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Abstract: Glutathione S-transferase (GST) proteins play vital role in living organism that includes detoxification of ex-

ogenous and endogenous chemicals, survivability during stress condition. This paper describes a method developed for 

predicting GST proteins. We have used a dataset of 107 GST and 107 non-GST proteins for training and the performance 

of the method was evaluated with five-fold cross-validation technique. First a SVM based method has been developed us-

ing amino acid and dipeptide composition and achieved the maximum accuracy of 91.59% and 95.79% respectively. In 

addition we developed a SVM based method using tripeptide composition and achieved maximum accuracy 97.66% 

which is better than accuracy achieved by HMM based searching (96.26%). Based on above study a web-server GSTPred 

has been developed (http://www.imtech.res.in/raghava/gstpred/). 
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INTRODUCTION 

 The functional annotation of genome involves the as-
signment of function to protein product of a gene. Function 
assignment is currently very hot topic in computational biol-
ogy due to large number of protein sequences without func-
tion assignment. With the introduction of several high-
throughput sequencing methods, the number of proteins 
whose sequence is known but function is not known is con-
tinuously increasing.  

 Glutathione S-transferases (GSTs) are a group of ubiqui-
tous and multifunctional enzymes found in both prokaryotes 
and eukaryotes. The GSTs comprise a complex and wide-
spread enzyme super-family that has been subdivided further 
into different classes on the basis of amino acid/nucleotide 
sequence, immunological, kinetic and tertiary/quaternary 
structural properties. These proteins participate in phase II of 
detoxification cycle by catalyzing the conjugation of glu-
tathione (GSH) to a wide variety of xenobiotics. It protects 
cells against toxic compounds by conjugating them to GSH, 
thereby neutralizing their electrophilic sites, and rendering 
the product more water-soluble [1]. Besides this, they are 
also involved in several other functions, such as removal of 
reactive oxygen, regeneration of S-thiolated proteins, cataly-
sis of conjugation with endogenous ligands, and catalysis of 
reactions in metabolic pathways not associated with detoxifi-
cation [2]. The detoxification ability of GSTs plays a key 
role in imparting protection from environmental and oxida-
tive stress.  

 Another important function of GSTs are making a cell 
drug-resistant by avoidance of apoptotic cells death, altered 
expression of multi-drug resistance-associated proteins or 
drug metabolism or uptake, and/or over-expression of GSTs  
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[3]. GSTs are involved in drug resistance by either i) partici 
pation in detoxification process with GSH or ii) increasing 
the pumping out of drug molecule from the cell or iii) inhibi-
tion of MAP kinase pathways [4-8]. Overexpression of spe-
cific GSTs in mammalians cells cause anti-cancer drug (al-
kylating agent used in cancer chemotherapy) resistance [9-
12]. Cell lines selected in vitro for resistance to anticancer 
drugs frequently over-express GST ; although over-
expression of GST μ and GST  are reported but in lesser 
quantity [10-14]. Hence GST  become a prominent marker 
for cancer. GSTs are also involved in cell signaling and 
apoptosis. Hence it determines the fate of cells under stress 
condition [15]. GST indirectly regulate the cellular immune 
response by controlling GSH level. Since it is the level of 
GSH along with antigen-presenting cells, which determine 
whether a Th1 or Th2 patterns of response predominates 
[16]. Hence its level control survival levels in case of HIV 
disease [17]. Due to central importance of GSTs in drug me-
tabolism, they are therapeutics target for asthma [18, 19], 
cancer, HIV and several other diseases.  

 In the past, a number of strategies have been used to 
search novel GSTs from protein sequence data. Similarity 
search-based techniques, BLAST [20-21] and FASTA [22], 
are best in which the query sequence is searched against ex-
perimentally annotated proteins. If query protein has signifi-
cant sequence similarity with any GSTs protein then it is 
predicted as GSTs proteins. Other methods include hidden 
Markov Model based profile searching. But these methods 
fail to predict novel/new protein when query protein does not 
have significant similarity with database proteins [23]. In 
order to overcome this problem we developed a Support 
Vector Machine (SVM) based prediction method, GSTpred, 
for annotating GST proteins on the basis of amino acid se-
quence. In present study first we carried out systematic 
analysis of amino acid composition of both GST and non-
GST proteins, and then on the basis of conclusion drawn we 
developed the SVM based prediction method. 
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MATERIAL AND METHODS 

Datasets  

 All sequences used in this study were downloaded from 
Swissprot database [24]. We got total 208 proteins in re-
sponse to keyword Glutathione-S-transferase. All proteins 
were manually examined to retain only sequences, which 
have high quality annotation. For this we removed all se-
quences that was labeled as ‘fragment’ or annotated as puta-
tive or by similarity. We got total 137 proteins which were 
experimentally annotated as ‘GST protein’. The sequence 
redundancy of dataset was further removed by using CD-
HIT [25] such that no two proteins have sequence identity 
more than 90%. The final dataset contains total 107 GST 
protein sequences. Negative dataset was compiled by ran-
domly selecting 107 proteins keeping in mind that they were 
experimentally annotated as non-GST protein and they didn’t 
have sequence identity more that 90%. Here we are trying to 
developed broad-spectrum method for GSTs prediction 
hence we used both prokaryotes and eukaryotes (plant, fungi, 
animals) proteins in our study. 

Evaluation Procedure 

 The performance of the modules constructed in this 
method was evaluated using five-fold cross-validation tech-
niques. In five fold cross-validation, the non-redundant 
dataset was randomly divided into five sets. The training and 
testing were carried out for five times, each time using one 
set in testing and the remaining four sets in training. To 
evaluate the performance of methods we used several pa-
rameters routinely used in similar studies [26-27]. Brief de-
scription of these parameters is as follows (i) the sensitivity 
or percentage coverage of GSTs is the percentage of GSTs 
protein correctly predicted as GSTs proteins. (ii) The speci-
ficity or percentage coverage of non-GSTs proteins is the 
percentage of non-GSTs proteins correctly predicted as non-
GSTs proteins. (iii) The accuracy is the percentage of cor-
rectly predicted proteins. This parameter can be calculated 
using equations- 

 100
FN+TP

TP
=Senstivity                        (I) 

 100
FP+TN

TN
=Specifity                             (II) 

 100
FN+FP+TN+TP

TN+TP
=Accuracy          (III) 

 100
FN)+FP)(TN+FN)(TN+FP)(TP+(TP

FN)(FPTN)(TP
=MCC  (IV) 

 Where TP is correctly predicted positive (GSTs) proteins, 
TN is correctly predicted negative (non-GSTs) proteins, FP 
is number of non-GST proteins wrongly predicted as GSTs 
proteins and FN is number of GST proteins wrongly pre-
dicted non-GSTs proteins. Fig. 1 diagrammatically depicts 
the way of determining a prediction in above-mentioned four 
classes. Matthew's correlation coefficient (MCC) equal to 1 
is regarded as a perfect prediction, whereas 0 is for a com-
pletely random prediction.  

 

 

 

 

 

 

 

 

 

Figure 1. Criteria of classification of a prediction into true positive 

(TP), true negative (TN), false positive (FP), or false negative (FN). 

 All the measures described here above have a common 
drawback that they give the performance at a given thresh-
old. A known threshold independent parameter is receiver 
operating characteristic (ROC), which is a plot between true 
positive proportion (TP/TP+FP) and false positive proportion 
(FP/FP+TN) [28]. The area under the curve give a single 
value to evaluate the performance of method. Area of 1 
shows perfect prediction while 0.5 shows random prediction. 

Support Vector Machine 

 An excellent machine learning technique SVM has been 
used for the prediction of GSTs proteins. In the present 
study, a freely downloadable package of SVM, SVM_light, 
has been used to predict the GSTs proteins. The software is 
downloaded from http://www.cs.cornell.edu/People/tj/svm_ 
light/. SVM is a universal approximators based on statistical 
and optimisation theory. The SVM is particularly attractive 
to biological sequence analysis due to its ability to handle 
noise, dataset and large input space [29]. Further details 
about SVM can be obtained from Vapinik’s papers [30] or 
http://www.imtech.res.in/raghava/gstpred/algorithm.html. 
The software enables the user to define number of parame-
ters as well as to select from some inbuilt kernel functions, 
including a Radial Basis Function (RBF), polynomial, and 
linear kernel. Preliminary test shows that the RBF kernel 
gives results better than the other kernels. Therefore, in this 
work we used the RBF kernel for all the experiments. 

Protein Feature  

 The SVM modules were trained on the basis of following 
features of protein sequence- 

Amino Acid Composition 

 The SVM was provided with 20 dimensional vectors 
encapsulating the amino acid composition of protein. Amino 
acid composition is the fraction of each amino acid in a pro-
tein. The fraction of each of 20 natural amino acids was cal-
culated using the following formula: 

  (V) 

where (i) can be any amino acid. 

Dipeptide Composition 

 Dipeptide composition was used to encapsulate the 
global information about each protein sequence, which gives 
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a fixed pattern length of 400 (20*20). This representation 
encompassed the information about amino acid composition 
along the local order of amino acids. The fraction of each 
dipeptide was calculated using the following equation: 

  (VI) 

where dipeptide (i) is one out of 400 dipeptides. 

Tripeptide Composition 

 Tripeptide composition was used to encapsulate the 
global information about each protein sequence, which gives 
fixed pattern length of 8000. This representation encom-
passes the information about amino acid composition along 
the local order of amino acids. The fraction of each tripep-
tides was calculated using the following equation: 

 
 e tripeptidpossible all ofnumber  Total

(i)  e tripeptidofnumber  Total
  (i) e tripeptidofFraction =

 (VII) 

where tripeptide (i) is one out of 8000 tripeptides. 

Hidden Markov Model 

 Hidden Markov models (HMM) are statistical models of 
the primary structure consensus of a sequence family. Ini-
tially HMM used for speech recognition [31]. HMM build 
profile, which capture important information about the de-
gree of conservation at various positions in the multiple 
alignments, and the varying degree to which gaps and inser-
tion are permitted. HMM (profile based) typically outper-
form pairwise method in both alignment accuracy and data-
base search sensitivity and specificity. The advantage of 
HMMER over other methods is that it simply works on for-
mal probabilistic basis. Further details about HMM can be 
obtained from Krogh’s paper [32]. In the present study, we 
have done HMM based searching by using a freely down-
loadable implementation of HMM, HMMER (http://www.  
psc.edu/general/software/packages/hmmer/).  

Building and Searching of HMM Profile 

 First of all, whole dataset was divided in 5 sets similar to 
5 fold cross validation. Then four set of sequence was multi-
ply aligned by using ClustalW [33] and alignment profiles 
were generated by ‘hmmbuild’ of HMMER. The profile was 
then calibrated by using ‘hmmcalibrate’ and searched for 
other set of sequences, which is similar to this profile by 
‘hmmpfam’ module of HMMER.  

3. RESULTS 

Amino Acid Composition Analysis 

 In order to analyze the biasness in amino acid composi-
tion of GSTs proteins we calculate the average of all 20 natu-
ral amino acid (Fig. 2). We found that Lys, Leu, Pro and Tyr 
are more abundant in GST proteins. On the other hand Ile, 
Asn and Ser are more abundant in non-GST proteins.  

 N-terminal of GSTs forms an important part of active 
site. This region contains catalytically essential Tyr, Ser or 
Cys residues that interact with G-site of GSH through thiol 
group. The Tyr residue participates in hydrogen binding  
 

[34-35]. When N-terminal 20 amino acid residues were ana-
lyzed (Fig. 3) then we found abundance of Tyr, Ser, Gly, 
Arg, Leu, which was also reported by Mcllwain et al. [3].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Average amino acid composition for GSTs and non-

GSTs proteins. 

 

 

 

 

 

 

 

 

 

Figure 3. Sequence logo of N-terminus dataset depicting the 

positional propensity of amino acid at all 20 positions 

HMM Based Profile Searching 

 We have build HMM profile by ClustalW and then 
searched for similar sequences. As shown in Table 1, at e-
value 0.1 profile based searching had shown 96.26% accu-
racy.  

Table 1. The Performance of HMMER at Different E-value 

Threshold 

Threshold E-value Accuracy (%) 

0.1 96.26 

0.001 96.26 

1e-4 94.39 

1e-8 91.59 

1e-10 90.65 

 

 When searching condition was made stricter then accu-
racy went down.  
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SVM Model Using Different form of Composition 

 The amino acid composition based SVM module has 
been able to achieve 91.59% accuracy. In order to incorpo-
rated both information about frequency of amino and their 
local order we have also developed different SVM models 
(Table 2). SVM model based on i +1 and i +1+2 residue 
have substantially increased the accuracy. With dipeptide 
input (i + 1) based SVM model, MCC increased to 0.92. 
With tripeptide based SVM model, MCC further increased to 
0.95. Fig. 4 shows the relationship between specificity and 
sensitivity using a ROC plot. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of ROC plot from mono-peptide, di-peptide 

and tri-peptide composition SVM module. 

4. DESCRIPTION OF WEB SERVER 

Based on our study, we have developed a web server, 
GSTPred, which allow the users to predict GSTs proteins 
from its amino acid sequence. GSTPred is freely available at 
http://www.imtech.res.in/raghava/gstpred. The common 
gateway interface (CGI) script for GSTPred was written us-
ing PERL 5.005_03. This server is installed on a Sun Server 
(420E) under a UNIX (Solaris 7) environment. User can en-
ter the primary amino acids sequence for the prediction using 
file uploading or cut and paste option. The SVM was imple-
mented by obtaining the SVM_light obtained from 
http://www.cs.cornell.edu/People/tj/svm_light/. It is a user-
friendly web server and allows users to submit their protein 
sequence in one of the standard formats like FASTA, Gen-
Bank, EMBL, GCG or plain format (See Fig. 5a). 

 The server uses the ReadSeq program to read the input 
sequence. The server provides option to the user to use any 
SVM module by default the server uses the amino acid com-
position approach. The server presents the results of compre-
hensive analysis in user-friendly format (Fig. 5b). 

5. DISCUSSION 

 Functional annotation of proteins is one of the major 
challenges in post-genomic era. The most widely used meth-
ods for predicting the function of a new protein involved 
sequence alignment, similarity search, or profile search, like 
BLAST [20], PSI-BLAST [21], FASTA [22]. These methods 
failed in the absence of significant similarity between que-
ried and annotated proteins. One another reasons of failure of 
the similarity-based methods is that the variation in the size 
of proteins. The problem with profiles is that they are com-
plicated models with many free parameters. There are num-
ber of difficult problems like the best ways to set the posi-
tion-specific residue scores, to score gaps and insertion, and 
to combine structural and multiple sequence information. 

 In general artificial intelligence (AI) base techniques 
such as SVMs and neural networks are elegant approaches 
for the extraction of complex patterns from biological se-
quence data. These techniques are highly successful for resi-
due state prediction where fixed window/pattern length is 
used [37]. AI techniques in the classification of protein (e. g. 
subcellular localization prediction [38-39], fold recognition 
[40] because similar/homologous protein often has variable 
length. In order to overcome this problem a fixed length pat-
tern must be generated for proteins, for AI techniques to be 
implemented.  

 The percentage amino acid composition, which gives a 
fixed length pattern of 20, is commonly used by AI tech-
niques to classify the proteins. However, this approach pro-
vides information only about the amino acid frequency, but 
no information about local order of amino acids. To provide 
the information about frequency and local order of amino 
acids, dipeptide composition can be used as input unit to AI 
techniques. Dipeptide gives a fixed pattern of 400. More 
information about protein sequence can be encapsulated us-
ing tripeptide composition. Tripeptide composition gives a 
fixed pattern of 8000. In few cases of tripeptide composition, 
ANN and SVM unable to handle the noise due to large num-
ber of input units and number of missing tripeptide in pro-
tein. But in this paper, we have used a SVM module on the 
basis of tripeptide composition. This module is able to pre-
dict the GSTs protein with very good accuracy. 

Table 2. The Performance of Various SVM Modules. (Where Thres = Threshold, Sen = sensitivity, Spec = specificity, Acc = accu-

racy and MCC = Mathew correlation coefficient) 

Approach Parameter Thres Sen Spec Acc MCC 

Mono-peptide J=2, g=0.01, c=1 0.2 91.59 91.59 91.59 0.83 

Di-peptide J=1, g=0.01, c=2 0.0 96.26 95.33 95.79 0.92 

Tri-peptide J=2, g=0.001, c=9 -0.2 97.20 98.13 97.66 0.95 
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Figure 5a. A snapshot of sequence submission page of GSTPred server. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5b. Results of the prediction after analysis of query protein using SVM based module. 

 We have used two approaches for GSTs proteins predic-
tion (i) HMM based method by using HMMER software, (ii) 
amino acid composition, dipeptide composition and tripep-
tide composition based SVM module using SVM_light soft-
ware. Although HMMER give a very good accuracy 95.66% 
at threshold E-value 0.1 but this E-value is too much. For 
further improve accuracy we have used amino acid composi-
tion, dipeptide and tripeptide based SVM models which give 
accuracy 91.59%, 95.79%, and 97.66% respectively.  

 Although GSTs are very important proteins and play 
great role in stress, survival, immunity, cancer and other dis-
eases but no any pre-existing server available for its predic-
tion. In this study, an attempt has been made to develop a 
direct method for predicting the GSTs proteins.  

 These method used here for classify GSTs and non-GSTs 
give very good accuracy but tripeptide composition based 
SVM method is more accurate than the others in this case. 
Our method will help to researchers in finding GSTs proteins 
in both prokaryotes and eukaryotes.  
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