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Influenza A is a contagious viral disease responsible for four pandemics in the past and a major 

public health concern. Being zoonotic in nature, the virus can cross the species barrier and 

transmit from wild aquatic bird reservoirs to humans via intermediate hosts. Virus gradually 

undergoes host adaptive mutations in their genome and proteins, resulting in different 

strains/variants which might spread virus from avians/mammals to humans. In this study, we 

have developed an in-silico models to identify infectious strains of Influenza A virus, which has 

the potential of getting transmitted to humans, from its whole genome/proteins. Firstly, machine 

learning based models were developed for predicting infectious strains using composition of 15 

proteins of virus. Random Forest based model of protein Hemagglutinin, achieved maximum 

AUC 0.98 on validation data using dipeptide composition. Secondly, we obtained maximum 

AUC of 0.99 on validation dataset using one-hot-encoding features of each protein of virus. 

Thirdly, models build on DNA composition of whole genome of Influenza A, achieved 

maximum AUC 0.98 on validation dataset. Finally, a web-based service, named “FluSPred” 

(https://webs.iiitd.edu.in/raghava/fluspred/ ) has been developed which incorporate best 16 

models (15 proteins and one based on genome) for prediction of infectious strains of virus. In 

addition, we provided standalone software for the prediction and scanning of infectious strains at 

large-scale (e.g., metagenomics) from genomic/proteomic data. We anticipate this tool will help 

researchers in prioritize high-risk viral strains of novel influenza virus possesses the capability to 

spread human to human, thereby being useful for pandemic preparedness and disease 

surveillance.   

Keywords: Infectious viral strains, Pandemic, Machine learning, Disease-surveillance, Influenza 

A virus. 

Abbreviations: 

� AUC – Area under the ROC Curve 

� MCC –Matthews Correlation Coefficient 

� IRD – Influenza Resource Database 

� XGB – eXtreme Gradient Boosting  

� KNN – K-Nearest Neighbor 

� SVM – Support Vector Machine  
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� GNB – Gaussian Naive Bayes  

� DT – Decision Tree 

� RF – Random Forest 

� AAC – Amino Acid Composition 

� DPC – Dipeptide Composition 

� CDK – k-mer Composition 

� RDK – Reverse Compliment k-mer composition 

Key Points 

• Influenza A is a contagious viral disease responsible for four pandemics.  

• Virus can cross species barrier and infect human beings.  

• In silico models developed for predicting human infectious strains of virus.  

• Models developed were build using 15 proteins and whole genome datasets.  

• Webserver and standalone package for predicting and scanning of high-risk viral strains.  
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Introduction 

 
Influenza is a contagious viral disease, having a zoonotic origin, where a sudden rise in body 

temperature, headache, myalgia, lethargy, and dry cough [1] are some of the symptoms of the 

infection. Severe cases ranging from influenza-induced pneumonia [2], encephalitis, myocarditis 

[3], to death within a few hours, can have fatal outcomes. Patients with chronic heart or lung 

disease [4], immune disorders, diabetes, have an increased risk of influenza infection [5-7]. 

Influenza A virus occurs naturally among wild aquatic birds like geese, swans, waterfowl and it 

is responsible for causing avian influenza in birds, including domestic poultry [8]. However, 

virues jump species barriers to affect animals and humans sporadically [9]. As shown in Figure 

1, different virus strains can affect humans and cause epidemics as the strains may have the 

potential to overcome species barriers and infect humans. Influenza A virus may further get 

adapted in such a way that it could spread human-to-human, leading to a potential pandemic, 

which is a cause of great concern [10, 11]. 

The pandemic influenza strains arise from reassortment of gene segments, where there is major 

antigenic change occurs, i.e., a phenomenon known as antigenic shift [12]. The non-human 

viruses undergo changes so that they become capable of infecting humans and spreading 

efficiently and sustainably [13]. In other words, mutations in amino acid residues, especially 

haemagglutinin, can alter the receptor-binding site and specificity, altering receptor preference 

and spread at large scale in various countries [14]. In past, Influenza A was responsible for the 

outbreak of four pandemics.  One of the most devastating pandemics, with a high mortality rate 

among children below 5 years of age and 20-40 age group, was caused by the H1N1 subtype in 

1918. The virus had an avian origin and resulted in 50 million estimated deaths worldwide [15]. 

The H2N2 subtype emerged in East Asia from an avian source in 1957 causing approximately 

1.1 million deaths worldwide [16]. 
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Figure 1: Schematic representation of the zoonotic spread of Influenza A from wild aquatic

birds to animals by jumping the species barrier and eventually infect humans which can lead to

human-to-human, community transmission to disease outbreaks like epidemics and pandemics.  

In 1968, the H3N2 subtype was first noted in the USA and had over 1 million deaths globally.

This virus later started circulating as the seasonal flu [17]. In 2009 (H1N1) pdm09 was first

noted in the USA and leads to 151,700-575,400 deaths worldwide in the first year of infection,

then it started circulating as seasonal flu [18]. Host adaptive mutations in the genome and

proteins are the major reasons behind the transmissibility of the viral strains from the avian and

mammalian reservoirs to human hosts [19]. In the recent past, several methods have been

developed for the identification of host tropism of Influenza A virus [20-23] using protein and

genome sequences. These studies show that protein and genome sequences are very efficient for

determining the host tropism of zoonotic pathogens and changes take place at the molecular level

for the virus being capable of crossing the species barrier.   
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Figure 2: Schematic representation of Influenza A Virus with a total of eight segments whereas,

(PA, PB1, and PB2) are the subunits of RNA-dependent RNA Polymerase proteins, HA and NA

are surface glycoproteins, (NP) RNA binding protein, (M1) bifunctional membrane/RNA-

binding protein, (M2) ion-channel protein, (PB1F2, PA-N155, PA-N182, and PA-X) are non-

structural proteins.  

In this study, we have made a systematic attempt to develop computational models for the

prediction of infectious strains of the influenza A virus. The aim of this study is to monitor

infectious strains in non-human reservoirs to control the spread of strain from non-human to

human hosts. We compiled 15 influenza A virus proteins and genome sequences from IRD and

VIDHOP resources respectively. Models using different machine learning techniques were

developed where features of proteins and genome were computed using Pfeature and Nfeature.

In order to serve the scientific community, we provide a freely accessible web-server, and a

standalone package named “FluSPred”, for the prediction of infectious influenza A strains with

the help of either of the proteins or the genome sequence using the best prediction models.  

Material and Methods 
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The complete architecture of the study is illustrated in Figure 3. The description of each step is

given below. 

 

Figure 3: The flowchart explains the work and design of FluSPred, including dataset collection,

feature generation, and machine learning techniques.  

Datasets for protein-based models 

We obtained a total of 985,720 protein sequences from the Influenza Research Database (IRD)

database (www.fludb.org) corresponding to 15 proteins of the Influenza A virus. These proteins

were used to create 15 datasets (one dataset for one type of protein), where each dataset has

sequences of the viral proteins from human host and non-human host (avian/mammalian host). In

order to avoid biases, we removed the redundant and incomplete sequences (See Table 1).  In this

study, human infectious strains and associated sequences were considered positive datasets, and

non-human (avian and other mammalian) was taken as a negative dataset. After preliminary data

cleaning, we get 258790 unique protein sequences out of which, 86653 were positive (i.e. viral

protein sequences derived from human hosts) and 172137 were negative sequences (i.e., viral
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protein sequences derived from non-human hosts). The comprehensive distribution of the dataset 

for different Influenza A proteins is provided in the table below.  

Dataset for genome-based models 

Influenza A genomic sequences were obtained from the VIDHOP method [24]. A total of 312617 

genome sequences were available in the dataset in which 159526 humans and 153091 non-

human genomes were selected for this study. In order to maintain the homogeneity in protein and 

genome datasets, here we considered only avian, mammalian, and human. Viral genome 

sequences derived from human hosts were taken as positive and viral genome sequences derived 

from non-human hosts were taken as the negative dataset. Apart from this, the duplicate 

sequences were removed, and finally, a total of 308632 sequences were considered, with 159526 

positive sequences and 149106 negative sequences.  

Table 1: Distribution of positive and negative dataset for the Influenza A protein sequences 

Protein Name 

 

Positive Dataset 

(Human) 

Negative Dataset 

(Non-Human) 

Total Dataset 

 

Polymerase Acidic Protein(PA)  7722 14651 22373 

Polymerase Basic Protein 1(PB1) 6011 12407 18418 

Polymerase Basic Protein 2(PB2) 7961 14165 22126 

Hemagglutinin(HA) 17999 27350 45349 

Nucleoprotein(NP) 3716 9031 12747 

Neuraminidase(NA) 13486 20315 33801 

Matrix Protein 1(M1) 1309 2937 4246 

Matrix Protein 2(M2) 1706 4533 6239 

Non-Structural Protein 1(NS1) 5577 10414 15991 

Non-Structural Protein 2(NS2) 1376 4158 5534 

PB1-F2 2298 9441 11739 

PB1-N40 5028 10893 15921 

PA-N155 4687 10716 15403 

PA-N182 4422 9739 14161 
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PA-X 3355 11387 14742 

 

In order to train and evaluate our models, we perform both internal and external validation. Thus, 

the final dataset was divided into training and validation data, where 80% data was used for 

internal and 20% data was used for external validation [25-28].   

Feature Generation 

Composition-based features 

In order to compute the amino acid composition (AAC) and dipeptide composition (DPC) 

features of protein sequences, we have used the Pfeature standalone package [29]. In case of 

AAC, a feature vector of the length of 20, and for the DPC, a vector length of 400 features was 

computed. Furthermore, to generate the nucleotide-based features for the genome sequence data, 

we have used Nfeature standalone package [30]. Here, we computed composition-based features 

such as the Composition of DNA sequence for all K-Mers (CDK) and Reverse complement of 

DNA for all K-mers (RDK). CDK is a feature extraction method that calculates the composition 

of all 4 nucleotides. Here K could be 1, 2, or 3, generating a feature vector of length 4, 16, and 

64 respectively. Likewise, RDK is a feature extraction method that calculates reverse 

complement K-Mer composition of nucleotides where we used K as 1,2 and 3 having feature 

vector sizes of 2,10, and 32 respectively. 

One-hot Encoding 

In addition, we have used one hot encoding approach for feature extraction, where the length of 

the sequences needed to be equal. In order to generate equal length vectors, we fix the length of 

all the sequences to 0.95 quantiles, where the sequences having shorter than that were extended 

by normal repeats, and the longer sequences were truncated until it reaches 0.95 quantiles of all 

sequences mark [24]. Once the lengths of the sequences are equalized, the sequences are encoded 

numerically by the one-hot encoding method. Here, each of the amino acid residues of the entire 

sequence is converted to a vector size of length of the sequence x 20, where 20 is the canonical 

protein residues, where the respective residue is given the value 1 in its position and the rest is 

given the value 0. This generates a sparse matrix, for instance, Alanine (A) can be represented by 
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a 20-dimensional vector 10000000000000000000. Similarly, Cysteine(C) can be represented as a 

20-dimensional vector 001000000000000000000. 

Machine Learning Models 

In this study, several machine learning algorithms have been implemented for developing binary 

classification models that include Random Forest (RF), K-Nearest Neighbours (KNN), Decision 

Tree (DT), Support Vector Machine (SVM), XGBoost (XGB), Gaussian Naive Bayes (GNB).   

KNN is an instance-based classification method that classifies based on the vote of the nearest 

neighbor data points. It only stores the instances of the training variables and classification is 

determined from the majority vote of the nearest neighbor of each data point. Whereas, RF, is an 

ensemble-based method for classification, while training, the RF classifier fits numerous DTs to 

predict the response variable as an individual tree. Averaging DTs improves the prediction 

accuracy and control on overfitting of the models. However, DT is a non-parametric-based 

supervised learning algorithm that predicts the response variable by learning the decision rules 

from the data features. GBM algorithm is a probabilistic classification approach based on Bayes 

theorem which assumes that the continuous variables of each class follow the normal or 

Gaussian distribution XGB is an ensemble method that implements the gradient boosted decision 

trees designed for speed and performance. It uses an iterative approach and provides a wrapper 

class to treat models like classifiers or regressors. For each of the 15 proteins, SVM, RF, and 

KNN were used on AAC, DPC, One Hot Encoding features. On the other side, DT, KNN, XGB, 

GNB, and RF-based models were generated for genome sequences using CDK and RDK 

features. We fine-tuned the model on the training data by taking different thresholds for 

probabilities as 0.8,0.5, 0.4, 0.2, 0.1, and we found that 0.5 works best for all the models. These 

classification techniques were implemented using python-library sci-kit learn [31]. 

Feature Selection 

Identifying the critical set of features for the machine learning models is one of the significant 

challenges in this study. For one hot encoding feature generation technique, each residue of the 

protein sequences was represented as a 20-dimensional vector (sequence length x 20 dimensions) 

where the resultant matrix became sparse. Therefore, we needed dimensionality reduction where 

we could reduce and choose the final number of components which aids to the faster execution of 
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the program as well as reduces the noise in the data. We have used the Truncated Singular Value 

Decomposition (tSVD) method for one-hot encoded feature selection to improve computational 

efficiency. The highly dimensional matrix was then reduced to 100 principal components by 

calculating the explained variance [32].  

Cross-Validation 

The dataset was split into an 80:20 ratio, where 80 percent data consisted of training data and the 

rest 20 percent was validation data. The training data was further divided into training and testing 

datasets during the 5-fold cross-validation process and the mean of the results for each fold of the 

cross-fold validation was noted down. In the 5-fold cross-validation process, the entire training 

data gets divided into five equivalent folds and then four folds were used for training and the 5th 

fold was used for testing. The whole procedure gets iterated five times where every fold gets a 

chance for being used as testing data. This is a standard procedure used in many studies [33-37].  

Evaluation Parameters 

In the current study, we have used the standard performance evaluation parameters such as 

accuracy, sensitivity, specificity, precision, recall, Matthews Correlation Coefficient (MCC), and 

Area Under the Curve (AUC) were computed. Whereas, accuracy, sensitivity, and specificity are 

threshold-dependent parameters and AUC is threshold independent parameter that is plotted by 

sensitivity vs 1-specificity. The parameters are computed by: 
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Where, TP, TN, FP and FN stand for true positive, true negative, false positive and false negative, 

respectively. 

 

Results 

Composition Based Analysis 

The average amino acid composition of positive and negative sequences for 15 proteins were

computed to determine the changes in the average compositions of proteins.  In the

Supplementary Figure S1, we have provided the amino-acid based compositional analysis for all

the protein sequences. Here, we are showing an example of only HA and NA protein, since they

play a significant role in the zoonosis as their variations are responsible for the different subtypes

of Influenza A [38, 39]. As shown in Figure 4, the average composition of Alanine (A),

Isoleucine (I), and Lysine(K), is comparatively higher in the positive dataset, where, the

Glutamic Acid (E), Glycine (G), Leucine (L), and Methionine (M) shows higher composition in

negative dataset for HA protein. Likewise, for NA protein, Alanine(A), Glutamic Acid(E),

Histidine(H), and Asparagine(N) have a higher average composition in the positive dataset

whereas Glycine(G) and Tyrosine(Y) are higher in the negative dataset. 

 

re 

he 

all 

ey 

es 

), 

he 

 in 

E), 

set 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.485066doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.20.485066


Figure 4 : Average amino acid composition of (A) HA protein and (B) NA protein (C) PB1F2 

protein 

Similarly, we have computed the compositional analysis for the rest of the proteins, as shown in 

Supplementary Figure S1. Each protein shows a difference in the average composition between 

the positive and negative datasets. In PB1-F2, for example, the average composition of 

Glycine(G), Proline (P), and Glutamine (Q) is remarkably high. Consequently, Cysteine(C), 

Glutamic Acid(E),  Lysine (K), and Leucine(L) compositions are significantly higher in the 

negative dataset as shown in Figure 4. This shows that there is a difference in the compositions in 

the amino acids which play a role in the virus being capable of crossing the species barrier to 

infect humans.  

Motif based analysis  

In order to perceive the different motifs occurring exclusively in either of the positive or negative 

datasets/the positive datasets of each of the proteins and the genome, we used MERCI software 

[40]. It is a tool that can identify and return top K motifs that are most frequent in the positive 

sequences and absent in the negative sequences. The top 10 motifs of each of the proteins which 

are exclusively present in the positive and negative datasets are enclosed in Supplementary Table 

S1.  

Performance of Machine Learning Models 

Prediction based on protein datasets 

Machine learning based models have been developed for all the Influenza A proteins for the 

prediction of the human infectious influenza virus strains using different types of sequence-based 

features such as AAC, DPC and One Hot Encoding. The models built using AAC features 

achieves maximum AUC of 0.973 on validation data with an accuracy of 97.5% for HA protein, 

as shown in Table 2. Similarly, PB1-F2 prediction models show the highest accuracy of 98.8% 

on training data as well as validation dataset. Whereas, the other models achieved comparable 

performances on both training and validation datasets as provided in the table below. The 

complete results were provided in Supplementary Table S2.  
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Table 2: The performance of Random Forest-based models developed using AAC features 

for training and validation datasets.  

  TRAINING VALIDATION 

Proteins Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC 

PA 0.95 0.98 0.97 0.97 0.94 0.95 0.96 0.96 0.96 0.91 

HA 0.96 0.99 0.98 0.97 0.95 0.98 0.97 0.97 0.97 0.94 

M1 0.95 0.94 0.94 0.94 0.86 0.73 0.95 0.88 0.84 0.71 

M2 0.94 0.97 0.97 0.96 0.91 0.83 0.96 0.93 0.90 0.81 

NA 0.96 0.98 0.98 0.97 0.95 0.97 0.97 0.97 0.97 0.94 

NP 0.96 0.98 0.98 0.97 0.94 0.95 0.98 0.97 0.97 0.94 

NS1 0.95 0.98 0.97 0.97 0.94 0.96 0.97 0.96 0.96 0.92 

NS2 0.93 0.98 0.97 0.96 0.93 0.89 0.96 0.94 0.93 0.85 

PB1 0.94 0.98 0.96 0.96 0.92 0.92 0.96 0.94 0.94 0.88 

PB2 0.95 0.98 0.97 0.96 0.93 0.95 0.96 0.96 0.96 0.91 

PB1-F2 0.99 0.99 0.99 0.99 0.96 0.92 0.99 0.98 0.96 0.94 

PB1-N40 0.94 0.97 0.96 0.96 0.91 0.91 0.97 0.95 0.94 0.88 

PA-N155 0.94 0.98 0.97 0.96 0.92 0.92 0.97 0.95 0.94 0.89 

PA-N182 0.95 0.98 0.97 0.97 0.93 0.94 0.96 0.95 0.95 0.90 

PA-X 0.95 0.98 0.97 0.96 0.92 0.86 0.98 0.95 0.92 0.86 

Further, we developed various models using the dipeptide composition-based features, where the 

random forest classifier shows higher efficiency compared to the rest of the models using the 

same features Supplementary Table S3. Here, the HA protein model showed the best results, in 

terms of accuracy 97.7% on training as well as validation dataset. Whereas, NP based models 

give maximum performance with an accuracy of 98.4% and AUC 0.99 on the validation dataset. 

The complete results of other datasets are shown in Table 3.   

Table 3: The performance of Random Forest-based models developed using DPC features 

for training and validation datasets.  

  TRAINING VALIDATION 

Proteins Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC 

PA 0.96 0.99 0.97 0.97 0.94 0.97 0.97 0.97 0.97 0.93 

HA 0.96 0.99 0.98 0.98 0.95 0.98 0.97 0.98 0.98 0.95 

M1 0.96 0.97 0.96 0.96 0.91 0.82 0.97 0.92 0.89 0.81 

M2 0.95 0.97 0.97 0.96 0.92 0.89 0.98 0.95 0.93 0.88 

NA 0.96 0.99 0.98 0.98 0.96 0.98 0.97 0.97 0.97 0.94 

NP 0.98 0.98 0.98 0.98 0.96 0.96 0.99 0.98 0.98 0.96 

NS1 0.96 0.98 0.98 0.97 0.95 0.96 0.97 0.96 0.96 0.92 

NS2 0.99 0.99 0.99 0.99 0.99 0.90 0.96 0.91 0.86 0.76 

PB1 0.96 0.99 0.98 0.97 0.95 0.94 0.97 0.96 0.96 0.91 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.485066doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.20.485066


PB2 0.96 0.99 0.98 0.98 0.96 0.97 0.97 0.97 0.97 0.93 

PB1-F2 0.99 0.99 0.99 0.99 0.99 0.87 0.99 0.99 0.83 0.75 

PB1-N40 0.96 0.98 0.98 0.97 0.94 0.95 0.97 0.97 0.96 0.92 

PA-N155 0.94 0.99 0.97 0.96 0.93 0.95 0.97 0.97 0.96 0.92 

PA-N182 0.95 0.98 0.98 0.97 0.94 0.95 0.97 0.97 0.96 0.92 

PA-X 0.95 0.98 0.98 0.97 0.93 0.94 0.98 0.97 0.96 0.92 

In addition, we have used binary or one-hot encoding features for the classification of human and 

non-human sequences. Here, we also observed that HA protein-based models achieved a 

maximum accuracy (99.9% and 98.3%), and AUC (0.980 and 0.988) on training and validation 

data, respectively. Moreover, it shows the highest MCC of 0.966 on the validation data as 

depicted in Table 4. The comprehensive results are provided in Table 4 and the complete results 

are given in Supplementary Table S4. 

Table 4: The performance of Random Forest-based models developed using one hot 

encoding feature for training and validation datasets. 

  TRAINING VALIDATION 

Proteins Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC 

PA 0.97 0.99 0.98 0.98 0.96 0.96 0.97 0.97 0.97 0.93 

HA 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.97 

M1 0.99 0.98 0.98 0.98 0.96 0.89 0.94 0.92 0.91 0.82 

M2 0.99 0.99 0.99 0.99 0.97 0.85 0.98 0.94 0.91 0.86 

NA 0.97 0.99 0.98 0.98 0.96 0.97 0.98 0.97 0.97 0.94 

NP 0.99 0.98 0.99 0.99 0.97 0.93 0.98 0.97 0.96 0.92 

NS1 0.99 0.99 0.99 0.99 0.97 0.93 0.98 0.97 0.96 0.92 

NS2 0.98 0.98 0.98 0.98 0.95 0.88 0.97 0.94 0.92 0.85 

PB1 0.97 0.99 0.98 0.98 0.96 0.94 0.97 0.96 0.96 0.91 

PB2 0.98 0.99 0.98 0.98 0.96 0.95 0.98 0.97 0.97 0.93 

PB1-F2 0.98 0.98 0.99 0.99 0.96 0.90 0.99 0.98 0.95 0.93 

PB1-N40 0.97 0.98 0.98 0.97 0.95 0.95 0.97 0.96 0.96 0.91 

PA-N155 0.97 0.99 0.98 0.98 0.96 0.93 0.98 0.96 0.95 0.91 

PA-N182 0.82 0.94 0.90 0.88 0.77 0.85 0.91 0.89 0.88 0.75 

PA-X 0.98 0.98 0.98 0.98 0.94 0.85 0.98 0.95 0.92 0.86 

  

From the results, we observed that it is evident that although HA and NA are prevalently known 

to play a role in infection by giving rise to new subtypes or variants, they are not the only ones. 

The other proteins also act as human infection-causing strains. There is the scope of further 

research on sequence analysis or molecular studies on these proteins to identify their roles. In 

addition, we found that proteins like NS1, NS2 or M1, M2 which get encoded from the same 
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segment, respectively, give different prediction results. This shows that even though they are 

encoded by the same segments, they are functionally different. This may be attributed to both 

proteins responding individually to structural constraints or selective pressures since a mutation 

in the respective segment can affect either protein separately [41].  

Prediction based on genome datasets 

In order to develop the genome-based classification models, we have used various machine 

learning techniques such as RF, KNN, SVM, DT, NB, and XGB. Here, we have computed RDK 

and CDK based compositional features for the nucleotide sequences, which were used to develop 

prediction models for finding the human/non-human infectious strains. Likewise, we have 

generated CDK based features, where the random forest achieved the highest accuracy (97.6%) 

and AUC of 0.97 on the training data and 98% accuracy and AUC of 0.98 on the validation data, 

as shown in the table below (Table 5). Here, KNN showed almost similar results with an 

accuracy of 97.6% and AUC of 0.975 on training data and 97.7% accuracy, and AUC of 0.977 

on the validation dataset. The rest of the results for CDK are provided in Supplementary Table 

S5. 

Table 5: Performance of machine learning based models developed using CDK (K = 3) 

features on training and validation dataset.   

  TRAINING VALIDATION 

Classifier Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC 

RF 0.98 0.98 0.98 0.98 0.96 0.98 0.98 0.98 0.98 0.96 

KNN 0.99 0.96 0.98 0.98 0.95 0.99 0.97 0.98 0.98 0.96 

SVM 0.85 0.78 0.82 0.82 0.64 0.86 0.78 0.82 0.82 0.64 

DT 0.96 0.96 0.96 0.96 0.91 0.96 0.95 0.96 0.50 0.00 

NB 0.74 0.61 0.68 0.68 0.36 0.74 0.60 0.68 0.67 0.35 

XGB 0.96 0.94 0.95 0.95 0.89 0.96 0.94 0.95 0.95 0.89 

 

On the other side, RDK based features achieve maximum accuracy of 97.6% and AUC of 0.976 

on the training data and validation data using RF-based classifier. Similarly, KNN based models 

also show comparable results on both training and validation dataset (Table 6). However, XGB 

performs quite less with an accuracy of 92.5% and an AUC of 0.925 on validation datasets. 

Results of SVM, DT, and NB classifiers could not perform well on the training as well as 
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validation dataset, as given in Table 6. The complete results are provided in Supplementary 

Table S6. 

Table 6: Performance of machine learning based models developed using RDK(K = 3) 

features on training and validation dataset.   

  TRAINING VALIDATION 

Classifier Sensitivity Specificity Accuracy AUC MCC Sensitivity Specificity Accuracy AUC MCC 

RF 0.98 0.98 0.98 0.98 0.95 0.98 0.98 0.98 0.98 0.95 

KNN 0.99 0.96 0.98 0.97 0.95 0.99 0.96 0.98 0.97 0.95 

SVM 0.80 0.71 0.75 0.75 0.51 0.80 0.71 0.75 0.75 0.51 

DT 0.95 0.94 0.95 0.95 0.90 0.95 0.95 0.95 0.50 0.00 

NB 0.74 0.53 0.64 0.64 0.28 0.74 0.54 0.64 0.64 0.28 

XGB 0.94 0.91 0.93 0.93 0.85 0.94 0.91 0.93 0.93 0.85 

 

Web-Server Implementation 

To serve the scientific community, we have developed a web-server 

(https://webs.iiitd.edu.in/raghava/fluspred/) and standalone package 

(https://github.com/raghavagps/FluSPred) named “FluSPred” using the best model for each 

protein and the genome datasets. For the frontend part of the web-server, the structure was 

developed using HTML5, the styling was done by CSS3 and the logic was made using 

VanillaJS. The backend part was made using Python and PHP. The web-server is responsive as it 

is compatible with almost all devices including desktop, laptop, mobile phone, tablets, and iMac.  

Based on the results, the random forest model for one hot encoding feature showed comparable 

results but even after dimensionality reduction, the models were computer expensive and time 

consuming, which is why we did not select this for the webserver. On the other hand, execution 

of the AAC and the DPC models were efficient and so we selected the DPC models for most of 

the proteins for incorporating them into the web-server since it showed high results in the 

evaluation parameters compared to AAC and was faster in feature generation compared to the 

one-hot encoding of the sequences. For NS2 and PB1F2, we chose the AAC models for random 

forest as they gave the highest results compared to their DPC results. For the genome sequence 

dataset, CDK feature for K=3 at threshold = 0.5 was incorporated in the web server for the 

prediction of human and non-human infectious strains using genomic sequences. 
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The web server has two major modules: (i) Genome and (ii) Protein. User can choose 

protein/genome- based models according to the requirement. Where, under the Protein module 

fifteen different models were included. User can select any models for the prediction of the 

human infectious strain. A single or multiple input sequences can be given by the users in 

standard FASTA format. The result comprises the prediction of the human/non-human infectious 

strain, whether the particular strain would be capable of crossing the species barrier to infect 

humans or not. As a service to the scientific community, the web server “FluSPred” was made 

open-source. This web-server can be used for further research related to Influenza A or public 

health and pandemic surveillance in the long run.  

Case Study: Evaluation of FluSPred  

We conducted a study where our web-server was further validated by using new sequence 

entries, retrieved on 24.12.2021 from IRD. New entries for HA, NP, and PA-X proteins were 

available. These new sequences were thoroughly checked for redundancy and those were 

selected which were not a part of the original dataset that was used in the models. For the HA 

protein, (A/swine/Iowa/A02636065/2021, A/teal/Samara/Bolshechernigovsky/2021, 

A/Texas/01/2021) strains were used, of subtypes H1N2, H5N1, and H3N2 respectively. These 

sequences were then run on the HA prediction model, which accurately predicted that if the 

strains were infectious or non-infectious, with the help of probability scores. The score for non-

infectious sequences were very low (0.02 and 0.07 for A/swine/Iowa/A02636065/2021 and 

A/teal/Samara/Bolshechernigovsky/2021 strains respectively) as compared to the human 

infectious sequence (0.88). Similarly, the sequence of NP protein of A/Texas/01/2021 strain 

having H3N2 subtype was used to authenticate the NP prediction model. The result showed was 

accurate, where the strain cause infections with a score of 0.57. The same strain with PA-X 

protein sequence was used to test the respective protein model. That model also showed that the 

strain causes infections to human with a score of 0.98. 

Discussion 

Zoonotic diseases, including novel infectious agents (like viruses, bacteria, fungi, protozoa and 

pathogens), give rise to approximately 2.4 billion cases of illness and 2.7 million deaths [42-45]. 

Identifying strains that have the susceptibility of causing a disease emergence and can encourage 
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host permissiveness of zoonotic infections is the need of the hour [46]. With the advancements in 

technology and high-throughput sequencing, now it is possible to develop forecasting tools and 

early warning systems in disease outbreak analysis. In the last few years, several attempts have 

been made by scientists worldwide to make computational methods to predict zoonotic events of 

different pathogens such as influenza, SARS, MERS, Ebola, rabies [24, 47-50]. In literature 

numerous genome and protein sequence-based prediction methods are developed for the 

zoonotic host prediction of influenza A virus. Li and Sun [51] used SVM-based approach for the 

prediction of zoonotic host of rabies virus, coronavirus, influenza A virus, where they achieve an 

average accuracy of 84%, 85.67%, and 87% respectively [51]. Christine et al., developed 

computational models by considering 11 influenza proteins and achieve an accuracy of 96.57% 

and AUC of 0.98 [21]. Mock et al [24] developed prediction models using the genomic data of 

multiple zoonotic species including influenza A virus, rabies lyssavirus and rotavirus A and 

achieve an average AUC virus species an AUC between 0.93 and 0.98 for various virus species. 

VIDHOP uses deep neural network approach for the classification and get maximum AUC of 

0.94 on the influenza A dataset [24]. Whereas, the methods are based on the zoonotic host 

prediction of influenza A virus uses limited amount of protein sequence data and do not provide 

any web-server facility for the community.  

In this study, we have made a methodical attempt to develop computational tool using the 15 

proteins and genome sequences for the prediction of human infectious strains of the Influenza A 

virus. The sequence datasets were obtained from IRD and VIDHOP, on which, we calculate 

compositional-based descriptors/features and one hot encoding-based features using Pfeature and 

Nfeature tools. Our models included a wide range of data, with 308632 genome sequences 

pertaining to 34 hosts as well as achieved a much higher accuracy in comparison with existing 

methods. The relevant features were selected on which the model was trained and validated. Our 

compositional analysis indicates which residues (A, I, K, E, H, G, P, Q) composition is higher in 

the positive datasets of three major zoonotic proteins such as HA, NA and PB1-F2. This shows 

that simple composition-based techniques can identify the important features and help in the 

prediction. Motif analysis on the sequence data highlighted the important set of motifs that were 

present on the human sequences and not on the non-human sequences.  
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The results of this analysis have been provided for use in further research. Here, we used AAC 

and DPC features for the infectious strain prediction between human (positive) and mammalian 

/avian(negative) datasets. The AUC varies from 0.88 to 0.99 on validation datasets for 15 

different influenza A proteins, with minimum performer PA-N182 and maximum for HA protein. 

Our results show that Random forest models gave the best prediction, where HA protein 

achieved the highest AUC of 0.99 in training and 0.98 in validation datasets. Additionally, both 

HA and NA showed high results on the computational prediction models, which clearly indicate 

their importance in zoonosis. In case of the genome sequences, random forest showed the best 

results using CDK (K = 3) features, with an accuracy of 98% and AUC of 0.98 on validation 

dataset. Of Note, we have used our best models for 15 proteins and genome to implement the 

web-server named “FluSPred” (https://webs.iiitd.edu.in/raghava/fluspred/ ). To the best of our 

knowledge, this is the first attempt to develop a web-server for the prediction of the zoonotic 

host, whether the particular strain would be capable of crossing the species barrier to infect 

humans or not, using 15 Influenza A proteins and genome sequence data. The models will be 

able to predict whether the sequence pertaining to the virus is infectious or not, from 

avian/mammalian to humans.  
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