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Abstract
Introduction  Uterine corpus endometrial carcinoma (UCEC) causes thousands of deaths per year. To improve the overall 
survival of patients with UCEC, there is a need to identify prognostic biomarkers and potential drugs.
Objectives  The aim of this study was twofold: the identification of prognostic gene signatures from expression profiles of 
pattern recognition receptor (PRR) genes and identification of the most effective existing drugs using the prognostic gene 
signature.
Methods  This study was based on the expression profile of PRR genes of 541 patients with UCEC obtained from The Cancer 
Genome Atlas. Key prognostic signatures were identified using various approaches, including survival analysis, network, and 
clustering. Hub genes were identified by constructing a co-expression network. Representative genes were identified using 
k-means and k-medoids-based clustering. Univariate Cox proportional hazard (PH) analysis was used to identify survival-
associated genes. ‘cmap2’ was used to identify potential drugs that can suppress/enhance the expression of prognostic genes.
Results  Models were developed using hub genes and achieved a maximum hazard ratio (HR) of 1.37 (p = 0.294). Then, 
a clustering-based model was developed using seven genes (HR 9.14; p = 1.49 × 10−12). Finally, a nine gene-based risk 
stratification model was developed (CLEC1B, CLEC3A, IRF7, CTSB, FCN1, RIPK2, NLRP10, NLRP9, and SARM1) and 
achieved HR 10.70; p = 1.1 × 10−12. The performance of this model improved significantly in combination with the clinical 
stage and achieved HR 15.23; p = 2.21 × 10−7. We also developed a model for predicting high-risk patients (survival ≤ 4.3 
years) and achieved an area under the receiver operating characteristic curve (AUROC) of 0.86.
Conclusion  We identified potential immunotherapeutic agents based on prognostic gene signature: hexamethonium bromide 
and isoflupredone. Several novel candidate drugs were suggested, including human interferon-α-2b, paclitaxel, imiquimod, 
MESO-DAP1, and mifamurtide. These biomolecules and repurposed drugs may be utilised for prognosis and treatment for 
better survival.
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Key Points 

We identified the prognostic role of pattern recognition 
receptor genes in uterine corpus endometrial carcinoma 
(UCEC).

Prognostic biomarkers were selected using the network/
cluster approach.

A panel of nine genes was identified as the best prognos-
tic biomarkers for UCEC.

High-risk patients were predicted with high precision 
using these biomarker genes.

We recommend potential repurposed drug candidates for 
the treatment of patients with UCEC at high risk.

1  Introduction

Uterine corpus endometrial carcinoma (UCEC) or endome-
trial cancer (EC) is the sixth most common malignancy in 
females. Of the 65,620 reported cases, 12,590 deaths were 
estimated in 2020 [1]. In contrast with the declining trends 
for many common cancers, mortality has remained roughly 
the same for EC [2]. Advances in high-throughput technol-
ogy mean the prognosis and diagnosis of EC at an early 
stage is possible more often. Still, a notable proportion of 
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patients who develop metastasis or recurrent tumour have 
unfavourable prognoses. UCEC is classified under two 
major subtypes: type I tumours represent about 75–80% of 
the pathologic subtypes and are endometrioid adenocarci-
nomas [3, 4]; type II tumours are serous carcinomas and are 
less well-differentiated so have a poorer prognosis [4, 5]. 
Poor diagnosis and prognostic factors lead to high mortality 
and recurrence in patients with UCEC. To date, a multi-
step diagnosis process including gynaecological examina-
tion, transvaginal ultrasonography, and endometrial biopsy 
is required to distinguish UCEC from other benign diseases. 
At the same time, clinical features such as tumour grade, cer-
vical involvement, lymph node status, histological subtype, 
depth of myometrial invasion, and lymphovascular space 
invasion (LVSI) are used as prognostic factors for patients 
with UCEC [6]. Biopsies provide information related to 
tumour grade, histological subtype, and other clinical fea-
tures. Although platinum-based chemotherapy and hormonal 
therapy are the first-line therapies for UCEC, standard meth-
ods of treating UCEC consist of primary hysterectomy and 
bilateral salpingo-oophorectomy [7]. However, the occur-
rence of distant metastases mean patients respond poorly to 
conventional therapies and have a very low 5-year survival 
rate of ~ 17% [8]. Thus, efficient risk stratification methods 
are required for prognostic evaluation and therapeutic deci-
sion making in UCEC.

With the advent of high-throughput sequencing methods 
and public databases, many biomarkers have been identi-
fied for UCEC diagnosis, classification, and prognosis. 
These biomarkers, in contrast to clinicopathological fac-
tors, are related to underlying molecular mechanisms and 
offer robust theories for the pathogenesis of EC. Previous 
studies revealed that a set of five genes (BUB1B, CCNB1, 
CDC20, DLGAPS, NCAPG) is helpful in the prognosis of 
endometrial I carcinoma. Expression of these genes was 
higher and helped in predicting a higher tumour grade and 
worse overall survival (OS) [9]. Nine genes associated 
with glycolysis (CLDN9, AK4, PC, GPC1, and SRD5A3) 
were associated with poorer survival, whereas B4GALT1, 
GMPPB, B4GALT4, and CHST6 were associated with better 
survival. Amongst these genes, GMPPB had the highest haz-
ard ratio (HR; 1.544) and a p value of 0.0134 [10]. Higher 
KLHL14 expression was associated with worse OS (p = 
0.0370) and progression-free survival (p = 0.081) in UCEC 
samples [11]. Six potential prognostic tumour microenvi-
ronment (TME)-related genes (CACNA2D2, CTSW, NOL4, 
SIGLEC1, TMEM150B, and TRPM5) showed a positive cor-
relation with OS in patients with UCEC [8].

For many years, the pattern recognition receptors 
(PRRs) have been known to have a role in recognising 
microbial ligands and the subsequent activation of the 
immune system. Recent advancements in the field of bio-
informatics led to the development of a specific database 

related to PRRs [12]. The recently updated PRRDB2.0 
[13] covers the latest information about receptors and their 
associated ligands and suggest that ligands for the toll-like 
receptors (TLRs), a well-known family of PRRs, show 
anti-tumoral activities in several cancers through activa-
tion in tumour cells. This activation could trigger both 
pro- and anti-tumoral effects depending on the context 
[14]. Increased angiogenesis and survival, enhancement 
of tumour invasion, and resistance to apoptosis are some 
of the functions indicating that TLRs act as tumour pro-
moters [15]. The TLR pathways are critical regulators in 
chemo-resistance, possibly through activated nuclear fac-
tor (NF)-κB, upregulated expression of the anti-apoptotic 
protein B-cell lymphoma-2 (Bcl-2) [16]. Expression of 
TLRs such as TLR3, 4, 7, and 9 correlates with poor dif-
ferentiation, high proliferation, and advanced staging in 
oesophageal cancer [17]. In lung cancer, TLR5 expres-
sion is associated with a good prognosis, whereas TLR7 
is associated with a poor diagnosis. Also, expression of 
TLR4, 5, 8, and 9 are higher in patients with lung can-
cer than in healthy tissue [18]. TLR7 and 8 are overex-
pressed and stage dependent in pancreatic cancer com-
pared with healthy pancreas tissue [19]. Over-expression 
of TLR1 suggested better survival in pancreatic cancer 
(HR 0.68; 95% confidence interval [CI] 0.47–0.99; p = 
0.044) [20]. Under-expression of TLR9 is associated with 
poorer survival in renal cell carcinoma [21] and is elevated 
in progression of glioma [22], and its lower expression 
is helpful in prediction of disease-free survival in triple-
negative breast cancer [23]. In epithelial ovarian cancer, 
high expression of TLR4 and MyD88 predicted poorer OS 
in patients with endometrial ovarian cancer (HR 2.1; 95% 
CI 1.1–3.8) [24]. Studies have revealed that the combi-
nation of the variant alleles of the two TLR9 polymor-
phisms, rs5743836 and rs187084, might be associated 
with a decreased risk for EC (odds ratio [OR] 0.11; 95% 
CI 0.03–0.44; p = 0.002) [25]. TLR4 also provides chemo-
resistance in ovarian cancer cells [26]. TLR3 and TLR4 
expression were examined during the menstrual cycle, 
endometriosis, postmenopausal endometrium, and endo-
metrial hyperplasia, and low expression of TLR3 and 4 
were associated with poor prognosis in UCEC [27].

In this study, we aimed to investigate the altered expres-
sion profile of PRR genes in the context of survival pre-
diction in patients with UCEC. The identification of core 
biomarker genes with a significant correlation with survival 
can be helpful in the stratification of risk groups and prog-
nosis. Subsequently, the identified biomarker genes can 
form a reliable basis for the exploration of novel therapeu-
tic strategies in UCEC treatment. Our study involved vari-
ous bioinformatics approaches, such as the network-based 
approach, Cox-proportional hazard (PH) survival analy-
ses, and the clustering-based approach for detection of the 
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critical genes and thereby development of highly accurate 
risk-prediction models. We also conducted a comprehen-
sive assessment of the prognostic significance of various 
clinicopathological features and examined the molecular 
mechanisms attributed to the identified genes to find appro-
priate drug molecules that could increase the survival of 
patients with UCEC.

2 � Materials and Methods

2.1 � Dataset and Pre‑Processing

The dataset was initially taken from ‘The Cancer Genome 
Atlas’ (TCGA) using TCGA Assembler 2, which consisted 
of quantile normalised RNA seq expression values for 581 
patients with UCEC. The dataset had information about OS 
and censoring for only 541 patients. The list of 331 PRR sig-
nalling pathway genes was taken from Gene Set Enrichment 
Analysis and HUGO Gene Nomenclature Committee. Gene 
expression data were available for only 308 PRR genes. 
Thus, the final dataset was reduced to 541 samples constitut-
ing RNA seq values for 308 PRR-related genes using house 
Python and R scripts. Table 1 in electronic supplementary 
material (ESM)-1 summarises the clinical, demographic, 
and pathologic features corresponding to the UCEC final 
dataset.

2.2 � Survival Analysis

HRs and 95% CI were computed to predict the risks of death 
associated with high-risk and low-risk groups based on the 
length of OS. These were stratified based on appropriate 
cut-offs for various factors, using the univariate unadjusted 
Cox-PH regression models. Kaplan–Meier (KM) plots were 
used to compare the survival curves of high-risk and low-
risk groups. Survival analyses of these datasets were per-
formed using ‘survival’ and ‘survminer’ packages (V.2.42-6) 
in R (V.3.4.4, The R Foundation). Statistical significance 
between the survival curves was estimated using log-rank 
tests. Wald tests were performed to evaluate the importance 
of the explanatory variables used for HR calculations. Con-
cordance index provided the strength of the predictive ability 
of the model [28]. p values < 0.05 were considered signifi-
cant. Multivariate survival analysis based on Cox regression 
was employed to compare the relationship between various 
covariates.

2.3 � Gene Co‑Expression Network

A PRR genes co-expression network was constructed to 
identify interactions among the genes. To formulate the 
gene co-expression network used here, we applied Pearson’s 
correlation coefficient (PCC) for each PRR gene pair using 
gene expression value, to calculate statistically significant 

Table 1   results of univariate Cox regression with > median cut-off

Genes with HR > 1 are bad BPM; those with HR < 1 are GPM
BPM bad prognostic maker, CI confidence interval, C-index concordance index, GPM good prognostic marker, HR hazard ratio, q value false 
discovery rate-corrected p value

Gene HR 1/HR p Value C-index 95% CI Log-rank (p) q Value

CLEC1B 6.48 0.15 2.11E−06 0.58 2.99–14.04 1.01E−04 4.78E−08
CLEC3A 2.71 0.37 3.47E−03 0.58 1.39–5.28 7.16E−03 2.34E−03
MRC1 2.17 0.46 1.60E−02 0.60 1.16–4.09 1.23E−02 1.35E−02
IRF7 0.47 2.14 1.77E−02 0.59 0.25–0.88 1.43E−02 2.56E−02
CTSB 0.50 2.00 2.65E−02 0.61 0.27–0.92 2.31E−02 3.64E−02
FCN1 2.00 0.50 2.85E−02 0.56 1.08–3.72 2.47E−02 3.53E−02
RIPK2 0.50 2.00 2.86E−02 0.57 0.27–0.93 2.42E−02 4.62E−02
CLEC3B 0.51 1.94 3.35E−02 0.59 0.28–0.95 2.96E−02 4.05E−02
CLEC12B 1.86 0.54 3.82E−02 0.57 1.03–3.35 4.11E−02 4.02E−02
TLR4 0.53 1.89 3.88E−02 0.55 0.29–0.97 3.55E−02 3.82E−02
NLRP10 1.94 0.52 3.99E−02 0.57 1.03–3.65 5.00E−02 3.57E−02
NLRP9 0.53 1.89 4.15E−02 0.56 0.29–0.98 3.70E−02 3.04E−02
MAPKAPK2 0.53 1.88 4.35E−02 0.55 0.29–0.98 3.89E−02 2.36E−02
TNIP1 0.54 1.86 4.38E−02 0.56 0.29–0.98 4.02E−02 2.56E−02
SARM1 0.54 1.85 4.95E−02 0.55 0.29–1.00 4.54E−02 1.53E−02
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associations. The ‘Igraph’ package in R was used to create an 
edge list from the obtained matrix using correlation cut-off, 
|PCC| > 0.5. Then, a gene co-expression network was con-
structed using ‘Cytoscape’ 3.7.1. The network analyser from 
Cytoscape was used to evaluate the degree of each node.

2.4 � k‑Means and k‑Medoids Clustering

k-Means unsupervised clustering was used to identify a 
pre-specified number (k) of representatives/centroids. The 
package ‘sklearn’ was used to partition all PRR genes into 
k clusters in which each PRR gene belongs to the respec-
tive cluster with the nearest mean. k-Means clustering was 
done using Euclidean distance between gene expressions 
of 308 PRR genes. After k clusters were formed, a repre-
sentative gene from each cluster was chosen. This choice 
was made based on the lowest p value based on univariate 
survival analysis. Similarly, medoids from each cluster were 
selected as representatives. This is because, unlike centroids, 
medoids are always restricted to genes of the clusters. Fur-
ther, we used the obtained representative genes for model 
development.

2.5 � Multiple Gene‑Based Models

2.5.1 � Machine Learning‑Based Regression Models

Regression models from the ‘sklearn’ package in Python 
were implemented to fit the gene expression values (inde-
pendent variables) against the OS time (target variable). Var-
ious regressors, including Linear, Random forest, K-nearest 
neighbours, Ridge, Lasso, Lasso Lars, and Elastic Net, were 
used. The fitting and test evaluations were carried using a 
fivefold cross-validation scheme, as implemented in previ-
ous studies [29]. A combination of all five evaluated test 
datasets (predicted OS) was then used to classify the actual 
patient OS at median cut-off to estimate HRs, CIs, and p 
values. Patients with a predicted OS higher than the median 
were classified as ‘low risk’, and those with a predicted OS 
lower than the median were classified as ‘high risk’. Hyper-
parameter optimisation and regularisation was achieved 
using the in-built function ‘GridsearchCV’. Model perfor-
mance is denoted using the standard parameters, root mean 
squared error and mean absolute error.

2.5.2 � Prognostic Index

As implemented in Li et al. [30] and Wang et al. [31], the 
prognostic index (PI) for a set of k genes was evaluated as 
shown in Eq. (1):

(1)PI = Skbkgk

where β represents the regression coefficient obtained for a 
gene g, as estimated from a univariate Cox regression, the 
PI for a different set of genes was used for stratifying risk 
groups, and standard metrics such as HR, p value, etc. were 
estimated. Patients with a PI greater than the median of the 
PI were categorised as high risk, whereas patients with a PI 
less than the median of the PI were classified as low risk.

2.5.3 � Gene Voting‑Based Model

Corresponding to an individual gene expression (median 
cut-off), a risk label of ‘high risk’ or ‘low risk’ was assigned 
to each patient. Thus, for n survival-associated genes, every 
patient was denoted by a vector of n risk labels. In the gene 
voting-based method, the patient was ultimately classified 
into one of the high-/low-risk categories based on the domi-
nant ‘label’ (i.e. occurring more than n/2 times) in this vec-
tor. This is shown in Fig. 1 for n = 5. This was followed by 
an evaluation of standard metrics.

3 � Results

3.1 � Survival‑Associated Pattern Recognition 
Receptor Genes

A univariate Cox-PH analysis was done for all 308 PRR 
genes using median expression cut-offs. For a given gene, 
patients with an expression value greater or lower than the 
median expression value of the gene were classified as high 

Fig. 1   Stratification of patients into high-/low-risk groups using five-
gene voting model (G1, G2 … G5). The expression values of these 
genes (g1, g2, … g5) are used to determine the risk vector based on 
dominant risk labels
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or low risk, respectively. The results of survival analysis in 
the form of HRs, concordance index, p values, CIs, and false 
discovery rate-corrected p values are provided in Table 2 in 
ESM 1. Of 308 genes, only 15 were significant (p < 0.05). 
The survival analysis revealed a total of nine good prog-
nostic markers (GPM; i.e. genes positively correlated with 
patient OS time) and six bad prognostic markers (BPM; i.e. 
genes negatively correlated with patient OS time). Table 1 
shows the results for these genes, along with the metrics 
associated with the stratification of high-/low-risk patients. 
The KM plots are shown in Fig. 1 in ESM 2. Table 3 in ESM 
1 provides the precise molecular information about these 15 
genes and the PubMed identifiers of the studies pertaining 
to their role in cancer, as obtained from Gene cards and The 
Candidate Cancer Gene Database [32], respectively. Table 4 
in ESM 1 shows the results of risk stratification performed 
using various previously suggested prognostic genes in 
UCEC using Cox univariate analysis in the TCGA-UCEC 
dataset at median expression cut-off.

3.2 � Risk Prediction Using Network‑Based Features

In this section, we attempted to select features from the net-
work of PRR genes. The aim of using the network was to 
identify features/representatives to understand connectivity 
in PRR genes. We used the following approaches for feature 
selections: (1) hub genes of the network, (2) medoids of 
clusters, and (3) representatives of clusters. These selected 
features or PRR genes were used to develop models to pre-
dict the survival of patients with cancer.

3.2.1 � Hub Genes of Network

A correlation matrix was computed from 308 PRR genes 
where correlation among all possible pairs of genes was 
computed based on the expression provided in Table 5 in 
ESM 1. The correlation matrix used to create edges of 
the network using ‘Igraph’ for highly correlated pairs of 
genes (|PCC| > 0.5) as described in Sect. 2 is provided in 
Table 6 in ESM 1. We used ‘Cytoscape’ software to visu-
alise and analyse the gene network. The effective correla-
tion was set to be greater than 0.5, which resulted in 116 
nodes and 804 edges. We selected the top 15 hub genes 
(BTK, ITGB2, HAVCR2, FCRL3, CD163, CD300LF, 
CD68, CTSS, CLEC10A, CLEC12A, NR1H3, CLEC4E, 
CD209, ITGAM, and TLR8) based on their degree. These 
hub genes were used to build a prognostic model for 
predicting the survival risk of patients with UCEC. Our 
voting-based model developed using these 15 hub genes 
achieved an HR of 1.37 with p = 0.294. The network is 
shown in Fig. 2, and the network metrics are provided in 
Table 7 in ESM 1.

3.2.2 � Medoids of Clusters

We performed k-medoids clustering of genes based on 
pairwise dissimilarity. The medoids were selected for clus-
ters at different k = 5, 10, 15, 20, and 25. The best result 
was obtained for the gene voting model at k = 5 (HR 1.85; 
p = 0.045). The results at different k values are provided 
in Table 8 in ESM 1.

3.2.3 � Representative Clusters

The representative gene was chosen based on the lowest p 
value obtained from univariate survival analysis from each 
cluster. Obtained representative genes from each cluster 
were used to develop a risk stratification model. This pro-
cess was repeated for k = 5, 10, 15, 20, and 25. The best 
result was obtained for k = 10 (HR 4.11; p = 3.7 × 10−5), 
as shown in Table 2. Further, we filtered the representative 
genes by using a cut-off of p < 0.05 within each cluster. 
The best results were obtained for gene voting models, as 
shown in Table 3. We observed that optimal risk segrega-
tion was obtained for k = 15, which resulted in seven rep-
resentative genes. Table 9 in ESM 1 provides details about 
the distribution of 308 genes into 15 clusters. The gene 
voting model developed for the genes CLEC1B, CLEC3A, 
CTSB, NLRP10, NLRP9, TNIP1, and SARM1 achieved HR 
9.14 and p = 1.49 × 10−12. The network construction was 
done using ‘Cytoscape 3.7.1’ and shows seven different 
clusters with their representative genes in Fig. 3.

3.3 � Risk Estimation Using Multiple Gene‑Based 
Models

Several risk stratification models based on machine-learn-
ing-based regression (MLR), PI, and gene voting were con-
structed using the expression profile of survival-associated 
PRR genes (based on p value). We tried various combina-
tions using 15 significant genes and found that a combina-
tion of nine genes performed the best: CLEC1B, CLEC3A, 
IRF7, CTSB, FCN1, RIPK2, NLRP10, NLRP9, and SARM1. 
Table 4 shows the results corresponding to various risk pre-
diction models for these nine genes. Amongst these, the gene 
voting-based model performed the best: HR 10.70 and p ~ 
10−12. A concordance index value of 0.76 was also the high-
est for this model, and high-/low-risk group survival curves 
were significantly separated with a log-rank p ~ 10−14. Fig-
ure 4 shows the KM plot representing the survival curves 
corresponding to the two risk groups. While the 5-year sur-
vival rate for low-risk patients was close to 85%, it dropped 
as low as 15% for high-risk patients. The PI-based model 
had the next-best performance, with an HR of 3.41 and p ~ 
10−3, and the regression-based linear model was the third 
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Fig. 2   Gene co-expression network analysis of pattern recognition receptor genes. Interconnection of 15 hub genes; darker colour represents a 
higher degree score, darker edge shows higher clustering coefficient value

Table 2   Results of gene voting model for chosen representative genes from each cluster

Bold formatting indicates the set of representative genes for the best model
CI confidence interval, C-index concordance index, HR hazard ratio

S.no Genes Clusters (n) HR p Value C-index 95% CI log-rank (p)

1 CLEC1B, CTSB, NLRP10, UBC, LTF 5 3.53 3.74E−05 0.64 1.94–6.43 6.84E−05
2 CLEC1B, CTSB, NLRP10, CLEC3A, UBC, ESR1, LTF, UBB, 

LGALS3BP, MAPKAPK2
10 4.11 4.38E−06 0.64 2.25–7.51 1.57E−05

3 CLEC1B, UBC, LTF, CTSB, NLRP10, UBB, LGALS3BP, S100A9, 
CLEC3A, RPS27A, APPL1, HSPA1A, SARM1, NLRP9, TNIP1, 
S100A9

15 2.93 8.00E−04 0.62 1.56–5.49 5.41E−04

4 CLEC1B, UBC, LTF, CTSB, NLRP10, DMBT1, LGALS3BP, S100A9, 
CLEC3A, RPS27A, APPL1, HSPA1A, SARM1, NLRP9, TNIP1, 
HSPD1, UBB, CYBA, FLOT1, HMGB1

20 3.64 2.06E−05 0.66 2.01–6.59 2.06E−05

5 CLEC1B, UBC, LTF, CTSB, NLRP10, HSPA1A, LGALS3BP, S100A9, 
CLEC3A, RPS27A, BIRC3, MRC2, CNPY3, NLRP9, TNIP1, 
HSPD1, UBB, CYBA, MRC1, HMGB1, VCAN, CFI, S100A8, FCN1, 
SARM1

25 3.58 4.87E−05 0.64 1.93–6.61 2.86E−05
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Table 3   Results of gene voting model for chosen significant representative genes only from each cluster

Bold formatting indicates the set of significant representative genes for the best model
CI confidence interval, C-index concordance index, HR hazard ratio

S.no Representative genes Clusters (n) HR p Value C-index 95% CI Log-rank (p)

1 CLEC1B, CTSB, NLRP10 5 3.62 1.12E−04 0.60 1.88–6.96 4.87E−04
2 CLEC1B, CTSB, NLRP10, CLEC3A 10 4.25 1.63E−06 0.53 1.30–13.84 4.70E−02
3 CLEC1B, CLEC3A, CTSB, NLRP10, NLRP9, TNIP1, SARM1 15 9.14 1.49E−12 0.73 4.95–16.87 6.64E−12
4 CLEC1B, CLEC3A, CTSB, NLRP10, NLRP9, TNIP1, SARM1 20 9.14 1.49E−12 0.73 4.95–16.87 6.64E−12
5 CLEC1B, CLEC3A, CTSB, NLRP10, NLRP9, TNIP1, SARM1, 

MRC1, FCN1
25 5.46 3.05E−08 0.67 2.99–9.95 9.00E−08

Fig. 3   Network based on 
clustering: seven different 
clusters are shown in different 
colours. Representative pattern 
recognition receptor genes are 
highlighted and represented 
within large squares
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best (and top amongst the MLR models) with HR 1.66, but 
the p value was not statistically significant.

3.4 � Multiple‑Gene Model Sub‑stratifies Patients 
in Clinicopathological High‑Risk Groups

Previous studies indicated a role for clinicopathological 
factors in UCEC prognosis, such as histologic diagnosis, 
ethnicity, clinical stage [6], menopause status, peritoneal 

washing, etc. [33]. Therefore, we performed a univariate 
analysis to assess the association of these factors with OS in 
our dataset. Table 5 shows the results of the univariate analy-
sis. Clinical factors such as clinical stage, residual tumour, 
peritoneal washing, grade, histologic grade, and menopause 
status were the significant factors in UCEC prognosis. The 
gene voting model was able to sub-stratify the high-risk 
patients with UCEC based on clinicopathological factors 
such as histologic diagnosis, peritoneal washing, menopause 
status, neoplasmic grade, residual tumour, and clinical stage, 
as shown in Fig. 5. The KM plots, along with low log-rank 
p values, denote a significant separation between high- and 
low-risk patients. 

3.5 � Multivariate Analysis

We performed a multivariate Cox regression survival analy-
sis using seven prominent prognostic markers, i.e. multiple 
gene voting model, clinical staging, residual tumour, perito-
neal washing, histological subtype, menopause status, grade. 
The p-value corresponding to the gene voting model (HR 
8.17; p < 0.001) and the clinical stage (HR 3.11; p = 0.03) 
was significant, whereas it was not significant for others, as 
depicted by the forest plot in Fig. 6. Thus, a hybrid model 
can be made using the gene voting model and the clinical 
stage for further improvement in risk stratification.

3.6 � Hybrid Voting Model

After obtaining the independent covariates, i.e. multiple 
gene voting model and the clinical stage, based on a mul-
tivariate Cox regression survival analysis, we developed a 
hybrid voting model. This model combined clinical stage 
with the nine gene voting models for risk stratification pur-
poses. As such, the risk vector associated with each patient 
was a 10-bit vector, with 1 bit assigned to risk label because 
of the clinical stage. The model performed better than the 
nine-gene voting model (HR 15.23; p = 2.21 × 10−7, con-
cordance index =0.78, log-rank-p = 2.76 × 10−17). Figure 7 
shows the KM plot corresponding to the hybrid model.

3.7 � Predictive Validation

As implemented in Zhao et al. [34], we performed a predic-
tive assessment of our gene voting model using sub-samples 
of the complete dataset. Sampling sizes of 50%, 70%, and 
90% were chosen with 100 iterations each. HR and concord-
ance index were evaluated for each iteration corresponding 
to the gene voting model and the hybrid model. Figure 8 
shows the boxplots corresponding to these results. The 
median HR (15.34, 15.32, 15.02) and concordance index 

Table 4   Performance of different models developed using multiple 
gene expression profile

Bold formatting indicates statistically significant results (p value, log-
rank p < 0.05). Machine-learning-based regression hyperparameters 
are provided in Table 12 in the Electronic Supplementary Material
CI confidence interval, C-index concordance index, HR hazard ratio, 
KNN K-nearest neighbours, PI prognostic index, SVR support vector 
regression

Model HR p Value C-Index 95% CI Log-rank (p)

Voting 10.70 1.13E−12 0.76 5.57–20.55 8.15E−14
PI 3.41 9.70E−03 0.60 1.35–8.66 2.59E−03
Linear 1.66 1.00E−01 0.56 0.91–3.03 9.81E−02
Ridge 0.99 9.86E−01 0.52 0.55–1.79 9.86E−01
KNN 0.83 5.24E−01 0.52 0.46–1.49 5.24E−01
Elastic net 0.79 4.45E−01 0.55 0.44–1.43 4.47E−01
Random 

forest
0.77 3.85E−01 0.55 0.43–1.39 3.86E−01

Lasso 0.65 1.57E−01 0.56 0.36–1.18 1.53E−01
SVR 0.65 1.57E−01 0.56 0.36–1.18 1.53E−01
Lasso Lars 0.65 1.57E−01 0.56 0.36–1.18 1.53E−01

Fig. 4   Kaplan–Meier plot showing risk stratification of patients with 
uterine corpus endometrial carcinoma based on gene voting model. 
Patients with more than four ‘high-risk’ labels in the ten-bit risk vec-
tor are assigned (blue) as high risk (hazard ratio 10.70, p = 1.13 × 
10−12, C = 0.76, log-rank-p = 8.15 × 10−14), whereas others were 
assigned low risk (red)
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(0.786, 0.792, 0.783) values for the hybrid model remained 
better despite the sampling size. This method ensured that 
the risk stratification models were robust and performed well 
with random datasets of different sizes.

3.8 � Classification Using Hybrid Voting Model

We evaluated the performance of the hybrid model using 
the area under the receiver operating characteristic curve 
(AUROC) value. The ‘survivalROC’ package was used to 
calculate the true-positive and false-positive rates. Here, 
a prediction was considered a true positive if the OS was 
greater than the cut-off time and the patient was in a low-
risk group according to the model; the converse applied for 
a true negative prediction, as shown in Fig. 9a. The median 
of the OS time was 1.1 years. We observed that, amongst 
different OS cut-offs, the model performed best at the cut-
off of 4.3 years. This cut-off is a good classifier between 
high- and low-risk patients. Using this cut-off, an AUROC 
value of 0.86 was obtained by the classification based on the 
hybrid voting model. The ROC curve corresponding to this 
is shown in Fig. 9b.

3.9 � Screening of Therapeutic Agents

The choice of therapy is a crucial step after the identifica-
tion of genes that play a critical role. To do so, we extracted 
drug molecules that could re-modulate the overexpressed 
and underexpressed genes, using the ‘Cmap2’ database [35], 
as per Shen et al. [36]. We queried a list of probe identifiers 
corresponding to upregulated genes (CLEC1B, CLEC3A, 
FCN1, NLRP10) and downregulated genes (RIPK2, SARM1, 

IRF7, CTSB, NLRP9) as input to Cmap2. The output was 
ranked based on p-values (see Table 10 in ESM 1). The 
top positive and negative enriched molecules were hex-
amethonium bromide (enrichment 0.834; p = 2.6 × 10−4) 
and isoflupredone (enrichment − 0.955; p = 2.2 × 10−4), 
respectively. Hexamethonium bromide is a non-depolaris-
ing ganglion blocker and a nicotinic acetylcholine receptor 
antagonist. It can be used to treat hypertension and duo-
denal ulcers [37]. It is known to be poorly absorbed from 
the gastrointestinal tract and does not cross the blood–brain 
barrier. Isoflupredone, also known as delta-fludrocortisone 
and 9α-fluoroprednisolone, is a synthetic glucocorticoid cor-
ticosteroid. 3D conformers of these drug molecules obtained 
from PubChem [38] are shown in Fig. 10.

3.9.1 � Repurposing of Drugs

We also assessed how approved drugs might be helpful in 
prolonging UCEC survival. We obtained five GPM and four 
BPM genes. The biological mechanisms of GPM genes 
(RIPK2, SARM1, IRF7, CTSB, NLRP9) that showed a good 
prognosis in UCEC can be exploited to identify positive 
regulators/inducers that can be used as potential therapeu-
tics. Inducing IRF7 can lead to the production of interferon 
(IFN)-α and IFNβ (Fig. 11a). These have a significant role 
in anti-tumour immunity and homeostasis and have been 
accepted by the US FDA to treat malignancies [39]. IFNα is 
known to trigger apoptosis in tumour cells by various stimuli 
and induce differentiation of dendritic cells [40]. In compari-
son, IFNβ stimulates immune cells, including macrophages 
and natural killer (NK) cells, that may boost the anti-tumour 
effect [41]. Human IFNα-2b is a synthetic replacement for 

Table 5   Univariate analysis using clinicopathological features

Bold formatting indicates statistically significant results (p value, log-rank p < 0.05). Clinical stage, residual tumour, peritoneal washing, grade, 
histologic washing, and menopause status are the significant factors
CI confidence interval, C-index concordance index, EEA endometrioid endometrial adenocarcinoma, HR hazard ratio, MSE mixed serous and 
endometrioid, SEA serous endometrial adenocarcinoma

Clinical factors Strata N HR p Value C-Index 95% CI Log-rank (p)

Clinical stage III, IV vs. I, II 541.00 4.44 1.31E−06 0.71 2.43–8.11 8.81E−07
Residual tumour R0 vs. R1, R2 411.00 0.29 8.06E−04 0.59 0.14–0.60 2.27E−03
Peritoneal washing Negative vs. positive 407.00 0.31 2.42E−03 0.58 0.15–0.66 5.38E−03
Grade G3, high grade vs. G1, G2 541.00 3.27 2.46E−03 0.61 1.52–7.03 7.24E−04
Histologic_diagnosis MSE, SEA vs. EEA 541.00 2.29 6.61E−03 0.56 1.26–4.16 8.65E−03
Menopause status Pre vs. post 512.00 2.54 3.51E−02 0.53 1.07–6.02 5.92E−02
Age > 64 vs. ≤ 64 541.00 1.30 3.79E−01 0.54 0.72–2.33 3.79E−01
Race White vs. others 511.00 1.15 6.83E−01 0.50 0.58–2.29 6.79E−01
Ethnicity Hispanic or Latino vs. not 

Hispanic not Latino
388.00 1.44 7.23E−01 0.50 0.19–10.61 7.37E−01

History other malignancy No vs. yes 541.00 1.18 7.84E−01 0.49 0.36–3.81 7.79E−01
Surgical approach Open vs. minimally invasive 519.00 1.06 8.71E−01 0.51 0.54–2.07 8.71E−01
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Fig. 5   Gene voting model sub-stratifies high-risk groups. a Patients 
with clinical stage III/IV (n = 152) were stratified into high- and 
low-risk groups with logrank-p = 4.3 × 10−13; b neoplasmic grade = 
G3 and high grade (n = 321) were stratified into high- and low-risk 
groups with logrank-p = 5.0 × 10−14; c histologic diagnosis = mixed 
serous adenocarcinoma, endometrioid endometrial adenocarcinoma 
(n = 136) were stratified into high- and low-risk groups with logrank-

p = 9.2 × 10−8; d menopause status = pre (n = 52) were stratified 
into high- and low-risk groups with logrank-p = 4.1 × 10−9; e perito-
neal washing = positive (n = 57) were stratified into high- and low-
risk groups with logrank-p = 8.4 × 10−5; f residual tumour = R1, R2 
(n = 38) were stratified into high- and low-risk groups with logrank-p 
= 3.2 × 10−5. HR Hazard Ratio and C Concordance index
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IFNα and is approved by the FDA as an immunomodulatory 
drug. It has been used in hairy cell leukaemia [40], follicular 
lymphoma [42], and renal cell carcinoma [43]. Paclitaxel 
and imiquimod are the positive regulators for TLR4 and 
TLR7, respectively [44, 45], and can be used as therapeu-
tic drugs for indirect induction of IRF7 and thereby IFNs. 
Agonists such as lipopolysaccharide and imidazoquinoline 
anti-viral compound single strand RNA may also help to 
induce the signalling pathway and lead to the production 
of IFNα/β. CTSB, which plays a crucial role in the NLRP 
signalling pathway can be positively regulated through 
various agonists such as pathogen-associated molecular 
patterns/damage-associated molecular patterns (Fig. 11b). 
Different interleukin (IL) therapeutics may also be a poten-
tial approach in cases of UCEC. RIPK2/RIP2 is involved in 
the nucleosome-binding oligomerization domain-signalling 
pathway and induces the production of various pro-inflam-
matory cytokines (IL-1α, IL-6, tumour necrosis factor-α, 
IL-18), chemokines (monocyte chemoattractant protein-1, 

Fig. 6   Multivariate analysis reveals gene voting model (hazard ratio 8.17; p < 0.001) and clinical stage (hazard ratio 3.11; p = 0.03) as inde-
pendent covariates

Fig. 7   Hybrid model for risk stratification using nine-gene voting 
model and clinical stage (hazard ratio 15.23; p = 2.21 × 10−7, C = 
0.78, log-rank-p = 2.76 × 10−17)
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Fig. 8   Predictive validation of voting-based model. a Grouped boxplots corresponding to estimated Concordance index (y-axis) for 100 itera-
tions of data sampling (x-axis). b Similarly, estimation of hazard ratio (y-axis) for different models using random sampling (x-axis)

Fig. 9   a Terminology used for evaluation of confusion matrix. Initial 
risk labelling was done using an overall survival (OS) cut-off with 
patients having OS > cut-off labelled as positive or low risk and vice 

versa for patients with OS ≤ cut-off. b Receiver operating character-
istic (ROC) curve for gene voting model area under the ROC curve 
(AUROC) of 0.86 was obtained.

Fig. 10   3D conformer of two 
most significant small-molecule 
drugs: a Hexamethonium 
bromide (enrichment = 0.834; 
p = 2.6 × 10−4) b isoflupre-
done (enrichment = − 0.955; 
p = 2.2 × 10−4). CID Pubchem 
Compound ID
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chemokine [C-X-C motif] ligand), and antimicrobial pep-
tides (cathelicidin, defensins) via mitogen-activated protein 
kinase (MAPK) and NF-κβ signalling pathway (Fig. 11c). 
MESO-DAP1 and mifamurtide (FDA approved) positively 
regulate NOD1 and NOD2, so can be indirect regulators for 
RIPK2 [46]. Bacterial peptidoglycan may also be given as 
an agonist that can activate the pathway. The BPM genes 
(CLEC1B, CLEC3A, FCN1, NLRP10), which showed poor 
prognosis in our study, need to be inhibited. Abnormal over-
expression of protein kinase B (AKT) has been observed in 
ovarian, lung, and pancreatic cancers and is associated with 
increased cancer cell proliferation and survival (Fig. 12). 
Therefore, targeting AKT could provide an essential 
approach for cancer prevention and therapy. It has also been 
seen that the suppression of CLEC-3A inhibits cell prolif-
eration and increases chemo-sensitivity through the AKT/
mammalian target of rapamycin (mTOR)/hypoxia-inducible 
factor (HIF)-1α pathway in osteosarcoma [47]. Resveratrol 
or grape powder (NCT 00256334) is a natural AKT inhibitor 

in clinical phase I, whereas MK-2206 (NCT 01333475) is 
a synthetic AKT inhibitor in clinical phase II [48]. These 
might be used as AKT inhibitors if the trials are successful. 
These results provided biological plausibility for reposition-
ing cancer drugs for EC pharmacotherapy. 

4 � Discussion

Although UCEC is known to have a good prognosis if 
diagnosed early, patients at advanced stage are associ-
ated with an abysmal prognosis and high mortality risk. 
As such, efficient risk assessment strategies are required 
for clinical decision making and therapeutic interven-
tion. The clinical features, such as tumour grade, cervi-
cal involvement, lymph node status, histological subtype, 
depth of myometrial invasion, and LVSI are significant in 
risk stratification in UCEC but are not efficient because 
of their limitations. Thus, aided by the development of 

Fig. 11   Schematic illustration of biological mechanism of good prognostic marker (GPM). a IRF-7 b CTSB (cathepsin), and c RIPK2. GPM 
genes are shown in red
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high-throughput sequencing methods and the availability 
of a massive amount of experimental data, various molecu-
lar prognostic markers have been proposed. Earlier studies 
revealed multiple mechanisms at the molecular level that 
led to complicated molecular processes that are crucial for 
cancer progression and development, such as the elucida-
tion of multifaceted signalling processes orchestrated by 
PRRs. This delineation of the regulatory role of PRRs has 
boosted therapeutic decision-making strategies in various 
cancers. PRR agonists are currently used in potential sys-
temic treatments such as chemotherapy, targeted therapy, 
and immunotherapy in the form of vaccine adjuvants [49] 
such as AS15, which is a TLR4/9 agonist and is used as an 
adjuvant to vaccines dHER2 (truncated form of HER2) and 
lapatinib in breast cancer [50]. Monophosphoryl lipid A, 
associated with TLR4, was shown to act as a potent vac-
cine adjuvant and to promote type 1 T helper (Th1)-based 
immune response in human papillomavirus-induced cer-
vical cancer [51]. Imiquimod associated with TLR7 was 
reported to induce apoptosis and stimulate a cell-mediated 
immune response in basal cell carcinoma [52]. A synthetic 
derivative of lipid A, OM-174, when associated with 
TLR2/4, is claimed to reduce tumour progression and pro-
long survival, especially in combination with cyclophos-
phamide in melanoma [53]. FDA-approved PRR targeted 
therapies include AS04, a TLR4 agonist in cervical cancer; 
imiquimod, a TLR7/8 agonist, in various skin cancers; and 
mifamurtide, an NOD2 agonist in osteosarcoma. Combin-
ing PRR-based agonist therapy with immune checkpoint-
targeted antibodies (such as anti-cytotoxic T-lymphocyte-
associated protein-4 or anti-programmed cell death ligand 
1 antibodies) may be the future of cancer therapies [49]. 

However, the role of PRR signalling genes and their utility 
in UCEC therapy is still poorly understood.

In this study, we used the messenger RNA (mRNA) 
expression data obtained from the TCGA-UCEC cohort. 
First, we estimated the prognostic performance of each PRR 
gene by employing survival analysis. We used gene co-
expression network-based feature selection and a clustering-
based approach to find critical PRR genes. Next, we created 
risk stratification models using the genes obtained from this 
process. To improve the performance of the model, we iden-
tified 15 PRR-related biomarker genes that were associated 
with UCEC prognosis based on Cox-regression survival 
analysis: CLEC1B, CLEC3A, MRC1, IRF7, CTSB, FCN1, 
RIPK2, CLEC3B, CLEC12B, TLR4, NLRP10, NLRP9, 
TNIP1, SARM1, and MAPKAPK2. A nine-gene (CLEC1B, 
CLEC3A, IRF7, CTSB, FCN1, RIPK2, NLRP10, NLRP9, 
and SARM1) voting-based model performed the best and also 
stratified high-risk clinical groups significantly. Finally, after 
a comprehensive prognostic comparison with other clinico-
pathological factors, we developed a hybrid model combining 
the expression profiles of nine genes with ‘clinical stage’ to 
predict high- and low-risk patients with UCEC with high 
precision. We also predicted candidate biomolecules that can 
help modulate the gene expressions and also possibly act as 
drugs in the treatment of UCEC.

The obtained nine main biomarker genes (CLEC1B, 
CLEC3A, IRF7, CTSB, FCN1, RIPK2, NLRP10, NLRP9, 
and SARM1) have been shown to exhibit effective reg-
ulatory roles in multiple diseases, including cancer. 
RIPK2, SARM1, IRF7, CTSB, and NLRP9 were linked 
with good prognosis, whereas CLEC1B, CLEC3A, FCN1, 
and NLRP10 were linked with poor prognosis. CLEC1B, 

Fig. 12   Schematic illustra-
tion of biological mechanism 
of CLEC3A: one of the bad 
prognostic markers obtained, 
shown in red
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or C-type lectin domain family 1 member B, has been 
shown to be beneficial in atherosclerosis. CLEC1B meas-
ured plasma concentrations were directly linked with an 
increased risk of carotid plaque formation. ORs in plate-
let-derived growth factor receptor-β were 0.79 (95% CI 
0.66–0.94; p = 0.008) per 1-standard deviation rise [54]. 
Aggretin α-chain C-terminus is a potential candidate for 
the treatment of tumour metastasis through CLEC-2 block-
ade [55]. CLEC2 appears to suppress AKT signalling and 
the invasive activities of gastric cancer cells by blocking 
expression of phosphoinositide 3-kinase (PI3K) subu-
nits [56]. Overexpression of  CLEC3A promotes tumour 
progression and poor prognosis in invasive ductal breast 
cancer. The knockdown of CLEC3A by RNA interference 
approach efficiently inhibited the proliferation, migra-
tion, and invasion of breast cancer cells, which may be 
mediated by PI3K/AKT signalling pathway. Thus it has 
an anti-cancer effect and can be a critical therapeutic for 
breast cancer [57]. FCN1 can be considered a supplemen-
tary biomarker in acute myeloid leukaemia in adults (p = 
0.004; OR 2.95; 95% CI 1.41–6.16). FCN1 gene polymor-
phisms are associated with higher expression of specific 
mRNA in monocytes and granulocytes as well as higher 
FCN1 serum levels [58]. NLRP10 binds to an apoptosis-
associated speck-like protein and can inhibit NF-κB acti-
vation and apoptosis as well as caspase-1-mediated IL-1β 
maturation and thus helps in the regulation of apoptosis 
and inflammation [59]. SARM mediates intrinsic apoptosis 
via Bcl-2 family members. It suppresses Bcl extra-large 
(Bcl-xL) and downregulates extracellular signal-regulated 
kinase phosphorylation [60]. SARM1 can act as one of 
the epigenetic biomarkers in colorectal cancer and helps 
in the identification of cancer by underexpression and/or 
CpG methylation [61]. IRF7 regulates the development 
of granulocytic myeloid-derived suppressor cells through 
S100A9 trans-repression in cancer [62]. The functional 
polymorphism rs12898 in cathepsin B (CTSB) may con-
tribute to primary hepatic cancer susceptibility, and the 
variant A allele could increase the risk of the cancer [63]. 
NLRP9 acts as an inflammasome-related molecule, a reli-
able non-invasive tool for breast cancer diagnosis [64]. 
The assessment of NLRP4 and NLRP9 expression could be 
beneficial in predicting Bacillus Calmette-Guérin failure 
and also in decision making for early radical surgery [65].

One study [66] found that, by deleting biomarker genes 
(and all genes that can be found in the same biological pro-
cess), new signatures with the same prognostic prediction 
capabilities but opposing biological meaning could always 
be found. To understand whether the alternate set of bio-
marker genes were equally effective in our study, we per-
formed a similar analysis on our initial list of 15 significant 
biomarker genes. We removed the nine main biomarker 
genes (involved in our final risk-prediction model) and 

instead chose the remaining set of six alternate biomarker 
genes for model development. The best performing model, 
with HR 4.65 and p value 1.09 × 10−5, of the various com-
binations of these six genes comprised five genes. These 
results indicated that our final model, which consisted of 
nine main biomarker genes, has a superior performance. To 
address our next question about the (co-expression-based or 
biological) correlation between main biomarker genes and 
alternate biomarker genes, we found that most of the alter-
nate biomarker genes correlated with one of the nine main 
biomarker genes (Fig. 1 in ESM 3), for example, MRC1 
had a correlation of 0.45 with FCN1. This explains why 
the alternate set of biomarker genes also correlated with 
survival rather than just the set of main biomarker genes. 
We also tried finding the biological relationships of these 
nine and five biomarker genes. We observed that most of 
these genes have overlapping biological pathways. Figure 2 
in ESM 3 shows these results via a heat map showing the 
intersection of biological pathways among these nine and 
five other genes from our study. Thus, we concluded that 
the alternate genes are correlated with the main biomarker 
genes both in expression and in shared biological mecha-
nisms. Therefore, the model with the main biomarker genes 
is the optimal choice in our case. In an additional analysis, 
we clustered the samples into three groups (high risk, mid 
risk, and low risk) according to their OS time. Thereafter, 
the expression-based correlation (PCC) amongst gene pairs 
were evaluated for these three groups. We then took the top 
ten highly correlated gene pairs from the low-risk group 
and examined whether the high correlation in these gene 
pairs was maintained in the mid- and high-risk groups. We 
observed that PCC values in all gene pairs decreased in the 
mid-risk group. It further decreased in the high-risk group, 
as shown in Table 11 in ESM 1. These observations indicate 
that the correlation between highly correlated gene pairs is 
disturbed in high-risk patients. In other words, low or no 
PCC in these gene pairs is potentially associated with poorer 
survival of patients with UCEC.

Our study incorporated the expression of PRR genes for 
several UCEC samples and investigated the prognostic sig-
nificance of each of these in depth. The resultant nine-gene 
signature was able to classify samples into risk groups and 
exhibited superior performance when compared with many 
of the clinicopathological features. These nine biomarker 
genes can be exploited as therapeutic targets for treatment. 
This can be achieved through modulation of the expression 
of these genes to the required low-risk profile. Apart from in 
silico prediction of small molecules that achieve this goal, 
we also explored the mechanistic roles of several of these 
candidate genes and thereby suggested potential agonists 
for therapeutic repurposing. This work is reasonable, offers 
a realistic framework for subsequent research, and can serve 
as a reference for further experimental efforts.
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To eliminate the possibility of data bias and establish 
the robustness of our model, we implemented a predic-
tive validation technique wherein the model’s performance 
was assessed by an iterative sampling of the dataset across 
various sample sizes. However, to determine their roles 
and provide a basis for potential clinical application, the 
biomarkers obtained in this analysis also need to be vali-
dated in external cohorts and may be integrated with other 
available biomarkers. Furthermore, we were only able to 
use OS to examine patient prognosis because of the lack 
of data about metastasis and recurrence in the TCGA data-
base, which is another limitation of our study.

5 � Conclusion

A risk stratification model was developed that combined 
nine PRR-related genes that could reliably and efficiently 
estimate survival outcomes and direct personalised anti-
cancer therapy in patients with UCEC. Our results also 
suggest that the conjunction of the proposed gene signature 
with clinical staging provides better prognostication than 
using staging information alone. Therefore, the findings of 
our study can also be a potential modification to the exist-
ing risk evaluation system in UCEC. Overall, this study 
finds its importance in the enhancement of our understand-
ing of the oncogenic role of innate immune receptors in 
UCEC.
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