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Influenza A is a contagious viral disease responsible for four pandemics in the past and a major
public health concern. Being zoonotic in nature, the virus can cross the species barrier and
transmit from wild aquatic bird reservoirs to humans via intermediate hosts. Virus gradually
undergoes host adaptive mutations in their genome and proteins, resulting in different
straing/variants which might spread virus from aviang/mammals to humans. In this study, we
have developed an in-silico models to identify infectious strains of Influenza A virus, which has
the potential of getting transmitted to humans, from its whole genome/proteins. Firstly, machine
learning based models were developed for predicting infectious strains using composition of 15
proteins of virus. Random Forest based model of protein Hemagglutinin, achieved maximum
AUC 0.98 on validation data using dipeptide composition. Secondly, we obtained maximum
AUC of 0.99 on validation dataset using one-hot-encoding features of each protein of virus.
Thirdly, models build on DNA composition of whole genome of Influenza A, achieved
maximum AUC 0.98 on validation dataset. Finally, a web-based service, named “FuSPred”
(https.//webs.iiitd.edu.in/raghavalfluspred/ ) has been developed which incorporate best 16
models (15 proteins and one based on genome) for prediction of infectious strains of virus. In

addition, we provided standalone software for the prediction and scanning of infectious strains at
large-scale (e.g., metagenomics) from genomic/proteomic data. We anticipate this tool will help
researchers in prioritize high-risk viral strains of novel influenza virus possesses the capability to
spread human to human, thereby being useful for pandemic preparedness and disease

surveillance.

Keywords: Infectious viral strains, Pandemic, Machine learning, Disease-surveillance, Influenza

A virus.

Abbreviations:

28]

AUC — Area under the ROC Curve
M CC —M atthews Correlation Coefficient

28]

28]

IRD — Influenza Resource Database
XGB — eXtreme Gradient Boosting
KNN — K-Nearest Neighbor

SVM — Support Vector Machine
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=

GNB — Gaussian Naive Bayes
DT — Decision Tree

RF — Random Forest

AAC — Amino Acid Composition
DPC — Dipeptide Composition
CDK — k-mer Composition

RDK — Reverse Compliment k-mer composition

Key Points

Influenza A is a contagious viral disease responsible for four pandemics.

Virus can cross species barrier and infect human beings.

In silico models developed for predicting human infectious strains of virus.

Models devel oped were build using 15 proteins and whole genome datasets.

Webserver and standalone package for predicting and scanning of high-risk viral strains.
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I ntroduction

Influenza is a contagious viral disease, having a zoonotic origin, where a sudden rise in body
temperature, headache, myalgia, lethargy, and dry cough [1] are some of the symptoms of the
infection. Severe cases ranging from influenza-induced pneumonia [2], encephalitis, myocarditis
[3], to death within a few hours, can have fatal outcomes. Patients with chronic heart or lung
disease [4], immune disorders, diabetes, have an increased risk of influenza infection [5-7].
Influenza A virus occurs naturally among wild aquatic birds like geese, swans, waterfowl and it
is responsible for causing avian influenza in birds, including domestic poultry [8]. However,
virues jump species barriers to affect animals and humans sporadically [9]. As shown in Figure
1, different virus strains can affect humans and cause epidemics as the strains may have the
potential to overcome species barriers and infect humans. Influenza A virus may further get
adapted in such a way that it could spread human-to-human, leading to a potential pandemic,

which isa cause of great concern [10, 11].

The pandemic influenza strains arise from reassortment of gene segments, where there is major
antigenic change occurs, i.e., a phenomenon known as antigenic shift [12]. The non-human
viruses undergo changes so that they become capable of infecting humans and spreading
efficiently and sustainably [13]. In other words, mutations in amino acid residues, especially
haemagglutinin, can ater the receptor-binding site and specificity, altering receptor preference
and spread at large scale in various countries [14]. In past, Influenza A was responsible for the
outbreak of four pandemics. One of the most devastating pandemics, with a high mortality rate
among children below 5 years of age and 20-40 age group, was caused by the HIN1 subtype in
1918. The virus had an avian origin and resulted in 50 million estimated deaths worldwide [15].
The H2N2 subtype emerged in East Asia from an avian source in 1957 causing approximately
1.1 million deaths worldwide [16].
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Figure 1. Schematic representation of the zoonotic spread of Influenza A from wild aquatic
birds to animals by jumping the species barrier and eventually infect humans which can lead to

human-to-human, community transmission to disease outbreaks like epidemics and pandemics.

In 1968, the H3N2 subtype was first noted in the USA and had over 1 million deaths globally.
This virus later started circulating as the seasonal flu [17]. In 2009 (HIN1) pdm09 was first
noted in the USA and leads to 151,700-575,400 deaths worldwide in the first year of infection,
then it started circulating as seasonal flu [18]. Host adaptive mutations in the genome and
proteins are the magor reasons behind the transmissibility of the viral strains from the avian and
mammalian reservoirs to human hosts [19]. In the recent past, severa methods have been
developed for the identification of host tropism of Influenza A virus [20-23] using protein and
genome sequences. These studies show that protein and genome sequences are very efficient for
determining the host tropism of zoonotic pathogens and changes take place at the molecular level

for the virus being capable of crossing the species barrier.
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Structure of Influenza A virus
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Figure 2: Schematic representation of Influenza A Virus with atotal of eight segments whereas,
(PA, PB1, and PB2) are the subunits of RNA-dependent RNA Polymerase proteins, HA and NA
are surface glycoproteins, (NP) RNA binding protein, (M1) bifunctional membrane/RNA-
binding protein, (M2) ion-channel protein, (PB1F2, PA-N155, PA-N182, and PA-X) are non-
structural proteins.

In this study, we have made a systematic attempt to develop computational models for the
prediction of infectious strains of the influenza A virus. The aim of this study is to monitor
infectious strains in non-human reservoirs to control the spread of strain from non-human to
human hosts. We compiled 15 influenza A virus proteins and genome sequences from IRD and
VIDHOP resources respectively. Models using different machine learning techniques were
developed where features of proteins and genome were computed using Pfeature and Nfeature.
In order to serve the scientific community, we provide a freely accessible web-server, and a
standalone package named “FluSPred”, for the prediction of infectious influenza A strains with

the help of either of the proteins or the genome sequence using the best prediction models.

Material and Methods
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The complete architecture of the study is illustrated in Figure 3. The description of each step is
given below.
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Figure 3: The flowchart explains the work and design of FluSPred, including dataset collection,

feature generation, and machine learning techniques.
Datasetsfor protein-based models

We obtained a total of 985,720 protein sequences from the Influenza Research Database (IRD)
database (www.fludb.org) corresponding to 15 proteins of the Influenza A virus. These proteins
were used to create 15 datasets (one dataset for one type of protein), where each dataset has
sequences of the viral proteins from human host and non-human host (avian/mammalian host). In
order to avoid biases, we removed the redundant and incomplete sequences (See Table 1). In this
study, human infectious strains and associated sequences were considered positive datasets, and
non-human (avian and other mammalian) was taken as a negative dataset. After preliminary data
cleaning, we get 258790 unique protein sequences out of which, 86653 were positive (i.e. vira
protein sequences derived from human hosts) and 172137 were negative sequences (i.e., viral
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protein sequences derived from non-human hosts). The comprehensive distribution of the dataset
for different Influenza A proteinsis provided in the table below.

Dataset for genome-based models

Influenza A genomic sequences were obtained from the VIDHOP method [24]. A total of 312617
genome sequences were available in the dataset in which 159526 humans and 153091 non-
human genomes were selected for this study. In order to maintain the homogeneity in protein and
genome datasets, here we considered only avian, mammalian, and human. Viral genome
sequences derived from human hosts were taken as positive and viral genome sequences derived
from non-human hosts were taken as the negative dataset. Apart from this, the duplicate
sequences were removed, and finally, atotal of 308632 sequences were considered, with 159526
positive sequences and 149106 negative sequences.

Table 1: Distribution of positive and negative dataset for the Influenza A protein sequences

Protein Name Positive Dataset Negative Dataset Total Dataset
(Human) (Non-Human)
Polymerase Acidic Protein(PA) 7722 14651 22373
Polymerase Basic Protein 1(PB1) 6011 12407 18418
Polymerase Basic Protein 2(PB2) 7961 14165 22126
Hemagglutinin(HA) 17999 27350 45349
Nucleoprotein(NP) 3716 9031 12747
Neuraminidase(NA) 13486 20315 33801
Matrix Protein 1(M1) 1309 2937 4246
Matrix Protein 2(M2) 1706 4533 6239
Non-Structural Protein 1(NS1) 5577 10414 15991
Non-Structural Protein 2(NS2) 1376 4158 5534
PB1-F2 2298 9441 11739
PB1-N40 5028 10893 15921
PA-N155 4687 10716 15403
PA-N182 4422 9739 14161
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PA-X 3355 11387 14742

In order to train and evaluate our models, we perform both internal and external validation. Thus,
the final dataset was divided into training and validation data, where 80% data was used for
internal and 20% data was used for external validation [25-28].

Feature Generation

Composition-based features

In order to compute the amino acid composition (AAC) and dipeptide composition (DPC)
features of protein sequences, we have used the Pfeature standalone package [29]. In case of
AAC, afeature vector of the length of 20, and for the DPC, a vector length of 400 features was
computed. Furthermore, to generate the nucleotide-based features for the genome sequence data,
we have used Nfeature standalone package [30]. Here, we computed composition-based features
such as the Composition of DNA sequence for all K-Mers (CDK) and Reverse complement of
DNA for al K-mers (RDK). CDK is a feature extraction method that calculates the composition
of all 4 nucleotides. Here K could be 1, 2, or 3, generating a feature vector of length 4, 16, and
64 respectively. Likewise, RDK is a feature extraction method that calculates reverse
complement K-Mer composition of nucleotides where we used K as 1,2 and 3 having feature
vector sizes of 2,10, and 32 respectively.

One-hot Encoding

In addition, we have used one hot encoding approach for feature extraction, where the length of
the sequences needed to be equal. In order to generate equal length vectors, we fix the length of
all the sequences to 0.95 quantiles, where the sequences having shorter than that were extended
by normal repeats, and the longer sequences were truncated until it reaches 0.95 quantiles of all
sequences mark [24]. Once the lengths of the sequences are equalized, the sequences are encoded
numerically by the one-hot encoding method. Here, each of the amino acid residues of the entire
sequence is converted to a vector size of length of the sequence x 20, where 20 is the canonical
protein residues, where the respective residue is given the value 1 in its position and the rest is

given the value 0. This generates a sparse matrix, for instance, Alanine (A) can be represented by


https://doi.org/10.1101/2022.03.20.485066

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.20.485066; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

a 20-dimensional vector 10000000000000000000. Similarly, Cysteing(C) can be represented as a
20-dimensional vector 001000000000000000000.

Machine L earning Models

In this study, several machine learning algorithms have been implemented for developing binary
classification models that include Random Forest (RF), K-Nearest Neighbours (KNN), Decision
Tree (DT), Support Vector Machine (SVM), XGBoost (XGB), Gaussian Naive Bayes (GNB).
KNN is an instance-based classification method that classifies based on the vote of the nearest
neighbor data points. It only stores the instances of the training variables and classification is
determined from the majority vote of the nearest neighbor of each data point. Whereas, RF, is an
ensemble-based method for classification, while training, the RF classifier fits numerous DTs to
predict the response variable as an individual tree. Averaging DTs improves the prediction
accuracy and control on overfitting of the models. However, DT is a non-parametric-based
supervised learning algorithm that predicts the response variable by learning the decision rules
from the data features. GBM algorithm is a probabilistic classification approach based on Bayes
theorem which assumes that the continuous variables of each class follow the normal or
Gaussian distribution XGB is an ensemble method that implements the gradient boosted decision
trees designed for speed and performance. It uses an iterative approach and provides a wrapper
class to treat models like classifiers or regressors. For each of the 15 proteins, SVM, RF, and
KNN were used on AAC, DPC, One Hot Encoding features. On the other side, DT, KNN, XGB,
GNB, and RF-based models were generated for genome sequences using CDK and RDK
features. We fine-tuned the model on the training data by taking different thresholds for
probabilities as 0.8,0.5, 0.4, 0.2, 0.1, and we found that 0.5 works best for all the models. These

classification techniques were implemented using python-library sci-kit learn [31].
Feature Selection

Identifying the critical set of features for the machine learning models is one of the significant
challenges in this study. For one hot encoding feature generation technique, each residue of the
protein sequences was represented as a 20-dimensional vector (sequence length x 20 dimensions)
where the resultant matrix became sparse. Therefore, we needed dimensionality reduction where

we could reduce and choose the final number of components which aids to the faster execution of
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the program as well as reduces the noise in the data. We have used the Truncated Singular Value
Decomposition (tSVD) method for one-hot encoded feature selection to improve computational
efficiency. The highly dimensional matrix was then reduced to 100 principal components by

calculating the explained variance [32].
Cross-Validation

The dataset was split into an 80:20 ratio, where 80 percent data consisted of training data and the
rest 20 percent was validation data. The training data was further divided into training and testing
datasets during the 5-fold cross-validation process and the mean of the results for each fold of the
cross-fold validation was noted down. In the 5-fold cross-validation process, the entire training
data gets divided into five equivalent folds and then four folds were used for training and the 5th
fold was used for testing. The whole procedure gets iterated five times where every fold gets a
chance for being used as testing data. Thisisa standard procedure used in many studies [33-37].

Evaluation Parameters

In the current study, we have used the standard performance evaluation parameters such as
accuracy, sensitivity, specificity, precision, recall, Matthews Correlation Coefficient (MCC), and
Area Under the Curve (AUC) were computed. Whereas, accuracy, sensitivity, and specificity are
threshold-dependent parameters and AUC is threshold independent parameter that is plotted by

sengitivity vs 1-specificity. The parameters are computed by:

Tp

Sensitivity = )
Tp+Fpn

P s Tn ‘s

Specificity = i

pecificity = " (it)

Tp+T

Accuracy = ——H— (iii)

Tp+Tn+Fp+Fpn

MCC = (Tp * Ty) — (Fp * Fy) (iv)

\/(TP + Fp)(Tp + Fy)(Ty + Fp)(Ty + Fy)
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Where, Tp, Ty, Fpand Fy stand for true positive, true negative, false positive and false negative,
respectively.

Results
Composition Based Analysis

The average amino acid composition of positive and negative sequences for 15 proteins were
computed to determine the changes in the average compositions of proteins. In the
Supplementary Figure S1, we have provided the amino-acid based compositional analysis for all
the protein sequences. Here, we are showing an example of only HA and NA protein, since they
play asignificant role in the zoonosis as their variations are responsible for the different subtypes
of Influenza A [38, 39]. As shown in Figure 4, the average composition of Alanine (A),
Isoleucine (I), and Lysing(K), is comparatively higher in the positive dataset, where, the
Glutamic Acid (E), Glycine (G), Leucine (L), and Methionine (M) shows higher composition in
negative dataset for HA protein. Likewise, for NA protein, Alanineg(A), Glutamic Acid(E),
Histiding(H), and Asparagine(N) have a higher average composition in the positive dataset
whereas Glycing(G) and Tyrosing(Y) are higher in the negative dataset.
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Figure 4 : Average amino acid composition of (A) HA protein and (B) NA protein (C) PB1F2
protein

Similarly, we have computed the compositional analysis for the rest of the proteins, as shown in
Supplementary Figure S1. Each protein shows a difference in the average composition between
the positive and negative datasets. In PB1-F2, for example, the average composition of
Glycing(G), Proline (P), and Glutamine (Q) is remarkably high. Consequently, Cysteing(C),
Glutamic Acid(E), Lysine (K), and Leucing(L) compositions are significantly higher in the
negative dataset as shown in Figure 4. This shows that there is a difference in the compositionsin
the amino acids which play a role in the virus being capable of crossing the species barrier to
infect humans.

Motif based analysis

In order to perceive the different motifs occurring exclusively in either of the positive or negative
datasets/the positive datasets of each of the proteins and the genome, we used MERCI software
[40]. It is atool that can identify and return top K motifs that are most frequent in the positive
seguences and absent in the negative sequences. The top 10 motifs of each of the proteins which
are exclusively present in the positive and negative datasets are enclosed in Supplementary Table
S1.

Performance of Machine L earning Models
Prediction based on protein datasets

Machine learning based models have been developed for all the Influenza A proteins for the
prediction of the human infectious influenza virus strains using different types of sequence-based
features such as AAC, DPC and One Hot Encoding. The models built usng AAC features
achieves maximum AUC of 0.973 on validation data with an accuracy of 97.5% for HA protein,
as shown in Table 2. Similarly, PB1-F2 prediction models show the highest accuracy of 98.8%
on training data as well as validation dataset. Whereas, the other models achieved comparable
performances on both training and validation datasets as provided in the table below. The
complete results were provided in Supplementary Table S2.
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Table 2: The performance of Random For est-based models developed using AAC features
for training and validation datasets.

TRAINING VALIDATION
Proteins Sensitivity | Specificity Accuracy AUC MCC Sensitivity | Specificity Accuracy AUC MCC
PA 0.95 0.98 0.97 0.97 0.94 0.95 0.96 0.96 0.96 0.91
HA 0.96 0.99 0.98 0.97 0.95 0.98 0.97 0.97 0.97 0.94
M1 0.95 0.94 0.94 0.94 0.86 0.73 0.95 0.88 0.84 0.71
M2 0.94 0.97 0.97 0.96 0.91 0.83 0.96 0.93 0.90 0.81
NA 0.96 0.98 0.98 0.97 0.95 0.97 0.97 0.97 0.97 0.94
NP 0.96 0.98 0.98 0.97 0.94 0.95 0.98 0.97 0.97 0.94
NS1 0.95 0.98 0.97 0.97 0.94 0.96 0.97 0.96 0.96 0.92
NS2 0.93 0.98 0.97 0.96 0.93 0.89 0.96 0.94 0.93 0.85
PB1 0.94 0.98 0.96 0.96 0.92 0.92 0.96 0.94 0.94 0.88
PB2 0.95 0.98 0.97 0.96 0.93 0.95 0.96 0.96 0.96 091
PB1-F2 0.99 0.99 0.99 0.99 0.96 0.92 0.99 0.98 0.96 0.94
PB1-N40 0.94 0.97 0.96 0.96 0.91 0.91 0.97 0.95 0.94 0.88
PA-N155 0.94 0.98 0.97 0.96 0.92 0.92 0.97 0.95 0.94 0.89
PA-N182 0.95 0.98 0.97 0.97 0.93 0.94 0.96 0.95 0.95 0.90
PA-X 0.95 0.98 0.97 0.96 0.92 0.86 0.98 0.95 0.92 0.86

Further, we developed various models using the dipeptide composition-based features, where the
random forest classifier shows higher efficiency compared to the rest of the models using the
same features Supplementary Table S3. Here, the HA protein model showed the best results, in
terms of accuracy 97.7% on training as well as validation dataset. Whereas, NP based models
give maximum performance with an accuracy of 98.4% and AUC 0.99 on the validation dataset.
The complete results of other datasets are shown in Table 3.

Table 3: The performance of Random For est-based models developed using DPC features

for training and validation datasets.

TRAINING VALIDATION
Proteins Sensitivity | Specificity | Accuracy AUC MCC Sensitivity | Specificity | Accuracy AUC MCC
PA 0.96 0.99 0.97 0.97 0.94 0.97 0.97 0.97 0.97 0.93
HA 0.96 0.99 0.98 0.98 0.95 0.98 0.97 0.98 0.98 0.95
M1 0.96 0.97 0.96 0.96 0.91 0.82 0.97 0.92 0.89 0.81
M2 0.95 0.97 0.97 0.96 0.92 0.89 0.98 0.95 0.93 0.88
NA 0.96 0.99 0.98 0.98 0.96 0.98 0.97 0.97 0.97 0.94
NP 0.98 0.98 0.98 0.98 0.96 0.96 0.99 0.98 0.98 0.96
NS1 0.96 0.98 0.98 0.97 0.95 0.96 0.97 0.96 0.96 0.92
NS2 0.99 0.99 0.99 0.99 0.99 0.90 0.96 0.91 0.86 0.76
PB1 0.96 0.99 0.98 0.97 0.95 0.94 0.97 0.96 0.96 0.91
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PB2 0.96 0.99 0.98 0.98 0.96 0.97 0.97 0.97 0.97 0.93
PB1-F2 0.99 0.99 0.99 0.99 0.99 0.87 0.99 0.99 0.83 0.75
PB1-N40 0.96 0.98 0.98 0.97 0.94 0.95 0.97 0.97 0.96 0.92
PA-N155 0.94 0.99 0.97 0.96 0.93 0.95 0.97 0.97 0.96 0.92
PA-N182 0.95 0.98 0.98 0.97 0.94 0.95 0.97 0.97 0.96 0.92
PA-X 0.95 0.98 0.98 0.97 0.93 0.94 0.98 0.97 0.96 0.92

In addition, we have used binary or one-hot encoding features for the classification of human and
non-human sequences. Here, we also observed that HA protein-based models achieved a
maximum accuracy (99.9% and 98.3%), and AUC (0.980 and 0.988) on training and validation
data, respectively. Moreover, it shows the highest MCC of 0.966 on the validation data as
depicted in Table 4. The comprehensive results are provided in Table 4 and the complete results
are given in Supplementary Table $4.

Table 4: The performance of Random Forest-based models developed using one hot

encoding featurefor training and validation datasets.

TRAINING VALIDATION
Proteins Sensitivity | Specificity | Accuracy AUC MCC Sensitivity | Specificity Accuracy AUC MCC
PA 0.97 0.99 0.98 0.98 0.96 0.96 0.97 0.97 0.97 0.93
HA 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.97
M1 0.99 0.98 0.98 0.98 0.96 0.89 0.94 0.92 0.91 0.82
M2 0.99 0.99 0.99 0.99 0.97 0.85 0.98 0.94 0.91 0.86
NA 0.97 0.99 0.98 0.98 0.96 0.97 0.98 0.97 0.97 0.94
NP 0.99 0.98 0.99 0.99 0.97 0.93 0.98 0.97 0.96 0.92
NS1 0.99 0.99 0.99 0.99 0.97 0.93 0.98 0.97 0.96 0.92
NS2 0.98 0.98 0.98 0.98 0.95 0.88 0.97 0.94 0.92 0.85
PB1 0.97 0.99 0.98 0.98 0.96 0.94 0.97 0.96 0.96 0.91
PB2 0.98 0.99 0.98 0.98 0.96 0.95 0.98 0.97 0.97 0.93
PB1-F2 0.98 0.98 0.99 0.99 0.96 0.90 0.99 0.98 0.95 0.93
PB1-N40 0.97 0.98 0.98 0.97 0.95 0.95 0.97 0.96 0.96 0.91
PA-N155 0.97 0.99 0.98 0.98 0.96 0.93 0.98 0.96 0.95 0.91
PA-N182 0.82 0.94 0.90 0.88 0.77 0.85 0.91 0.89 0.88 0.75
PA-X 0.98 0.98 0.98 0.98 0.94 0.85 0.98 0.95 0.92 0.86

From the results, we observed that it is evident that although HA and NA are prevalently known
to play arolein infection by giving rise to new subtypes or variants, they are not the only ones.
The other proteins also act as human infection-causing strains. There is the scope of further
research on sequence analysis or molecular studies on these proteins to identify their roles. In
addition, we found that proteins like NS1, NS2 or M1, M2 which get encoded from the same
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segment, respectively, give different prediction results. This shows that even though they are
encoded by the same segments, they are functionally different. This may be attributed to both
proteins responding individually to structural constraints or selective pressures since a mutation
in the respective segment can affect either protein separately [41].

Prediction based on genome datasets

In order to develop the genome-based classification models, we have used various machine
learning techniques such as RF, KNN, SVM, DT, NB, and XGB. Here, we have computed RDK
and CDK based compositional features for the nucleotide sequences, which were used to develop
prediction models for finding the human/non-human infectious strains. Likewise, we have
generated CDK based features, where the random forest achieved the highest accuracy (97.6%)
and AUC of 0.97 on the training data and 98% accuracy and AUC of 0.98 on the validation data,
as shown in the table below (Table 5). Here, KNN showed almost similar results with an
accuracy of 97.6% and AUC of 0.975 on training data and 97.7% accuracy, and AUC of 0.977
on the validation dataset. The rest of the results for CDK are provided in Supplementary Table
S5.

Table 5: Performance of machine learning based models developed using CDK (K = 3)
featureson training and validation dataset.

TRAINING VALIDATION

Classifier Sensitivity | Specificity | Accuracy AUC McCC Sensitivity | Specificity | Accuracy AUC MCC

RF 0.98 0.98 0.98 0.98 0.96 0.98 0.98 0.98 0.98 0.96
KNN 0.99 0.96 0.98 0.98 0.95 0.99 0.97 0.98 0.98 0.96
SVM 0.85 0.78 0.82 0.82 0.64 0.86 0.78 0.82 0.82 0.64
DT 0.96 0.96 0.96 0.96 0.91 0.96 0.95 0.96 0.50 0.00
NB 0.74 0.61 0.68 0.68 0.36 0.74 0.60 0.68 0.67 0.35
XGB 0.96 0.94 0.95 0.95 0.89 0.96 0.94 0.95 0.95 0.89

On the other side, RDK based features achieve maximum accuracy of 97.6% and AUC of 0.976
on the training data and validation data using RF-based classifier. Similarly, KNN based models
also show comparable results on both training and validation dataset (Table 6). However, XGB
performs quite less with an accuracy of 92.5% and an AUC of 0.925 on validation datasets.
Results of SVM, DT, and NB classifiers could not perform well on the training as well as


https://doi.org/10.1101/2022.03.20.485066

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.20.485066; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

validation dataset, as given in Table 6. The complete results are provided in Supplementary
Table $6.

Table 6: Performance of machine learning based models developed using RDK(K = 3)
featureson training and validation dataset.

TRAINING VALIDATION

Classifier Sensitivity | Specificity | Accuracy AUC MCC Sensitivity | Specificity | Accuracy AUC MCC

RF 0.98 0.98 0.98 0.98 0.95 0.98 0.98 0.98 0.98 0.95
KNN 0.99 0.96 0.98 0.97 0.95 0.99 0.96 0.98 0.97 0.95
SVM 0.80 0.71 0.75 0.75 0.51 0.80 0.71 0.75 0.75 051
DT 0.95 0.94 0.95 0.95 0.90 0.95 0.95 0.95 0.50 0.00
NB 0.74 0.53 0.64 0.64 0.28 0.74 054 0.64 0.64 0.28
XGB 0.94 0.91 0.93 0.93 0.85 0.94 0.91 0.93 0.93 0.85

Web-Server Implementation

To seave the scientific community, we have developed a  web-server
(https.//webs.iiitd.edu.in/raghavalfluspred/) and standalone package
(https.//github.com/raghavagps/FluSPred) named “FluSPred” using the best model for each
protein and the genome datasets. For the frontend part of the web-server, the structure was

developed using HTMLS5, the styling was done by CSS3 and the logic was made using
VanillalS. The backend part was made using Python and PHP. The web-server is responsive as it
is compatible with almost all devices including desktop, laptop, mobile phone, tablets, and iMac.
Based on the results, the random forest model for one hot encoding feature showed comparable
results but even after dimensionality reduction, the models were computer expensive and time
consuming, which is why we did not select this for the webserver. On the other hand, execution
of the AAC and the DPC models were efficient and so we selected the DPC models for most of
the proteins for incorporating them into the web-server since it showed high results in the
evaluation parameters compared to AAC and was faster in feature generation compared to the
one-hot encoding of the sequences. For NS2 and PB1F2, we chose the AAC models for random
forest as they gave the highest results compared to their DPC results. For the genome sequence
dataset, CDK feature for K=3 at threshold = 0.5 was incorporated in the web server for the
prediction of human and non-human infectious strains using genomic sequences.
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The web saver has two magor modules. (i) Genome and (ii) Protein. User can choose
protein/genome- based models according to the requirement. Where, under the Protein module
fifteen different models were included. User can select any models for the prediction of the
human infectious strain. A single or multiple input sequences can be given by the users in
standard FASTA format. The result comprises the prediction of the human/non-human infectious
strain, whether the particular strain would be capable of crossing the species barrier to infect
humans or not. As a service to the scientific community, the web server “HuSPred” was made
open-source. This web-server can be used for further research related to Influenza A or public

health and pandemic surveillance in the long run.
Case Study: Evaluation of FIuSPred

We conducted a study where our web-server was further validated by using new sequence
entries, retrieved on 24.12.2021 from IRD. New entries for HA, NP, and PA-X proteins were
available. These new sequences were thoroughly checked for redundancy and those were
selected which were not a part of the original dataset that was used in the models. For the HA
protein, (A/swine/lowa/A02636065/2021, Alteal/Samara/Bol shecher nigovsky/2021,
AlTexas01/2021) strains were used, of subtypes HIN2, H5N1, and H3N2 respectively. These
sequences were then run on the HA prediction model, which accurately predicted that if the
strains were infectious or non-infectious, with the help of probability scores. The score for non-
infectious sequences were very low (0.02 and 0.07 for A/swine/lowa/A02636065/2021 and
Alteal/Samara/Bol shechernigovsky/2021 strains respectively) as compared to the human
infectious sequence (0.88). Similarly, the sequence of NP protein of A/Texas/01/2021 strain
having H3N2 subtype was used to authenticate the NP prediction model. The result showed was
accurate, where the strain cause infections with a score of 0.57. The same strain with PA-X
protein sequence was used to test the respective protein model. That model also showed that the

strain causes infections to human with a score of 0.98.
Discussion

Zoonotic diseases, including novel infectious agents (like viruses, bacteria, fungi, protozoa and
pathogens), give rise to approximately 2.4 billion cases of illness and 2.7 million deaths [42-45].

Identifying strains that have the susceptibility of causing a disease emergence and can encourage
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host permissiveness of zoonotic infectionsis the need of the hour [46]. With the advancementsin
technology and high-throughput sequencing, now it is possible to develop forecasting tools and
early warning systems in disease outbreak analysis. In the last few years, several attempts have
been made by scientists worldwide to make computational methods to predict zoonotic events of
different pathogens such as influenza, SARS, MERS, Ebola, rabies [24, 47-50]. In literature
numerous genome and protein sequence-based prediction methods are developed for the
zoonotic host prediction of influenza A virus. Li and Sun [51] used SVM-based approach for the
prediction of zoonotic host of rabies virus, coronavirus, influenza A virus, where they achieve an
average accuracy of 84%, 85.67%, and 87% respectively [51]. Christine et al., developed
computational models by considering 11 influenza proteins and achieve an accuracy of 96.57%
and AUC of 0.98 [21]. Mock et al [24] developed prediction models using the genomic data of
multiple zoonotic species including influenza A virus, rabies lyssavirus and rotavirus A and
achieve an average AUC virus species an AUC between 0.93 and 0.98 for various virus species.
VIDHOP uses deep neural network approach for the classification and get maximum AUC of
0.94 on the influenza A dataset [24]. Whereas, the methods are based on the zoonotic host
prediction of influenza A virus uses limited amount of protein sequence data and do not provide

any web-server facility for the community.

In this study, we have made a methodical attempt to develop computational tool using the 15
proteins and genome sequences for the prediction of human infectious strains of the Influenza A
virus. The sequence datasets were obtained from IRD and VIDHOP, on which, we calculate
compositional-based descriptors/features and one hot encoding-based features using Pfeature and
Nfeature tools. Our models included a wide range of data, with 308632 genome sequences
pertaining to 34 hosts as well as achieved a much higher accuracy in comparison with existing
methods. The relevant features were selected on which the model was trained and validated. Our
compositional analysis indicates which residues (A, I, K, E, H, G, P, Q) compoasition is higher in
the positive datasets of three major zoonotic proteins such as HA, NA and PB1-F2. This shows
that ssimple composition-based techniques can identify the important features and help in the
prediction. Motif analysis on the sequence data highlighted the important set of motifs that were

present on the human sequences and not on the non-human sequences.
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The results of this analysis have been provided for use in further research. Here, we used AAC
and DPC fesatures for the infectious strain prediction between human (positive) and mammalian
/avian(negative) datasets. The AUC varies from 0.88 to 0.99 on validation datasets for 15
different influenza A proteins, with minimum performer PA-N182 and maximum for HA protein.
Our results show that Random forest models gave the best prediction, where HA protein
achieved the highest AUC of 0.99 in training and 0.98 in validation datasets. Additionally, both
HA and NA showed high results on the computational prediction models, which clearly indicate
their importance in zoonosis. In case of the genome sequences, random forest showed the best
results using CDK (K = 3) features, with an accuracy of 98% and AUC of 0.98 on validation
dataset. Of Note, we have used our best models for 15 proteins and genome to implement the
web-server named “FluSPred” (https.//webs.iiitd.edu.in/raghavalfluspred/ ). To the best of our

knowledge, this is the first attempt to develop a web-server for the prediction of the zoonotic
host, whether the particular strain would be capable of crossing the species barrier to infect
humans or not, using 15 Influenza A proteins and genome sequence data. The models will be
able to predict whether the sequence pertaining to the virus is infectious or not, from

avian/mammalian to humans.

Funding Source

The current work has not received any specific grant from any funding agencies.
Conflict of interest

The authors declare no competing financial and non-financial interests.
Authors' contributions

TR and KS collected and processed the datasets. TR, KS, AD, SP and GPSR implemented the
algorithms and developed the prediction models. TR, KS, AD, SP and GPSR analysed the
results. SP, KS created the back-end of the web server the front-end user interface. TR, KS, AD,
SP and GPSR penned the manuscript. GPSR conceived and coordinated the project. All authors
have read and approved the final manuscript.


https://doi.org/10.1101/2022.03.20.485066

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.20.485066; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Acknowledgements

Authors are thankful to the Department of Bio-Technology (DBT) and Department of Science
and Technology (DST-INSPIRE) for fellowships and the financial support and Department of
Computational Biology, I11TD New Delhi for infrastructure and facilities.

Data Availability Statement

All the datasets generated in this study are avallable at “FuSPred” web server,
https.//webs.iiitd.edu.in/raghava/fluspred/downl oad.php.

References

1. Gaitonde DY, Moore FC, Morgan MK. Influenza: Diagnosis and Treatment, Am Fam
Physician (2019) 100:751-758.

2. Macintyre CR, Chughtai AA, Barnes M et al. The role of pneumonia and secondary
bacterial infection in fatal and serious outcomes of pandemic influenza a(H1IN1)pdm09, BMC
Infect Dis 2018;18:637. https.//doi.org/10.1186/s12879-018-3548-0

3. Sellers SA, Hagan RS, Hayden FG et a. The hidden burden of influenza: A review of the

extra-pulmonary complications of influenza infection, Influenza Other Respir Viruses
2017;11:372-393. https://doi.org/10.1111/irv.12470

4, Fleming DM. The contribution of influenza to combined acute respiratory infections,
hospital admissions, and deaths in winter, Commun Dis Public Health (2000) 3:32-38.

5. Chow EJ, Doyle JD, Uyeki TM. Influenza virus-related critical illness. prevention,
diagnosis, treatment, Crit Care (2019) 23:214. https.//doi.org/10.1186/s13054-019-2491-9

6. Lyytikainen O, Hoffmann E, Timm H et al. Influenza A outbreak among adolescentsin a
ski hostel, Eur J Clin  Microbiol Infect  Dis  (1998) 17:128-130.
https://doi.org/10.1007/BF01682171

7. Thomas P, Riffelmann M, Schweiger B et al. Fatal influenza A virus infection in a child
vaccinated againgt influenza, Pediatr Infect Dis J (2003) 22:201-202.

8. Webster RG. Influenza: an emerging disease, Emerg Infect Dis (1998) 4:436-441.
https.//doi.org/10.3201/e1d0403.980325



https://doi.org/10.1101/2022.03.20.485066

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.20.485066; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

9. Webster RG. The importance of animal influenza for human disease, Vaccine (2002) 20
Suppl 2:516-20.

10.  Taubenberger JK, Morens DM. Influenza: the once and future pandemic, Public Health
Rep (2010) 125 Suppl 3:16-26. https://doi.org/10.1016/90264-410x(02)00123-8

11.  Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic
preparedness, Exp Mol Med (2021) 53:737-749. https://doi.org/10.1038/s12276-021-00603-0

12. Nachbagauer R, Feser J, Naficy A et al. A chimeric hemagglutinin-based universal

influenza virus vaccine approach induces broad and long-lasting immunity in a randomized,
placebo-controlled phase | trial, Nat Med (2021) 27:106-114. https://doi.org/10.1038/s41591-
020-1118-7

13. Rothberg MB, Haessler SD. Complications of seasonal and pandemic influenza, Crit
Care Med (2010) 38:€91-97. https://doi.org/10.1097/CCM .0b013e3181c92eeh

14, Yamada S, Suzuki Y, Suzuki T et a. Haemagglutinin mutations responsible for the
binding of H5N1 influenza A viruses to human-type receptors, Nature (2006) 444:378-382.
https.//doi.org/10.1038/nature05264

15. Saunders-Hastings PR, Krewski D. Reviewing the History of Pandemic Influenza:

Understanding Patterns of Emergence and Transmission, Pathogens (2016) 5.
https://doi.org/10.1016/j.encep.2020.04.008

16.  Viboud C, Simonsen L, Fuentes R et a. Global Mortality Impact of the 1957-1959
Influenza Pandemic, J Infect Dis (2016) 213:738-745. https.//doi.org/10.1093/infdig/jiv534

17. Esposito S, Molteni CG, Daleno C et a. Impact of pandemic A/H1IN1/2009 influenza on
children and their families: comparison with seasonal A/HIN1 and A/H3N2 influenza viruses, J
Infect (2011) 63:300-307. https.//doi.org/10.1016/j.jinf.2011.07.015

18.  Rubinson L, Mutter R, Viboud C et al. Impact of the fall 2009 influenza A(H1IN1)pdm09
pandemic on us hospitals, Med Care (2013) 51:259-265.
https://doi.org/10.1097/M LR.0b013e31827da8ea

19. Sane PD, MacRae C, Kleer M e a. Adaptive Mutations in Influenza
A/Californial07/2009 Enhance Polymerase Activity and Infectious Virion Production, Viruses
(2018) 10. https.//doi.org/10.3390/v10050272



https://doi.org/10.1101/2022.03.20.485066

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.20.485066; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20. Wang J, MaC, Kou Z et a. Predicting transmission of avian influenza A viruses from
avian to human by using informative physicochemical properties, Int J Data Min Bioinform
(2013) 7:166-179. https.//doi.org/10.1504/ijdmb.2013.053198

21. Eng CL, Tong JC, Tan TW. Predicting host tropism of influenza A virus proteins using
random forest, BMC Med Genomics (2014) 7 Suppl 3:S1. https://doi.org/10.1186/1755-8794-7-
S3-S1

22. Xu B, Tan Z, Li K et a. Predicting the host of influenza viruses based on the word
vector, PeerJ (2017) 5:€3579. https.//doi.org/10.7717/peer].3579

23.  Scarafoni D, Telfer BA, Ricke DO et al. Predicting Influenza A Tropism with End-to-
End Learning  of Deep  Networks, Health  Secur  (2019) 17:468-476.
https://doi.org/10.1089/hs.2019.0055

24.  Mock F, Viehweger A, Barth E et al. VIDHOP, viral host prediction with deep learning,
Bioinformatics (2021) 37:318-325. https://doi.org/10.1093/bioi nformati cs/btaa705

25. Agrawa P, Bhalla'S, Chaudhary K et a. In Silico Approach for Prediction of Antifungal
Peptides, Front Microbiol (2018) 9:323. https://doi.org/10.3389/fmich.2018.00323

26. Nagpa G, Chaudhary K, Agrawal P et al. Computer-aided prediction of antigen

presenting cell modulators for designing peptide-based vaccine adjuvants, J Trans Med (2018)
16:181. https.//doi.org/10.1186/s12967-018-1560-1

27.  Qureshi A, Thakur N, Kumar M. VIRsSIRNApred: a web server for predicting inhibition
efficacy of SIRNAs targeting human viruses, J Trand Med (2013) 11:305.
https://doi.org/10.1186/1479-5876-11-305

28. Patiyal S, Agrawa P, Kumar V et a. NAGbinder: An approach for identifying N-
acetylglucosamine interacting residues of a protein from its primary sequence, Protein Sci (2020)
29:201-210. https://doi.org/10.1002/pro.3761

29. Pande A, Patiyal S, Lathwal A et al. Computing wide range of protein/peptide features
from their sequence and structure, BioRxiv (2019) 599126-599126.
https.//doi.org/10.1101/599126

30. MeghaMathur# SP, Anjali Dhall#, Shipra Jain#, Ritu Tomer, Akanksha Arora, Gajendra
P. S. Raghava*. Nfeature: A platform for computing features of nucleotide sequences, BioRxiv
(2021). https://doi.org/10.1101/2021.12.14.472723



https://doi.org/10.1101/2022.03.20.485066

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.20.485066; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

31. Bac J, Mirkes EM, Gorban AN et al. Scikit-Dimension: A Python Package for Intrinsic
Dimension Estimation, Entropy (Basel) (2021) 23. https://doi.org/10.3390/e23101368

32. Kuzmin K, Adeniyi AE, DaSouza AK, Jr. et a. Machine learning methods accurately
predict host specificity of coronaviruses based on spike sequences alone, Biochem Biophys Res
Commun (2020) 533:553-558. https:.//doi.org/10.1016/j.bbrc.2020.09.010

33.  Gautam A, Chaudhary K, Kumar R et al. In silico approaches for designing highly
effective cell penetrating peptides, J Transl Med (2013) 11:74. http://doi.org/10.1186/1479-5876-
11-74

34. Dhall A, Patiyal S, Kaur H et al. Computing Skin Cutaneous Melanoma Outcome From
the HLA-Alleles and Clinical Characteristics, Front Genet (2020) 11:221.
http://doi.org/10.3389/fgene.2020.00221

35. Dhal A, Patiyal S, Sharma N et a. Computer-aided prediction and design of IL-6
inducing peptides: IL-6 plays a crucia role in COVID-19, Brief Bioinform (2021) 22:936-945.
http://doi .org/10.1093/bib/bbaa?59

36. Sharma N, Patiyal S, Dhall A et a. AlgPred 2.0: an improved method for predicting
dlergenic proteins and mapping of IgE epitopes, Brief Bioinform (2021) 22.
http://doi.org/10.1093/bib/bbaa294

37. Dhal A, Patiyal S, Sharma N et al. Computer-aided prediction of inhibitors against
STAT3 for managing COVID-19 associated cytokine storm, Comput Biol Med (2021)
137:104780. http://doi.org/10.1016/j.comphbiomed.2021.104780

38. Dowdle WR. Influenza A virus recycling revisited, Bull World Health Organ (1999)
77:820-828.

39. PappasC, Aguilar PV, Basler CF et al. Single gene reassortants identify a critical role for
PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus, Proc Natl Acad
Sci U SA (2008) 105:3064-3069. http://doi.org/10.1073/pnas.0711815105

40. Vens C, Rosso MN, Danchin EG. Identifying discriminative classification-based motifs
in biological seguences, Bioinformatics (2011) 27:1231-1238.
http://doi.org/10.1093/bioinformatics/btr110

41. Ito T, Gorman OT, Kawaoka Y et a. Evolutionary analysis of the influenza A virus M
gene with comparison of the M1 and M2 proteins, J Virol (1991) 65:5491-5498.
http://doi.org/10.1128/JV1.65.10.5491-5498.1991



https://doi.org/10.1101/2022.03.20.485066

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.20.485066; this version posted March 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

42.  Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence,
Philos Trans R Soc Lond B Biol Sci (2001) 356:983-9809. http://doi.org/10.1098/rstb.2001.0888.

43.  McArthur DB. Emerging Infectious Diseases, Nurs Clin North Am (2019) 54:297-311.
http://doi.org/10.1016/j.cnur.2019.02.006

44.  Jones KE, Patel NG, Levy MA et a. Global trends in emerging infectious diseases,
Nature (2008) 451:990-993. http://doi.org/10.1038/nature06536.

45. Rahman MT, Sobur MA, Islamn MS et al. Zoonotic Diseases. Etiology, Impact, and
Control, Microorganisms (2020) 8. http://doi.org/10.3390/microorganisms8091405

46. Han BA, Schmidt JP, Bowden SE et a. Rodent reservoirs of future zoonotic diseases,
Proc Natl Acad Sci U S A (2015) 112:7039-7044. http://doi.org/10.1073/pnas. 1501598112

47.  Fischhoff IR, Castellanos AA, Rodrigues J et al. Predicting the zoonotic capacity of
mammals to transmit SARS-CoV-2, Proc Biol Sci  (2021) 288:20211651.
http://doi.org/10.1101/2021.02.18.431844

48. Nah K, Otsuki S, Chowell G et al. Predicting the international spread of Middle East
respiratory syndrome (MERS), BMC Infect Dis (2016) 16:356. http://doi.org/10.1186/s12879-
016-1675-z

49, Reed Hranac C, Marshall JC, Monadjem A et al. Predicting Ebola virus disease risk and
the role of African bat birthing, Epidemics (2019) 29:100366.
http://doi.org/10.1016/] .epidem.2019.100366

50.  Worsley-Tonks KEL, Escobar LE, Biek R et al. Using host traits to predict reservoir host
species of rabies virus, PLoS Negl Trop Dis (2020)  14:e0008940.
http://doi.org/10.1371/journal.pntd.0008940

51. Li H, Sun F. Comparative studies of alignment, alignment-free and SVM based
approaches for predicting the hosts of viruses based on viral sequences, Sci Rep (2018) 8:10032.
http://doi.org/10.1038/s41598-018-28308-x



https://doi.org/10.1101/2022.03.20.485066

