset for each allele is computed to understand the
compositional similarity in different peptide sequences.
The following equation is used to calculate the AAC for

HLA-G and HLA-E allele binder/non-binder peptides.

AACi = AARi

Total number of residues
× 100

where AACi and AARi are the percentage composition
and number of residues of type i in a peptide, respectively.

Sequence logo
We have generated sequence logos with the help of
WebLogo software (http://weblogo.threeplusone.com)
[54] for each HLA allele. WebLogo provides the graphical
representation with residue positions on x-axis, and y-
axis represents the bit score signifying the conservation
of residues at a particular position. Each position exhibits
the stack of amino acids that are conserved at that
position, where the height of each residue signifies
the relative frequency. The binding nonameric peptides
restricted to each HLA allele is used to generate the
sequence logos.

Feature generation
In this study, we used Pfeature [55] to calculate the binary
profile for each peptide belongs to the positive and neg-
ative datasets of non-classical HLA-alleles. To calculate
the binary profiles, the length of the variable should be
fixed, but the length of the peptides was varying from
8 to 15. Thus, to generate the fixed length vector, we
extracted the same number of residues from the N- and
C-terminal. Since the minimum length of the peptides
was 8, we chose to select the eight residues from each
end and designed different patterns to calculate features.
First, eight residues were selected from N-terminal and
designated as N8 patterns; similarly, eight residues were
chosen from C-terminal and referred to as C8 residues.
Other patterns of length 16 were generated by joining
the eight residues from N- and C-terminal and referred
as N8C8. For the aforementioned patterns, each amino
acid is represented by the vector of length 20, where each
element represents the presence/absence of that residue,
where presence was designated as ‘1’ and absence was
presented by ‘0’. For instance, residue ‘A’ was represented
by vector 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; hence, total
length of vector generated for patterns N8 and C8 was 160
(20∗8), and for N8C8, it was 320 (20∗16).

Likewise, patterns of peptides with maximum length
(i.e. 15 amino acids) were generated and termed as AA15

and binary profile was calculated. In this case, residues
‘X’ were added in the peptides having length less than
15. For example, 7 ‘X’ were added in the peptide having
length equal to 8, in order to make its length 15, such
as peptide ‘VYIKHPVS’ became ‘VYIKHPVSXXXXXXX’. In
this scenario, each amino acid is represented by the
vector size of 21, where the last element exhibited pres-
ence/absence of ‘X’. Residue ‘V’ is represented by vector
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 and ‘X’ is presented
as 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.
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Table 1. Distribution of positive and negative peptides for HLA-G and HLA-E alleles obtained from IEDB and Swiss-Prot database

HLA HLA allele Binding peptides (positive dataset) Non-binding peptides
(negative dataset)

Total peptides

Balanced dataset
HLA-G HLA-G∗01:01 2633 2633 5266

HLA-G∗01:03 751 751 1502
HLA-G∗01:03 812 812 1624

HLA-E HLA-E∗01:01 142 142 284
HLA-E∗01:03 632 632 1282

Realistic dataset (imbalanced)
HLA-G HLA-G∗01:01 2633 26 330 28 963

HLA-G∗01:03 751 7510 8261
HLA-G∗01:03 812 8120 8932

HLA-E HLA-E∗01:01 142 1420 1562
HLA-E∗01:03 632 6320 6952

Machine learning techniques
Several machine learning methods have been employed
to classify the positive and negative non-classical HLA
binding peptides. Here, we have used numerous machine
learning classifiers such as decision tree (DT), support
vector classifier (SVC), random forest (RF), XGBoost (XGB),
logistic regression (LR), ExtraTree classifier (ET), Gaussian
Naive Bayes (GNB) and k-nearest neighbors (KNN) using
scikit-learn python-based package [56].

Five-fold cross-validation approach
We have applied a 5-fold cross-validation technique
to evade the curse of biasness and overfitting in the
generated models. It is one of the most crucial steps
to evaluate the prediction model. In this approach,
the entire dataset is partitioned into five parts, out
of which four are used in training, and the resulted
model is tested on the left one. The exact process
is reproduced five times so that each part gets the
opportunity to act as the testing dataset. Ultimately, the
final performance is represented as the average of the
performance of the five models that resulted from the
five iterations.

Evaluation parameters
Several parameters can be employed to assess the
prediction models, which can be broadly classified
into two categories termed threshold-dependent and -
independent parameters. In this study, we have deter-
mined sensitivity, specificity, accuracy, F1-score and
Matthews correlation coefficient (MCC) as the threshold-
dependent parameters. In contrast, area under receiver
operating characteristics (AUC) curve is calculated as the
threshold-independent parameter. Sensitivity (equation
1) measures ability of the model to correctly predict
the binders, whereas specificity (equation 2) accounts
for the percentage of correctly predicted non-binders.
Accuracy (equation 3) exhibits the percentage of the
correctly predicted binders and non-binders, F1-score
(equation 4) captures the balance between precision
and recall, and MCC (equation 5) explains the relation

between the predicted and observed values. AUC is a
plot between the sensitivity and 1-specificity, which
captures the ability of the model to distinguish between
the classes.

Sensitivity = TP

TP + FN
(1)

Specificity = TN

TN + FP
(2)

Accuracy = TP + TN

TP + TN + FP + FN
(3)

F1 − Score = 2TP

2TP + FP + FN
(4)

MCC = (TP ∗ TN) − (FP ∗ FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(5)

where TP, TN, FP and FN stand for true positive, true
negative, false positive and false negative, respec-
tively.

Results
Composition analysis
The average AAC of HLA-G and HLA-E binding and non-
binding peptides is represented in Figure 2. As shown in
the graphs, the compositional difference in the positive
and negative datasets is clearly visible. HLA-G∗01:01, -
G∗01:03, -G∗01:04 binders (i.e. positive peptides) have a
higher composition of residues such as isoleucine (I),
lysine (K), leucine (L) and proline (P) as compared to
non-binding peptides as depicted in Figure 2 A–C). How-
ever, the average composition of alanine (A), leucine
(L), methionine (M), proline (P) and valine (V) residues
is higher in HLA-E∗01:01, -E∗01:03 binding peptides in
contrast to the negative dataset as shown in Figure 2 D
and E).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/5/bbac192/6587168 by Indraprastha Institute of Inform

ation Technology user on 19 January 2026



HLAncPred: a method for predicting promiscuous non-classical HLA binding sites | 5

Figure 2. The average amino acid composition of HLA-G∗01:01, -G∗01:03, -G∗01:04, -E∗01:01 and -E∗01:03 binding/non-binding peptides and general
proteome.

Position conservation analysis
Here, we represent the sequence logo for each non-
classical HLA-allele using WebLogo for nonameric
binders only. The conserved residue and its specific
position in the nonameric sequences are determined
using each logo. In the case of HLA-G, K/R anchor residues
located at first anchor position (P1), while P at third
position (P3), and L at ninth position (P9) exhibits very
strong abundance (see Figure 3 A–C). In case of HLA-
E, conserved binding residues are mostly located at
P2 and P9 with predominant hydrophobic residues. In
case of HLA-E, M/L is the anchor residues at second
anchor position (P2); at P9, L is most dominating residue
in case of HLA-E01:01, and V/L for HLA-E01:03 (see
Figure 3D and E).

Moreover, the conserved motif residues and frequen-
cies of the specific amino acids from position 1 to 9
in the 9mer binding peptides corresponding to HLA-
G and HLA-E alleles are provided in Table 2. Here, we
have utilized Jalview software [57] to identify the con-
servation and percentage of occurrence frequency. We

first extract the 9mer binders restricted to each allele,
and then we used the Jalview software to understand
the conservation at particular position. From the posi-
tion conservation analysis, we observed that most of the
residue motifs are positively charged and hydrophobic in
nature. HLA-G∗01:01/G∗01:03/G∗01:04 restricted peptides
anchored residues predominantly located at P1, P3 and
P9, whereas the % frequency of K/R at P1 is greater than
57%, P3 is rich with P (>54%) and P9 is highly conserved
with amino acid L (>89%).

As illustrated in Table 2, in case of HLA-E∗01:01/E∗01:03,
the anchored motif residues for P2 are M/L (>62%).
Moreover, L (92.20%) is strongly preferred at P9 for
HLA-E∗01:01 restricted 9mers, whereas in case of HLA-
E∗01:03, V/L (72.20%) is rich at P9. The comprehensive
information corresponding to each allele is provided in
Supplementary Table S1.

Machine learning–based prediction
In this study, we have implemented several classifiers
such as GNB, XGB, RF, DT, SVC, ET, KNN and LR to develop
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Figure 3. WebLogo representation of nonameric sequence binders for non-classical HLA alleles.

Table 2. Frequency of specific amino acid residue at positions 1 to 9 in the nonameric peptides for non-classical HLA alleles

prediction models. We calculate binary profile–based
features of positive and negative datasets (i.e. HLA-
G∗01:01, -G∗01:03, -G∗01:04, -E∗01:01 and -E∗01:03 binding
and non-binding peptides). Initially, we generate four
feature sets (i.e. N8, C8, N8C8 and AA15 binary profiles)
using Pfeature standalone package. Then, we developed
several machine learning models on each feature set for
HLA-G and HLA-E alleles.

Performance of HLA-G allele models
We compute the performance of each allele dataset using
various machine learning classifiers with four feature
sets as depicted in Supplementary Table S2. Further,
we observed that AA15 binary profile–based models
outperform other feature sets with balanced sensitivity
and specificity. As shown in Table 3, HLA-G∗01:01 dataset
achieved maximum AUC of 0.99 (Figure 4) and accuracy
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Table 3. The performance of machine leaning models developed using AA15 binary profile-based features of HLA-G alleles on training
and validation datasets

Classifier Training dataset Validation dataset

Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC

HLA-G∗01:01
DT 88.65 88.03 88.34 0.93 0.77 89.37 89.75 89.56 0.94 0.79
RF 95.25 95.11 95.18 0.99 0.90 93.93 95.83 94.88 0.98 0.90
LR 94.26 94.40 94.33 0.98 0.89 92.79 95.07 93.93 0.98 0.88
XGB 95.44 95.39 95.42 0.99 0.91 94.12 92.98 93.55 0.98 0.87
KNN 92.93 92.83 92.88 0.97 0.86 91.27 94.12 92.69 0.97 0.85
GNB 93.31 79.77 86.54 0.87 0.74 91.08 86.34 88.71 0.90 0.78
ET 95.39 95.39 95.39 0.99 0.91 93.93 96.02 94.97 0.99 0.90
SVC 95.30 95.58 95.44 0.99 0.91 94.50 95.83 95.16 0.99 0.90
HLA-G∗01:03
DT 82.36 84.67 83.51 0.89 0.67 80.67 82.78 81.73 0.88 0.64
RF 92.18 92.33 92.26 0.98 0.85 87.33 94.04 90.70 0.97 0.82
LR 91.51 91.67 91.59 0.97 0.83 88.00 94.70 91.36 0.97 0.83
XGB 92.18 92.33 92.26 0.98 0.85 90.00 93.38 91.69 0.98 0.83
KNN 89.35 88.83 89.09 0.95 0.78 85.33 95.36 90.37 0.94 0.81
GNB 93.84 57.83 75.85 0.76 0.55 91.33 65.56 78.41 0.78 0.59
ET 92.85 92.67 92.76 0.98 0.86 89.33 94.04 91.69 0.97 0.84
SVC 92.35 92.50 92.42 0.98 0.85 88.00 95.36 91.69 0.97 0.84
HLA-G∗01:04
DT 79.54 80.74 80.14 0.86 0.60 86.42 76.69 81.54 0.87 0.63
RF 93.08 93.07 93.07 0.98 0.86 96.30 93.87 95.08 0.98 0.90
LR 92.31 92.30 92.30 0.98 0.85 96.30 92.64 94.46 0.98 0.89
XGB 92.62 92.76 92.69 0.98 0.85 95.06 94.48 94.77 0.98 0.90
KNN 89.85 89.99 89.92 0.96 0.80 95.06 90.80 92.92 0.97 0.86
GNB 90.77 67.49 79.14 0.79 0.60 93.21 67.49 80.31 0.80 0.63
ET 93.39 93.22 93.30 0.98 0.87 96.30 93.87 95.08 0.98 0.90
SVC 93.08 93.07 93.07 0.98 0.86 96.91 93.87 95.39 0.98 0.91

DT; decision tree, RF; random forest, LR; logistic regression, XGB; XGBoost, KNN; k-nearest neighbors, GNB; Gaussian Naive Bayes, ET; ExtraTree, SVC; support
vector classifier; AUC; area under receiver operating curve, MCC; Matthews correlation coefficient.

>95% on both training and validation dataset using SVC
classifier. ET-based models also show similar results
on training and validation datasets with an AUC of
0.99 and accuracy >95% (Table 3). XGB classifier shows
comparable performance on HLA-G∗01:03 dataset, with
maximum AUC 0.98; accuracy 91.69% on validation
dataset, whereas RF, ET and SVC classifiers outperform
the other models and perform equivalent on HLA-
G∗01:04 dataset. The maximum AUC of 0.98 (Figure 4)
and accuracy 93.07 and 95.39% was achieved on training
and validation dataset as shown in Table 3. On the other
side, DT-, LR-, KNN- and GNB-based models performed
poorly on each dataset. The complete results for each
feature set are provided in Supplementary Table S2.

Performance of HLA-E allele models
In this, we have used positive and negative datasets of
HLA-E∗01:01 and -E∗01:03 alleles and developed various
prediction models. For this dataset, AA15 binary profile–
based features prevail over other classifiers as indicated
in the previous section results. As demonstrated in
Table 4, the performance of ET-based models for HLA-
E∗01:01 allele outperforms the other classifiers with an
accuracy of 87.67 and 89.47%; AUC of 0.96 (Figure 4) on
training and validation dataset, respectively. Besides,
RF- and XGB-based models perform pretty well with

balanced sensitivity and specificity (Table 4). However,
on HLA-E∗01:03 dataset, SVC performed quite well,
with AUC of 0.93 and 0.94 (Figure 4); accuracy of
84.08 and 84.98% on training and validation dataset,
respectively, as shown in Table 4. Similarly, models based
on ET also perform equivalent with very less difference
in sensitivity and specificity (Table 4). The complete
results for all the other feature sets are provided in
Supplementary Table S3.

In addition, we also checked the performance of
models by separating the datasets based on different
sources from which the HLA-E binders were obtained.
As provided in Supplementary Table S4, we developed
models for HLA-E∗01:01 and HLA-E∗01:03 using mass
spectrometry- and florescence-derived datasets. We
observed that both techniques performed quite well in
case of both the alleles. However, due to the limitation
of experimental data for HLA-E∗01:01 binding peptides,
we reported the results on the combined dataset in this
study.

Moreover, the robustness of the developed models was
checked by shuffling the data 10 times, and the perfor-
mance was calculated. The mean ±standard deviation of
the performance of best-performing classifiers for HLA-
G and HLA-E alleles is reported in Table 5. The com-
prehensive results of 10 times reshuffling data for each
allele were integrated into Table 5. We observe that the
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Figure 4. AUC curves represent the performance of best models on training and validation datasets for each allele.

Table 4. The performance of machine leaning models developed using AA15 binary profile–based features of HLA-E alleles on training
and validation datasets

Classifier Training dataset Validation dataset

Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC

HLA-E∗01:01
DT 78.07 76.99 77.53 0.82 0.55 75.00 75.86 75.44 0.81 0.51
RF 86.84 86.73 86.78 0.95 0.74 89.29 86.21 87.72 0.96 0.76
LR 88.60 89.38 88.99 0.94 0.78 85.71 89.66 87.72 0.97 0.76
XGB 86.84 86.73 86.78 0.95 0.74 89.29 86.21 87.72 0.96 0.76
KNN 83.33 83.19 83.26 0.91 0.67 82.14 82.76 82.46 0.93 0.65
GNB 74.56 76.99 75.77 0.76 0.52 89.29 79.31 84.21 0.84 0.69
ET 87.72 87.61 87.67 0.96 0.75 92.86 86.21 89.47 0.96 0.79
SVC 86.84 86.73 86.78 0.94 0.74 85.71 86.21 85.97 0.96 0.72
HLA-E∗01:03
DT 71.74 70.50 71.12 0.78 0.42 71.43 66.93 69.17 0.76 0.38
RF 84.19 83.37 83.78 0.92 0.68 92.06 77.95 84.98 0.93 0.71
LR 83.60 83.76 83.68 0.91 0.67 88.89 77.17 83.00 0.90 0.67
XGB 82.81 82.77 82.79 0.91 0.66 82.54 77.95 80.24 0.90 0.61
KNN 80.44 79.80 80.12 0.88 0.60 88.10 72.44 80.24 0.90 0.61
GNB 93.08 44.95 69.04 0.69 0.43 90.48 46.46 68.38 0.69 0.41
ET 84.19 83.96 84.08 0.93 0.68 93.65 77.95 85.77 0.93 0.73
SVC 83.99 84.16 84.08 0.93 0.68 90.48 79.53 84.98 0.94 0.70

DT; decision tree, RF; random forest, LR; logistic regression, XGB; XGBoost, KNN; k-nearest neighbors, GNB; Gaussian Naive Bayes, ET; ExtraTree, SVC; support
vector classifier; AUC; area under receiver operating curve, MCC; Matthews correlation coefficient.

performance of models on each dataset is maintained
even after the reshuffling, which supports the robustness
of the developed models.

Performance on realistic dataset
In the realistic scenario, the negative dataset is much
bigger than the positive dataset. But, due to the low
availability of experimentally validated non-binders, we
have generated the random negative peptide datasets

from the Swiss-Prot database corresponding to each
allele, which is ten times bigger than the positive
dataset. Further, we developed prediction models using
AA15 binary features on the imbalanced datasets, and
the complete results on each dataset are provided in
Supplementary Table S5. It was observed that even after
increasing the datasets ten times, the performance
of the models is comparable for HLA-G and HLA-E
alleles.
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04 Comparison with existing methods

It is very important to compare this new method with
the existing methods to understand the advantages/dis-
advantages. To validate our method, we compare the
performance of our models with the existing methods
(MHCflurry 2.0 and NetMHCpan 4.1). We have trained
our models on the previous used dataset, provided
by MHCflurry 2.0 and NetMHCpan 4.1 for HLA-G and
HLA-E alleles. Further, we validate the performance
of all the methods on the updated IEDB data i.e.
binders of HLA-G∗01:01, -G∗01:03, -G∗01:04, -E∗01:01
and -E∗01:03 alleles. As shown in the results (Table 6),
HLAncPred outperforms other methods for predicting
the HLA-G binding peptides with balanced sensitivity,
specificity and maximum accuracy (Table 6). Although
MHCflurry 2.0 performs quite well on the prediction of
binder/non-binding peptides of HLA-G∗01:01 dataset, it
performs poorly on other datasets. Similarly, we observed
NetMHCpan 4.1 performs quite well on HLA-E∗01:01
validation dataset; however, it performs inadequately
on the validation dataset of HLA-G alleles as shown in
Table 6.

Web server and standalone implementation
In the current study, to assist the scientific commu-
nity in predicting and scanning of non-classical HLA
binder and non-binder peptides, we have developed a
web-based service ‘HLAncPred’ (https://webs.iiitd.edu.in/
raghava/hlancpred/). In this web server, we have used our
best models to better predict non-classical HLA binders.
A detailed description of HLAncPred modules is given
below.

(i) PREDICT: The prediction module allows the users
to identify the most promiscuous HLA-G (-G∗01:01,
-G∗01:02, -G∗01:03) and HLA-E (-E∗01:01, -E∗01:03)
binders and non-binder peptides. Users can sub-
mit multiple peptides in the standard FASTA format
in the provided box or upload the input files and
can select either single or more than one allele for
binding prediction. Server provides tabular format
results, with the input sequence, score and predic-
tion (binder/non-binder).

(ii) SCAN: This module allows the facility to recognize
the protein regions that may bind to the non-
classical alleles, such as HLA-G∗01:01, -G∗01:02,
-G∗01:03, -E∗01:01, -E∗01:03, using their binary
profiles. It also facilitates the users to choose any
length of sequence to predict binders. The other
way round, users can also scan a protein sequence
to find out the novel peptides with the binding
ability to HLA-G and HLA-E alleles. It will generate
the fragments of a length selected by the users
and predict their activity. Users can submit one or
multiple protein sequences in FASTA format and
choose the allele(s) for the prediction. In addition,
the user can also choose the result mode, i.e.
graphical or tabular, as represented in Figure 5.
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Table 6. Comparison of performance of HLAncPred and other methods on the updated IEDB dataset

HLA allele HLAncPred MHCflurry 2.0 NetMHCpan 4.1

Sensitivity Specificity Accuracy MCC Sensitivity Specificity Accuracy MCC Sensitivity Specificity Accuracy MCC

HLA-G∗01:01 92.6 94.3 93.4 0.87 88.7 93.3 91.0 0.82 47.2 98.7 72.9 0.53
HLA-G∗01:03 72.2 61.1 66.7 0.33 27.8 94.4 61.1 0.29 8.30 97.2 52.8 0.12
HLA-G∗01:04 73.5 70.6 72.1 0.44 32.4 97.1 64.7 0.39 11.8 100 55.9 0.25
HLA-E∗01:01 92.1 88.1 90.1 0.80 85.7 84.9 85.4 0.71 82.5 92.1 87.3 0.75
HLA-E∗01:03 71.3 83.8 77.6 0.56 61.2 91.0 76.5 0.55 50.5 95.3 72.9 0.51

Figure 5. Usage of predict and scan module of HLAncPred.

(iii) PACKAGE: To serve the scientific community, we
also provide a python- and Perl-based command-
line package (https://webs.iiitd.edu.in/raghava/
hlancpred/stand.html) for prediction of non-classical
binders at a large scale and in the absence of the
internet. In addition, we have also developed a
docker-based standalone package of HLAncPred and
integrated into the ‘GPSRdocker’ package https://
webs.iiitd.edu.in/gpsrdocker/ [58].

(iv) DOWNLOAD: Users can download the datasets used
in this study using this module.

The ‘HLAncPred’ web server is compatible with a
number of devices (iPhone, iPad, laptops, android mobile
phones) and was built using HTML, PHP and JAVA
scripts.

Case study: non-classical HLA binders in
COVID-19 variants
Several studies have shown that HLA allele binding sites
significantly influence the severity of COVID-19 disease
[8, 27, 41, 59]. Recently, World Health Organization
(WHO) reported that the spike protein of coronavirus
has shown more than 30 mutations in the new SARS-
CoV-2 variant B.1.1.529 (Omicron). To investigate the
effect of mutations on the HLA binding regions, we have
used the reference spike protein of SARS-CoV-2 from
NCBI. Further, we identified the substituted mutations
named as A67V, �69–70, T95I, G142D, �143–145, �211,
L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N,
N440K, G446S, S477N, T478K, E484A, Q493K, G496S,
Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K,
P681H, N764K, D796Y, N856K, Q954H, N969K and L981F,
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Table 7. Alterations in the binding sites of non-classical HLA alleles by mutations in Spike protein of SARS-CoV-2 variant B.1.1.529
(Omicron)

Alleles Mutation Reference peptide Mutated peptide Prediction (binder/non-binder)

(Reference) (Mutated)

HLA-G∗01:01 � 211, L212I DLPQGFSAL DPIGEPESA Binder Non-binder
S371L VLYNSASFS VLYNSASFL Non-binder Binder
P681H PSVASQSII HSVASQSII Binder Non-binder

HLA-G∗01:03 � 211, L212I DLPQGFSAL DPIGEPESA Binder Non-binder
S371L VLYNSASFS VLYNSASFL Non-binder Binder
D614G DEVPVAIHA GEVPVAIHA Binder Non-binder
Q954H QNAQQLNTL QNAQHLNTL Non-binder Binder
N969K NSSVLNDIL KSSVLNDIL Non-binder Binder

HLA-G∗01:04 � 211, L212I DLPQGFSAL DPIGEPESA Binder Non-binder
G339D LCPFGEVFG LCPFGEVFD Non-binder Binder
T547K TLTESNKKF KLTESNKKF Non-binder Binder
N679K NSPRNARSV NSPRKAHSV Non-binder Binder
Q954H QNAQQLNTL QNAQHLNTL Non-binder Binder
N969K NSSVLNDIL KSSVLNDIL Non-binder Binder

HLA-E∗01:01 � 211, L212I DLPQGFSAL DPIGEPESA Binder Non-binder
S371L VLYNSASFS VLYNSASFL Non-binder Binder
T547K NGLTGTGTL NGLTGTGKL Non-binder Binder

HLA-E∗01:03 A67V, Del 69 NVTWFHAIH NVTWFHVIV Non-binder Binder
� 211, L212I DLPQGFSAL DPIGEPESA Binder Non-binder
G339D LCPFGEVFG LCPFGEVFD Non-binder Binder
S371L VLYNSASFS VLYNSASFL Non-binder Binder
S371L, S373P, S375F FSTSKSYGV FLTPKFYGV Non-binder Binder
T547K GLTGTGTLT GLTGTGKLT Binder Non-binder
N679K NSPRNARSV NSPRKAHSV Non-binder Binder
D796Y GGDNFSQIL GGYNFSQIL Non-binder Binder

associated with the spike protein of B.1.1.529 variant
from Centers for Disease Control and Prevention (CDC
portal). In addition, we have also considered mutations
in other variants such as in alpha variant (B.1.1.7) where
seven mutations named as N501Y, A570D, D614G, P681H,
T716I, S982A and D1118H were reported; similarly, in beta
variant (B.1.351), nine mutations such as D80A, D215G,
K417N, E484K, N501Y, D614G, A701V, L18F and R246I and
in delta (B.1.617.2) strain nine mutations namely T19R,
T95I, G142D, R158G, L452R, T478K, D614G, P681R and
D950N were reported in spike protein according to CDC
portal and Indian SARS-CoV-2 Genomics Consortium.

We created the mutated spike protein sequence by
substituting the new mutations in the reference protein
sequence. Then, we utilized the ‘SCAN’ module (with
peptide length = 9) of HLAncPred server, to identify HLA
binding regions in the reference and altered spike
proteins. After that, we mapped the disparities in the
reference and variant spike protein sequences. We found
that in alpha strain, a single substitution T716I in peptide
‘NSIAIPINF’ results in the gain of binding ability for HLA-
G∗01:01; similarly, E484K substitution in ‘KGFNCYFPL’
peptide made it a binder for HLA-G∗01:03, HLA-G∗01:04
and HLA-E∗01:01. However, mutation L452R in peptide
‘KVGGNYNYR’ results in the loss of binding ability for
HLA-G∗01:03 and HLA-G∗01:04 in delta strain. In the
case of recent strain Omicron (B.1.1.529), mutations
have resulted in the changes in the binding ability of
various regions of spike proteins as shown in Table 7.
The complete results for the binding prediction for an
alpha, beta, delta and Omicron strains are provided in

Supplementary Tables S6, S7, S8 and S9, respectively. We
hope that these findings can be used by the scientific
community for further investigation and designing
potential immunotherapies/vaccines against the new or
future COVID-19 strains.

Discussion and conclusion
The non-classical HLA, such as HLA-G, acts as an
immunomodulatory molecule and natural guard while
providing protection during fetus development [60,
61]. HLA-E triggers immune responses via activating
inflammatory cytokines during viral infections [9, 33,
62, 63]. Of note, the over-expression of HLA-G may
induce the immune-suppressive microenvironment,
which may help in evading tumor cells from our innate
and adaptive immune system. Studies have also shown
that the abundant and aberrant expression of HLA-G
leads to immune-mediated disorders such as multiple
sclerosis and systemic lupus erythematosus [28, 60, 64].
Due to the low polymorphism of non-classical HLA, the
HLA-E-restricted T-cell immunotherapy may be given
to a heterogenic population, which may possess many
benefits over classical HLA-based therapies. Moreover,
the activation of anti-inflammatory immune response by
HLA-E interaction with CD8+ T cell leads to the inhibition
of cytokine storm and hence reduces the collateral
tissue damage, which could be beneficial in treating
COVID-19 patients [41]. On the other hand, HLA-G-based
immunotherapies have been shown to achieve encourag-
ing results in solid-cancer treatments. Researchers have
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Figure 6. Complete architecture of HLAncPred including the dataset collection, feature generation, models and tool development.

designed an anti-HLA-G CAR-T cells immunotherapy for
the treatment of acute lymphoblastic leukemia and B-
cell malignancies [65].

Therefore, it is the utmost need to develop an accu-
rate prediction method for the identification of non-
classical HLA-binder peptides. In last few decades, a
number of HLA binding peptide prediction methods have
been developed, hitherto very limited prediction meth-
ods have been deployed in the non-classical binder pre-
diction. To strength the previous works and to facilitate
the researchers working in this area, we developed a
highly accurate and efficient tool dedicated to the binder
prediction of non-classical HLA alleles. The dataset takes
an important role in machine learning model develop-
ment; thus, we have constructed our major dataset from
IEDB. For the training and validation dataset, we have
used experimentally validated positive peptides i.e. HLA-
G and HLA-E binders and negative data are randomly
generated using Swiss-Prot. The composition and posi-
tion conservation analysis indicates that non-classical
HLA binding peptides are enriched in proline and leucine
amino acids. The anchor motif residues K, L, P and V
predominantly occurred at P1, P3 and P9 in HLA-G alleles,

whereas M, L, V are highly conserved P2 and P9 in HLA-
E alleles. Furthermore, various models were developed
using N8, C8, N8C8 and AA15 binary profiles for each allele
datasets. Our results indicate that models developed on
AA15 binary profile–based features achieve highest per-
formance (i.e. AUC 0.99 and accuracy >95%) on training
and validation dataset for HLA-G∗01:01 allele using SVC
classifier. We have used the best models for each non-
classical HLA binders and developed a web server named
‘HLAncPred’ to predict and scan non-classical HLA bind-
ing peptides. We also provide the standalone package for
the bulk scale non-classical HLA binder prediction.

Additionally, we utilized the SCAN module of our
server for the prediction of non-classical HLA binding/non-
binding peptides in the spike protein of new strain
of SARS-CoV-2 i.e. B.1.1.529 (Omicron). We identified
431 promiscuous binders, where 80, 155, 56, 57 and
83 binders were predicted for HLA-E∗01:01, - E∗01:03, -
G∗01:01, -G∗01:03, -G∗01:04 allele, respectively. From the
prediction, we observed that due to the new mutations
occurred in B.1.1.529 (Omicron) variant, several peptide
regions have shown the opposite binding trait in
comparison with the reference spike protein (Table 7).
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For instance, mutations � 211 and L212I changed the
binding behavior of ‘DLPQGFSAL’ peptide for all non-
classical HLA alleles. These observations can benefit the
scientific community for designing vaccine against the
deadly virus. In addition, researches can use this tool
to predict the binding peptides of non-classical HLA
alleles against different pathogenic, autoimmune and
viral infections. We anticipate that this method will
benefit the community working in the area of vaccine
and HLA-based immunotherapy designing. The complete
architecture of the HLAncPred is shown in Figure 6.

Key Points

• Non-classical HLAs play immunomodulatory roles in the
immune system.

• HLA-E-restricted T-cell therapy may reduce COVID-19-
associated cytokine storm.

• In silico models were developed for the prediction of
HLA-G and HLA-E binding peptides.

• Non-classical HLA-binding peptides for several strains of
COVID-19 were predicted.

• A web-server and standalone package is available for the
prediction of non-classical HLA alleles binding peptides.
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