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In the past, several methods have been developed for predicting antibacterial and antimicrobial 
peptides, but only limited attempts have been made to predict their minimum inhibitory concentration 
(MIC) values. In this study, we developed predictive models for MIC values of antibacterial peptides 
against Escherichia coli (E. coli), comprised of 3143 peptides for training and 786 peptides for 
validation, with experimentally determined MIC values. We found that the Composition Enhanced 
Transition and Distribution (CeTD) attributes significantly correlate with MIC values. Initially, we 
attempted to estimate MIC using BLAST similarity searches but found them inadequate. Subsequently, 
we employed machine learning regression models that integrated various features, including 
peptide composition, binary profiles and embeddings from large language models. Feature selection 
techniques, particularly mRMR, were utilized to refine our model inputs. Our Random Forest regressor 
built using default parameters achieved a correlation coefficient (R) of 0.78, R2 of 0.59, and RMSE of 
0.53 on the validation set. Our best model outperformed existing methods when benchmarked on an 
independent dataset of 498 anti-E. coli peptides. Additionally, we screened anti-E. coli proteins in the 
proteomes of three probiotic bacterial strains and created a web-based platform, “EIPpred”, enabling 
users to design peptides with desired MIC values (https://webs.iiitd.edu.in/raghava/eippred).
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Abbreviations
ABP	� Antibacterial peptide
R	� Correlation coefficient
R2	� Coefficient of determination
MSE	� Mean squared error
RMSE	� Root mean squared error
MAPE	� Mean absolute percentage error
MAE	� Mean absolute error
MRE	� Maximum residual error
BLAST	� Basic local alignment search tool
mRMR	� Minimum redundancy maximum relevance
RFR	� Random Forest regression
CNN	� Convolutional neural network
DNN	� Deep Neural network

The introduction of antibiotics in the 1940s revolutionized medicine by effectively treating bacterial infections 
and reducing mortality rates. However, issues such as antibiotic resistance and allergic reactions quickly 
surfaced1. By the early twenty-first century, resistance had rendered many antibiotics ineffective, causing an 
estimated 5 million deaths annually, with projections rising to 10 million by 20502. The escalating resistance 
of pathogens to conventional antibiotics has become a global crisis, demanding new treatment approaches. 
In response, alternative therapies like biologics-based treatments have garnered interest for their specificity 
and reduced potential for resistance development3. These innovative strategies offer a promising solution to 
the limitations of traditional antibiotics in the current era of resistance. Among the leading alternatives are 
peptide/protein-based therapies, including antimicrobial peptides (AMPs) and monoclonal antibodies (mAbs). 
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AMPs are highly effective against a range of pathogens, including multidrug-resistant ones, due to their rapid 
action and unique mechanisms that limit resistance development. Part of the innate immune system, AMPs are 
generally amphipathic and contain cationic amino acids, which enable them to disrupt the negatively charged 
bacterial membrane4. They work through mechanisms such as membrane disruption (carpet formation, barrel 
stave formation, toroidal pore formation) or non-membrane pathways, including the inhibition of protein 
synthesis, DNA/RNA synthesis, metabolic processes, or cell wall formation [Fig. 1]5.

Fig. 1.  Graphical representation of the working of antibacterial peptides and their activity prediction.
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In the field of peptides, extensive research has led to the creation of comprehensive databases accessible to 
the scientific community. The first such database, the Antimicrobial Peptide Database (APD), was established 
in 2004 and contains detailed information on peptides with various properties, including antitumor, antiviral, 
antifungal, and antibacterial activities6. Since its inception, numerous public repositories have emerged, 
providing data on natural, synthetic, and predicted antimicrobial/antibacterial peptides. Notable examples 
include CAMPR4, DBAASP v3, DRAMP 3.0 and AntiTbPdb, which offer comprehensive information on the 
peptide structure, functional activities, target species, and sources7–10. These databases, populated with data 
from both experimental methods and computational resources, are invaluable for designing new drugs and 
advancing peptide research.

With the growth of publicly available data on AMPs, there has been a significant increase in the development 
of accurate prediction tools for identifying and designing AMP sequences. Examples of these methods include 
AI4AMP, AMPDiscover, AMPScanner vr.2, AntiBP3, AntiFP and AntiMPmod11–16. Similarly, species-specific 
predictive methods like AntiTbPred are designed to distinguish antituberculosis peptides17. These methods aim 
to predict peptides that can inhibit bacterial growth but do not assess the inhibitory potential or the amount of 
peptide required to inhibit bacterial growth18. Recent studies have attempted to predict the minimum inhibitory 
concentration (MIC) value of peptides against Escherichia coli (E. coli) or other bacteria5,19–22. To complement 
these existing methods, we have systematically developed an improved method for predicting the MIC value 
of peptides against E. coli. One of the major objectives of our study is to facilitate the scientific community in 
designing peptides with desired MIC values against E. coli. Therefore, we developed standalone software called 
EIPpred and a web-based platform to support this goal. Our standalone server can be used to scan antibacterial 
peptides in proteins against E. coli at a proteome scale. In addition to prediction, our server maps residues in 
peptides responsible for increasing or decreasing MIC values.

Hence, to deploy the application of our web server, we have performed a case study aimed at determining 
the effectiveness of our models in predicting the inhibitory peptides/regions from the protein sequences of 
the whole genome of the probiotic organisms. E.coli is a common bacterial species found in the flora of the 
human gut; however, certain enteropathogenic strains of E.coli can cause various infections and can easily 
develop resistance, such as gastrointestinal disorders like loss of appetite, nausea, hemorrhagic colitis (HC), 
diarrhoea and Inflammatory Bowel Disease (IBD)23,24. Hence, several probiotics in the market have been 
released possessing antimicrobial properties that help in the elimination of intestinal pathogenic bacteria25,26. 
These probiotics consist of non-pathogenic live microorganisms, namely Lactic Acid Bacteria (LAB) that 
produce bacteriocin and lactic acid to limit the proliferation of distinct or related bacteria and others such as 
Bifidobacterium, Propionibacterium and the fungi Saccharomyces boulardii are effective according to WHO and 
Food and Agriculture Organisation of the United Nations (FAO)27. Enterococcus belongs to the LAB bacterial 
species that produce a different variety of enterocin that suppress the flourishing gram-negative and gram-
positive bacteria28,29. They provide several health benefits, including regulating the host immune system, anti-
inflammatory effects, antimicrobial effects, enhancing nutrient absorptions, etc.30,31. For this, we have selected 
the three most commonly used probiotic strains of Lactobacillus, Bifidobacterium, and Enterococcus that inhibit 
the growth of E.coli and thus have antibacterial properties in their proteome data. By employing the standalone 
version of EIPpred, we scan the whole proteome of the selected strains and identify the proteins possessing 
maximum inhibitory activity against E. coli, which could be beneficial in designing novel antibacterial peptide-
based drugs.

Materials and methods
Collection of dataset
Main dataset
The pre-processed dataset of 3929 peptides with MIC value against E. coli was obtained from paper MBC-CNN 
attention32, which was originally curated from the DBAASP v3 database8. This dataset was divided into training 
and validation sets, with the training set containing 3,143 (80%) sequences and the validation set containing 786 
(20%) sequences. To avoid any biases in the distribution of the training and validation datasets, we first sorted 
all peptides in decreasing order based on their MIC values, then added the first peptide to the validation set, the 
next four peptides to the training set, the sixth peptide to the validation set and so on.

Independent dataset
We have already used 20% of the data to validate our models using external validation. In addition, we have 
created an independent dataset of peptides with MIC values against E. coli to evaluate the performance of our 
final model and the existing methods. We extracted 498 unique experimentally validated peptides, curated from 
DBAASP8, DRAMP33 and APD36 databases with a count of 127, 342 and 29 peptides, respectively. We ensured 
none of these sequences were identical to the training and validation dataset. We removed all those 8–60 length 
peptides that contain unnatural amino acids, ‘BJOUZX’.

Target variable
In this study, the target MIC value is represented as negative logarithmic MIC (in microMolar) against the 
bacteria, represented in Eq. 1. However, a single peptide can have multiple MIC values; in that scenario, the 
mean of all MIC values is considered the target prediction value for such multiple entries21.

	 T arget variable unit = −log10 (MIC in microMolar, µM)� (1)

Scientific Reports |         (2025) 15:4672 3| https://doi.org/10.1038/s41598-025-86638-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Workflow of the study
The detailed workflow of the study is represented in Fig. 2, which depicts the progression of this study from the 
data curation to the final tool development and web server development.

Cross-validation
To ensure accurate error estimation, we employed a fivefold cross-validation (CV) approach, which prevents 
overfitting, reduces bias, and allows us to evaluate the predictive ability of our models. We applied the fivefold 
CV technique on the training dataset while keeping the validation dataset untouched as a standard procedure 
which has been extensively used in several previous studies34–36. This approach divides the entire training dataset 
into five parts: four parts for training the model and the fifth part for testing it. This process is repeated five 
times, with each part serving as a test set once. The overall performance is calculated as the average of these five 
iterations. The untouched validation dataset is then used to externally validate our models.

BLAST for similarity search
BLAST is heavily used in literature to annotate protein sequences37–39. We have used it to identify peptides 
with antibacterial activity based on the similarity of peptides with known antibacterial activity, believing that 
similar sequences might have the same functional properties. The blastp (protein–protein BLAST) suite of 
BLAST + version 2.7.1 was used to develop the similarity-based search module40, where the query sequences 
were hit against the custom database built using the training set consisting of known activity of ABPs. Then, a 
peptide is searched against a custom database using BLAST for different E-value cutoffs. For the hits obtained 
after running the BLAST, the validation peptide was assigned to the particular MIC values from the database, 
and the performance was evaluated using various e-values.

Fig. 2.  The detailed workflow of the study.
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Peptide features
Composition-based features
Residue information of the protein was used in the form of various compositional features for developing ML 
regression models. With the intent to calculate a diverse range of features from the sequences of protein or 
peptide, we have implemented the Pfeature package41. We deployed the composition-based module of Pfeature 
to generate more than 9000 descriptors of peptide sequences in the datasets. We have calculated nineteen types 
of features (AAC, DPC, RRI, DDR, SEP, SER, SPC, PRI, AAI, CTC, CeTD, PAAC, APAAC, QSO, TPC, ATC, 
PCP, BTC and SOC) as shown in Supplementary Table S1. The input vector of 9189 descriptors was used further 
for feature selection and ML purposes42.

Binary profiles
We generated a binary profile or one hot encoding of patterns by assigning binary values to the amino acids 
in fixed-length patterns. First, we have divided the whole data set into four different groups according to the 
length of the peptides: 1st group with a length of 5-10aa, 2nd group with a length of 11-20aa, 3rd group with 
a length of 21-40aa and 4th group with a length of 41aa or more. For each group, we have further created 
fixed length vectors such as for group 5-10aa, a vector of 10 residues is formed by taking five residues from the 
N-terminal and five residues from the C-terminal, then generating a pattern with a vector size of 10 × 20 (here, 
20 corresponds to each amino acid present in the pattern and 10 is the length of the pattern)43. Similarly, patterns 
of 20 × 20, 40 × 20 and 80 × 20 are generated for the second, third and fourth groups, respectively, as depicted in 
Supplementary Table S2.

Large language model (LLM) embeddings
Transformer-based language models have recently been prominent in natural language processing (NLP) 
and have been applied to protein sequences. These protein language models (PLMs) seek to enhance protein 
representation by learning contextualized representation (also called embeddings) from an abundance of protein 
sequence data, improving tasks involving protein functions44.

We evaluated three pre-trained protein models (protBERT, BioBERT and ESM-2) to extract features from 
the peptide sequences for regressive analysis. ProtBert 45 was trained on the Big Fantastic Database (BFD), 
which contains over 2.3 million protein sequences and is based on the BERT algorithm46,47. The last attention 
layer produces an output of a 1024-dimensional embedding for each residue48. BioBERT (Bidirectional 
Encoder Representations from Transformers for Biomedical Text Mining) is a model pre-trained on large-
scale biomedical corpora (PubMed abstracts and PubMed Central full-text articles)49 that generates a total of 
768 embeddings and ESM-2 (Evolutionary Scale Modeling)50 is a general-purpose PLM based on the BERT 
transformer architecture and trained on UniRef50 to predict masked amino acids using all the preceding and 
following amino acids in the sequence. In this study, we used a model called esm2_t33_650M_UR50D ( termed 
ESM-2), which has approximately 3 billion learnable parameters. The model’s output was an embedding of a 
feature dimension of 1280 for each amino acid44.

Feature selection
Pfeature has generated a large number of peptide features, i.e., 9189, and all might not be relevant; some may 
be highly correlated with each other and can cause overfitting. Therefore, selecting features that have majorly 
contributed to the performance of ML and removing the highly correlated features are necessary to identify 
relevant features, thus reducing the complexity of models. Among various feature selection methods, we have 
applied the mRMR (minimum redundancy maximum relevance) method51 that uses mutual information to 
compute the relevance and the redundancy among features/classes. We have used the mrmr_regression program 
to select the top 200, 500, 1000, 1500 and 2000 features and evaluated the ML performance on the selected 
features.

Regression models
Regression aims to create a model of the relationship between a certain number of features and a continuous 
target variable. Twelve different regression algorithms were implemented in our study using the Python Scikit-
learn library52. Regressive algorithms used in the study are Linear regression (LR)53, Support vector regression 
(SVR)54, Ridge regression (Rigde)55, Lasso regression 56, Gradient Boosting regression (GBR)57, MLP regression 
(MLPR)58, AdaBoost regression(AdaBR)59, Elastic Net regression (ENR)60, Kernel Ridge regression (KRR)61 and 
Bayesian Ridge regression(BRR)62 to determine which model could deliver the most accurate performance in 
the prediction of the exact value of MIC. The models are run with the default parameters.

Hybrid approach
We intended to enhance further our best-performing regressor model, built on the best feature set, by 
incorporating an ensemble method. This method combines the regressive power of the similarity search method 
with the ML regressors. Unlike a classification problem where the blast scores are added with the prediction 
scores, instead here, the MIC values are replaced for the obtained blast hits with the corresponding ML prediction 
scores. Various E-value cutoffs were used to evaluate the performance of the hybrid method.

Performance metrics
We have used the Correlation coefficient (R-score), Mean absolute percentage error (MAPE), Maximum residual 
error (MRE), Mean absolute error (MAE), Mean squared error (MSE), Root mean squared error (RMSE), and 
Coefficient of determination (R2) as metrics to measure the performance of the regressive models as shown 

Scientific Reports |         (2025) 15:4672 5| https://doi.org/10.1038/s41598-025-86638-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


in Equations from 2 to 7. Note that the lower the MAE, MSE, MAPE, MRE, or RMSE value, the better the 
regression models. Conversely, the higher the value of R and R2, the better the regressive models.
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√

Σ (xi − x)2 Σ
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)2 � (2)
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yi

∣∣∣∣ × 100� (6)

	 MRE = max (|yi − ŷi|)� (7)

where,yi and xi  are the data points, N is the number of data points, and y, ŷi and x  indicates the mean value of 
y, predicted value of actual value (y), and average of x, respectively.

Results
Primary analysis
Length distribution
We have explored the datasets according to their length and found that more than 80% of the data length lies in 
between 11 and 40 residues for all train, validation and independent sets. The dataset is graphically represented 
in Fig. 3 as per length distribution.

Correlation analysis
In order to find the strength of the relationship between the features and the target MIC values, we have computed 
the Pearson correlation of amino acids, dipeptides, and mRMR selected 1000 features, as depicted in Fig. 4. Its 
value ranges from − 1 to 1, where − 1 represents a negative correlation, which means the target MIC value is less 
dependent, and 1 represents a positive correlation, which means the target MIC value is more dependent on that 
particular feature, and a value of 0 indicates no correlation.

In amino acids, residues such as R and Y show a positive correlation of 0.19 and 0.14, while residues such as 
E and S show significant negative correlation of − 0.16. In the case of dipeptides, among 400 dipeptide features, 
the top 10 positive correlated and bottom 10 negative correlated features have been selected for representation; 
dipeptides like CY and YR have shown the highest correlation of 0.23. In contrast, EN and NE have shown 
the lowest correlation of − 0.16 and − 0.15, respectively. Similarly, for the 1000 mRMR selected features, the 
top 10 and bottom 10 have been used for representation, where the CeTD features show a maximum positive 
correlation of 0.41, and PRI features show a minimum correlation of − 0.28.

Performance of similarity search method
We have also utilized the ability of BLAST to predict the MIC values of validation data for the hits obtained from 
the customized database. For the validation hits obtained, we have assigned them the MIC values corresponding 
to the database sequences. After that, their performances with respect to the actual MIC values of the validation 
set were calculated, as shown in Table 1. At the highest e-value, the performance increases, but at the same time, 
the number of sequence hits obtained by the BLAST is much less, which signifies the inefficiency of the similarity 
search method in predicting the MIC values of the peptides.

Performance on ML-based regressors
Compositional features
We have developed prediction models using 12 regression algorithms, including LR, RFR, GBR, ENR, SVR, 
DTR, Ridge, Lasso, MLPR, AdaBR, KRR, and BRR. We designed prediction models employing all different types 
of compositional features, as shown in Supplementary Table S1. Figure 5 shows that the RF-based regressor with 
default parameters using cross-validation performs best among all other regression models with the highest 
R2 score and lowest RMSE value using the AAC feature; therefore, we have applied RFR on default parameters 
(random_state = 95) for further analysis. The detailed list of performance of RFR using compositional features is 
depicted in Table 2; the ALLCOMP feature outperforms other models with an R and R2 score of 0.77 and 0.59 on 
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the validation dataset with an RMSE value of 0.53. The additional performance metrics of the ALLCOMP feature 
are represented in Supplementary Table S3.

Binary profiles
To understand the importance of building different models for different length sets, we have developed binary 
profiles for different length groups and used them as input features to train and evaluate the prediction models 
by implementing various ML regressors. As shown in Table 3, the RFR performs extremely poor in the length 
group of 41 or more residues with the highest RMSE value on the validation set, while it performs better for 
11–20 residues with an R2 and RMSE value of 0.55 and 0.57 on the validation set. The detailed results of binary 
profiles for all length groups are depicted in Supplementary Tables S4, S5, S6, S7 and S8.

LLM embeddings
To generate the embedding using large language models, first, we have to modify the LL models for regression 
analysis and then pass out data to compute the embeddings. The performance across various LLM embeddings 
is reported in Table 4. Models that exploited ESM-2 embeddings saw the best performance with lower RMSE 
and high correlation scores of 0.56 and 0.76, respectively. Supplementary Tables S9, S10, and S11 show the results 
obtained with all three LLM embeddings.

Performance on selected features
We have implemented the mRMR feature selection technique to get useful features that help enhance the 
models’ performances. We have also evaluated the performance of features at intervals of 100 to provide a better 
understanding of the relevance of each feature subset, as reported in Supplementary Table S17. Since the variation 
is very minimal, we have selected the top 200, 500, 1000, 1500 and 2000 features to check the effectiveness of 
different feature subsets. The performance of the RF-based regressor on selected features is depicted in Table 
5, which shows that the top 1000 features contributed most to effective understanding by the model and got a 
maximum R/R2 of 0.78/0.59 with RMSE 0.53 on the validation set. The detailed performance of all the selected 
feature sets are presented in Supplementary Tables S12, S13, S14, S15 and S16.

Performance of hybrid method
With the aim of improving the performance of the ML-based regressors, we have tried a hybrid approach 
that combines the similarity search BLAST with the non-similarity-based ML methods. Here, we first run the 
BLAST on the validation set and obtain the hits from the customized database. After that, for the validation hits 
obtained, we assigned them the MIC values as predicted by the best-performing RF-based regressor model built 
on mRMR-selected 1000 features and their performances with respect to the actual MIC values of the validation 
set were calculated, as shown in Supplementary Table S18. Our RFR model obtained an R score of 0.78 on the 

Fig. 3.  The histogram of the distribution of length of antibacterial peptide for E. coli for training, validation 
and independent set.
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validation set, while the hybrid method only for obtained hits shows a maximum R score of 0.92 at an e-value 
of 1.00E−20 while its coverage is only 18 peptides from the total 786 peptides, which is very low implies that the 
combined approach is not improving the performance significantly.

Benchmarking on an independent set
We have selected an RF-based regressor-based model on default parameters with the top 1000 selected features 
as our final model. To evaluate the performance of our model, we have utilized the independent set and 
compared our performance with the existing methods. The MBC-attention model32 was built using CNN with 
an attention layer and tuned on various hyperparameters such as the number of layers, number of filters, dropout 
layers, loss function and early stopping parameters. We have used the same non-redundant dataset that is used 
in MBC-attention. However, the dataset splitting is performed differently. Similarly, the model architecture of 

E-value Hits (Total peptides = 786) R R2 MSE RMSE MAPE MAE MRE

1.00E-20 18 0.88 0.74 0.12 0.34 1.79 0.23 0.72

1.00E-10 174 0.72 0.48 0.32 0.57 15.10 0.37 2.11

1.00E-06 334 0.72 0.49 0.36 0.60 104.60 0.41 2.20

0.0001 406 0.70 0.45 0.37 0.60 93.80 0.41 2.84

0.001 461 0.69 0.41 0.39 0.62 83.53 0.42 2.84

0.01 516 0.70 0.43 0.38 0.61 74.72 0.41 2.84

0.1 570 0.69 0.42 0.39 0.63 71.75 0.42 2.84

1 619 0.67 0.38 0.42 0.65 66.12 0.44 3.26

Table 1.  Performance of BLAST on the validation set at different e-values. #R = Correlation coefficient, 
R2 = Coefficient of determination, MSE = Mean squared error, RMSE = Root mean squared error, MAPE = Mean 
absolute percentage error, MAE = Mean absolute error, MRE = Maximum residual error.

 

Fig. 4.  The bar graph showing the Pearson correlation value of a AAC, b Dipeptide and c 1000 selected 
features with the target MIC values.
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AMPActiPred is the deep neural network that first classifies the ABP or non-ABP against different bacterial 
groups and finally predicts the activity of those peptides in terms of MIC values22. The performance of different 
models on the independent dataset is shown in Table 6, which suggests that our model performs better on the 
independent set despite being built using basic computational procedures with an R2 and RMSE value of 0.410 
and 0.709, respectively.

Fig. 5.  Performance of ML-based regressors in terms of (1) R2 and (2) RMSE scores developed using AAC 
feature on the validation set using a fivefold cross-validation strategy.
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Web server implementation
To better serve the scientific community, we have developed a user-friendly prediction web interface named 
“EIPpred” (https://webs.iiitd.edu.in/raghava/eippred) and executed our best model to predict the MIC values 
of ABPs. The web server includes three different modules: “Predict”, “Design”, and “Protein scan”. The module 
‘Predict’ allows users to predict the inhibitory activity of the submitted sequence against E.coli in terms of MIC 
value (in -log₁₀ µM). The ‘Design’ module allows users to create mutants by generating all possible mutations 
replacing one residue at a time in the input sequence. The result of the design module includes the mutant 
sequences with inhibitory activity and represents their predicted MIC values in order to better understand the 
importance of each residue in imparting the inhibitory activity to the peptide. The ‘Protein scan’ module scans 
the protein sequences to identify the inhibitory regions/domains based on the predicted MIC values against 

LLM

R R2 RMSE R R2 RMSE

Test set (CV) Validation set

ProtBERT 0.65 0.40 0.64 0.70 0.46 0.61

BioBERT 0.58 0.31 0.69 0.63 0.36 0.66

ESM-2 0.69 0.46 0.61 0.76 0.55 0.56

Table 4.  Performance of RF-based regressor on LLM embeddings of test set (CV) and validation set. 
#R = Correlation coefficient, R2 = Coefficient of determination, RMSE = Root mean squared error.

 

Length groups

R R2 RMSE R R2 RMSE

Test set (CV) Validation set

5-10aa 0.67 0.44 0.69 0.73 0.53 0.63

11-20aa 0.70 0.49 0.6 0.74 0.55 0.57

21-40aa 0.60 0.36 0.58 0.53 0.28 0.6

41 or more aa 0.55 0.21 0.67 0.48 0.21 0.69

Whole data 0.59 0.35 0.66 0.64 0.41 0.64

Table 3.  Performance of RF-based regressor on Binary profiles of different length groups of test set (CV) and 
validation set. #R = Correlation coefficient, R2 = Coefficient of determination, RMSE = Root mean squared error.

 

Features

R R2 RMSE R R2 RMSE

Test set (CV) Validation set

AAC 0.67 0.45 0.61 0.73 0.52 0.57

AAI 0.64 0.41 0.63 0.68 0.46 0.61

APAAC 0.69 0.47 0.60 0.72 0.51 0.58

ATC 0.49 0.23 0.72 0.53 0.27 0.71

BTC 0.51 0.23 0.73 0.50 0.21 0.74

CTC 0.65 0.42 0.63 0.71 0.51 0.58

CeTD 0.70 0.49 0.59 0.76 0.57 0.55

DDR 0.66 0.44 0.62 0.71 0.49 0.59

DPC 0.69 0.47 0.60 0.74 0.54 0.56

PAAC 0.67 0.44 0.62 0.70 0.48 0.60

PCP 0.64 0.40 0.64 0.67 0.45 0.62

PRI 0.66 0.43 0.62 0.70 0.48 0.60

QSO 0.68 0.47 0.60 0.74 0.54 0.56

RRI 0.63 0.40 0.64 0.67 0.45 0.62

SEP 0.27 -0.07 0.85 0.30 -0.03 0.84

SER 0.68 0.46 0.61 0.73 0.52 0.57

SOC 0.28 0.00 0.82 0.32 0.04 0.81

SPC 0.63 0.40 0.64 0.67 0.44 0.62

TPC 0.67 0.45 0.61 0.72 0.52 0.57

ALLCOMP 0.72 0.52 0.57 0.77 0.59 0.53

Table 2.  Performance of RF-based regressor on compositional features of test set (CV) and validation set. 
#R = Correlation coefficient, R2 = Coefficient of determination, RMSE = Root mean squared error.
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E.coli of the desired lengths defined by the user. We also allow users to download the training, validation, and 
independent dataset (​h​t​t​p​s​:​​/​/​w​e​b​s​​.​i​i​i​t​d​​.​e​d​u​.​i​​n​/​r​a​g​​h​a​v​a​/​e​​i​p​p​r​e​d​​/​d​a​t​a​s​​e​t​.​p​h​p), which we have used in this study, 
available in CSV file format.

Case study: inhibitory protein scan in the proteome of probiotic species
Several studies have reported the antagonist role of probiotic single or multi strains against E.coli24,25,28,31,63. The 
whole genome proteome data for the probiotic strains was downloaded from NCBI; Lactobacillus acidophilus 
(La-5) [​h​t​t​p​s​:​​/​/​w​w​w​.​​n​c​b​i​.​n​​l​m​.​n​i​h​​.​g​o​v​/​​d​a​t​a​s​e​​t​s​/​g​e​n​​o​m​e​/​?​t​​a​x​o​n​=​1​5​7​9​&​s​e​a​r​c​h​_​t​e​x​t​=​L​a​-​5], Bifidobacterium 
lactis (Bb-12) [​h​t​t​p​s​:​​/​/​w​w​w​.​​n​c​b​i​.​n​​l​m​.​n​i​h​​.​g​o​v​/​​d​a​t​a​s​e​​t​s​/​g​e​n​​o​m​e​/​?​t​​a​x​o​n​=​5​5​2​5​3​1], and Enterococcus faecalis 
(Symbioflor 1) [​h​t​t​p​s​:​​/​/​w​w​w​.​​n​c​b​i​.​n​​l​m​.​n​i​h​​.​g​o​v​/​​d​a​t​a​s​e​​t​s​/​g​e​n​​o​m​e​/​?​t​​a​x​o​n​=​1​2​6​1​5​5​7]. For Lactobacillus acidophilus 
(La-5), we obtained a total of 1787 proteins, 1542 proteins for Bifidobacterium lactis (Bb-12) and 2630 proteins 
for Enterococcus faecalis (Symbioflor 1). To identify the inhibitory regions in the proteins or inhibitory proteins, 
we used the “Protein Scan” module of the ‘EIPpred’ standalone version, using the window length of 20 (i.e., 
length of peptides as 20 amino acids). We then converted the µM MIC values into µg/ml and made a stringent 
cutoff to keep those proteins and peptides with MIC values less than or equal to 0.5 µg/ml. Table 7 represents 
the density of the inhibitory proteins in the proteome of the three probiotic species after the cutoff, which shows 
that the proteome of Bifidobacterium lactis (Bb-12) contains nearly 60% of the inhibitory proteins, more than the 
other two species. The density of inhibitory peptides found in each of the three bacterial proteomes with MIC 
value less than 0.5 μg/m/ is depicted in Supplementary Tables S19, S21 and S23, while the list of top 20 inhibitory 
peptides with their predicted MIC values for each species is reported in Supplementary Tables S20, S22 and S24.

Bacterium
Total proteome (no. of 
proteins)

Proteins (less than 0.5 μg/ml 
MIC value)

Percentage of inhibitory proteins 
(less than 0.5 μg/ml MIC)

Inhibitory 
peptides (less 
than 0.5 μg/
ml MIC value)

Lactobacillus acidophilus (La-5) 1787 621 34.751 3428

Bifidobacterium lactis (Bb-12) 1542 920 59.663 7716

Enterococcus faecalis
(DSM 16431) 2630 1114 42.357 6666

Table 7.  Comparative analysis of the proteome of three probiotic bacteria for the inhibitory peptide against 
E.coli.

 

Model R R2 MSE RMSE MAPE MAE MRE

Our models

EIPpred (1000 selected features-RFR) 0.676 0.410 0.503 0.709 5.975 0.567 2.362

ALLCOMP (RFR) 0.673 0.401 0.511 0.715 5.968 0.572 2.335

ESM-2 (RFR) 0.611 0.326 0.575 0.758 6.571 0.591 2.944

Existing models

MBC-attention (CNN) 0.657 0.392 0.519 0.720 7.436 0.554 2.763

AMPActiPred (DNN) 0.334 −0.071 0.914 0.956 6.298 0.585 4.258

Table 6.  Comparative performance of our models and existing methods on the independent dataset. 
#R = Correlation coefficient, R2 = Coefficient of determination, MSE = Mean squared error, RMSE = Root mean 
squared error, MAPE = Mean absolute percentage error, MAE = Mean absolute error, MRE = Maximum residual 
error, RFR = Random Forest Regression, CNN = Convolutional Neural Network, DNN = Deep Neural Network.

 

Selected features

R R2 MSE RMSE MAE MRE R R2 MSE RMSE MAE MRE

Test set (CV) Validation set

200 0.71 0.50 0.34 0.58 0.46 2.61 0.76 0.57 0.30 0.55 0.42 2.06

500 0.72 0.52 0.33 0.57 0.44 2.47 0.77 0.58 0.29 0.53 0.41 2.03

1000 0.73 0.52 0.33 0.57 0.44 2.58 0.78 0.59 0.28 0.53 0.41 2.12

1500 0.72 0.52 0.33 0.57 0.44 2.47 0.77 0.59 0.28 0.53 0.41 2.12

2000 0.72 0.52 0.33 0.57 0.44 2.39 0.77 0.59 0.28 0.53 0.41 2.06

Table 5.  Performance of RF-based regressor on different selected feature subsets on test set (CV) and 
validation set. #R = Correlation coefficient, R2 = Coefficient of determination, MSE = Mean squared error, 
RMSE = Root mean squared error, MAE = Mean absolute error, MRE = Maximum residual error.
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Discussion
Bacteria are well-studied organisms in terms of their structure, biology, and infection processes; nevertheless, 
our understanding remains incomplete due to their fast progression. The rat race between bacterial evolution and 
antibiotic research demands alternative options to overcome resistance. Peptide-based therapies have emerged as 
a promising treatment option that offers targeted approaches to inhibit bacterial survival pathways. Escherichia 
coli, a common clinical infection, frequently develops resistance to several antimicrobials, creating an enormous 
global issue64. Thus, predicting the inhibitory activity of antimicrobial peptides, specifically through MIC values, 
is crucial for assessing peptide-based drug effectiveness against specific bacterial species.

Since existing approaches are computationally expensive and have limited species-specificity, the activity 
prediction of ABPs requires improvement; hence, designing newer inhibitory peptides has become essential in 
the post-antibiotic era. In this study, we report a quick and efficient RF-based regressor tool aimed at improving 
the prediction of quantitative MIC values of ABPs against E. coli. Our model relies on a supervised ML approach 
based on sequence information employing various types of feature sets to predict the activity of the peptides. 
The main advantage of our model is its simple architecture with superior performance that allows us to learn 
from multiple feature types. This is particularly useful in scenarios where employing heavy computation is not 
possible.

The preliminary analysis of the correlation of the selected 1000 features with the target MIC values shows a 
strong correlation with the CeTD feature, implying that the distribution of secondary structure (SS), charge (CH) 
and polarity (PO) along the whole length of the sequence are important in determining inhibitory properties 
of the ABPs. Our results indicate that the residue repeats for physio-chemical properties, such as neutral, basic 
and positively charged residues, negatively correlate with the target variable. This implies that the distribution of 
residues capable of forming secondary structures is essential in conferring inhibitory activity.

In this study, we leverage the regressive ability of various ML algorithms for quantitative MIC prediction 
and enhance their predictive capabilities by incorporating different feature sets such as compositional, binary 
profiles, and LLM embedding. Among the features set used, the model built using all compositional features 
performs significantly better than individual compositional features with an R and R2 score of 0.77 and 0.59, 
respectively, on the validation set. Secondly, the binary profiles with lengths from 5 to 20 residues are better 
at capturing the properties of the peptide to predict the MIC values quantitatively. Third and lastly, ESM-2 
performs well but not better than all compositional feature sets among the LLM embedding generated from the 
pre-trained models.

Since the number of all compositional features (ALLCOMP) is high, we employed mRMR to select the 
features that greatly contributed to the performance of the model and from Table 5, we conclude that the top 1000 
feature set is performing superior to other selected feature sets, thus reducing overfitting and irrelevant features. 
Moreover, we also perform BLAST to understand the effect of the similarity on predicting the activity of the 
peptides; however, our results suggest that utilizing BLAST hits doesn’t significantly improve the performance 
of our models. Indeed, the prediction given by our ML models for the hits is far better than the hybrid method 
where the validation hits MIC values are replaced by the subject MICs (Supplementary Table S18).

It is important to note that by performing the comparative analysis on the independent dataset, our final RFR 
model built using 1000 selected features outperforms the existing methods by a small margin, achieving R and 
RMSE values of 0.676 and 0.709, still employing simple architecture instead of sophisticated neural networks, 
greatly enhancing the performance of our model. This reduces the computational cost and time needed to predict 
the activity of ABPs in E. coli. Lastly, we built a web server—EIPpred and in addition to the web server facility, 
GitHub (https://github.com/NishaBajiya/EIPpred), the standalone version, and the pip package ​(​​​h​t​t​p​s​:​/​/​p​y​p​i​.​o​r​
g​/​p​r​o​j​e​c​t​/​e​i​p​p​r​e​d​/​​​​​) of our model are also publicly available to researchers. Finally, to present the applicability of 
our tool, we have deployed the “Protein scan” module of the standalone version of our tool and performed the 
analysis on the whole-genome proteome data to identify the inhibitory proteins showing antibacterial activity 
against E.coli. Our analysis revealed that the proteome of the Bifidobacterium lactis (Bb-12), among others, has a 
vast distribution of the inhibitory proteins encompassing nearly 60% of the whole proteome.

Lastly, the application of our RFR-based tool offers a quick, accurate, and user-friendly way to design new 
antimicrobial peptides, marking a breakthrough in the computational prediction of peptide activity.

Conclusion
In conclusion, novel inhibitory ABPs can be designed against E. coli as defined by the user with their predicted 
MIC values by utilizing our web server, which could prove essential in the post-antibiotic era. Similarly, our 
model can be implemented to find the probiotic strains against E.coli by analysing their proteomes for inhibitory 
proteins/peptides. Eventually, the model needs more improvement and extends its domain to predict the activity 
of peptides for other pathogenic species.

Data availability
The dataset files and code used in EIPpred are available on the web server ​(​​​h​t​t​p​s​:​/​/​w​e​b​s​.​i​i​i​t​d​.​e​d​u​.​i​n​/​r​a​g​h​a​v​a​/​e​i​p​
p​r​e​d​​​​​)​. BioRxiv doi: https:​​​//d​oi.​org/h​​​ttp​s:/​/d​oi.o​rg/​1​0.​11​01/2024.07.18.604028
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