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Background. Open-access data challenges can accelerate innovation in artificial intelligence–based tools. In the Cough 
Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM Challenge, we developed and independently validated cough 
sound–based artificial intelligence algorithms for tuberculosis screening.

Methods. We included data from 2143 adults with ≥2 weeks of cough from outpatient clinics in India, Madagascar, the 
Philippines, South Africa, Tanzania, Uganda, and Vietnam. A standard tuberculosis evaluation was completed, and ≥3 solicited 
coughs were recorded using a smartphone. We invited teams to develop models using training data to classify microbiologically 
confirmed tuberculosis disease using (1) cough sound features only and/or (2) cough sound features with routinely available 
clinical data. After 4 months, they submitted the algorithms for independent test set validation. Models were ranked by area 
under the receiver operating characteristic curve (AUROC) and partial AUROC (pAUROC) to achieve at least 80% sensitivity 
and 60% specificity.

Results. Eleven cough models and 6 cough-plus-clinical models were submitted. AUROCs for cough models ranged from 0.69 
to 0.74, and the highest performing model achieved 55.5% specificity (95% confidence interval, 47.7%–64.2%) at 80% sensitivity. 
The addition of clinical data improved AUROCs (range, 0.78–0.83); 5 of the 6 models reached the target pAUROC, and the 
highest performing model had 73.8% specificity (95% confidence interval, 60.8%–80.0%) at 80% sensitivity. The AUROC varied 
by country and was higher among male and human immunodeficiency virus–negative individuals.

Conclusions. In a short period, an open-access data challenge facilitated the development of new cough-based tuberculosis 
algorithms and demonstrated potential as a tuberculosis screening tool.
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As ongoing challenges in global infectious diseases intersect 
with rapid advancements in technology and artificial intelli
gence (AI), digital health tools have the potential to enhance 
disease surveillance, diagnosis, and management [1, 2]. The 
widespread availability of smartphones and wearable sensors 
create opportunities for low-cost, noninvasive applications to 
increase healthcare access and quality [3]. However, a major 
challenge to equitable implementation of these tools is a lack 
of available datasets from diverse geographic settings, and lim
ited focus on conditions that disproportionally affect low- and 
middle-income countries [2]. Moreover, available datasets may 
be proprietary, preventing open-access sharing and transparent 
algorithm development. The consequence is a dearth of AI 
tools validated in low- and middle-income countries that ad
dress the public health challenges they face.

Tuberculosis is the leading cause of death from infectious dis
ease worldwide [4]. The high mortality rate is driven by a large 
case detection gap, in which tuberculosis disease has not been di
agnosed or reported to public health programs in 3.1 million of the 
estimated 10 million individuals in whom it occurs each year [4]. 
AI has already supported tuberculosis diagnosis through automat
ed reading of chest radiographs [5], but the required infrastructure 
limits implementation at primary health facilities. Cough is a com
mon symptom of tuberculosis, and initial studies suggest that 
unique acoustic features can distinguish pulmonary tuberculosis 
from other respiratory conditions [6, 7]. Furthermore, cough de
tection applications have already been developed for mobile 
phones and smart watches [8], providing an opportunity to inte
grate cough-based AI algorithms for point-of-care tuberculosis as
sessment by providers and patients. In other diseases, including 
coronavirus disease 2019 (COVID-19) [9], open-access, crowd- 
sourced data challenge initiatives have been used to accelerate 
the development of novel algorithms [10].

To expedite AI diagnostic development for tuberculosis, we 
established a cough sound repository from individuals prospec
tively enrolled with presumptive tuberculosis across 7 high 
tuberculosis-burden countries and implemented the Cough 
Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM 
Challenge [11].

METHODS

CODA TB DREAM Challenge

The CODA TB DREAM Challenge launched on 26 October 
2022. Participants were asked to develop a model to classify tu
berculosis disease in 2 subchallenges: (1) using cough sounds 
alone and (2) using cough sounds and basic demographic 
and clinical variables. Participants were required to submit an 
outline of their methods and source code. The timeline of the 
challenge is shown in Supplementary Figure 1.

The challenge was hosted by Sage Bionetworks, which 
has developed an open-science, collaborative competition 

framework for evaluating and comparing computational algo
rithms, using the DREAM Challenges framework. DREAM fo
cuses exclusively on biomedicine with an explicit mandate for 
transparency, openness, and collaboration. The challenge was 
set up on Synapse (www.synapse.org/tbcough), which provided 
all instructions, a secure platform for data sharing, a forum for 
communication with challenge participants, and supported 
submission of models for independent validation.

Any individual or team could participate in the challenge af
ter certifying that they understood the Synapse data use policy, 
verifying their identify, and agreeing to the challenge guidelines 
to not attempt to identify or contact any study participants, to 
not share the data with others, and to comply with the intended 
use of the data. The challenge was broadly advertised, including 
on social media, to multiple academic institution listservs and 
departments of global health, bioinformatics and computer sci
ence, companies interested in cough-based or tuberculosis di
agnosis, and previous DREAM Challenge participants.

Study Dataset

Data for the CODA TB DREAM Challenge were obtained from 
2 multicountry tuberculosis diagnostic evaluation studies [11]. 
The Rapid Research in Diagnostic Development TB Network 
(R2D2 TB Network) enrolled participants at outpatient health 
centers in Uganda, South Africa, Vietnam, the Philippines and 
India [12], and the Digital Cough Monitoring Project enrolled 
participants in Tanzania and Madagascar [13].

Participants ≥18 years old presenting with new or worsening 
cough for ≥2 weeks were enrolled and evaluated with a clinical 
questionnaire and examination, sputum-based molecular test
ing (Xpert MTB/RIF Ultra; Cepheid) and liquid or solid medi
um culture testing. Participants were asked to produce ≥3 
solicited cough sounds during the baseline visit before any tu
berculosis treatment initiation. The coughs were collected on 
an Android-based smartphone using the Hyfe Research app 
[14], which uses a convolutional neural network model to au
tomatically detect the cough and saves the 0.5-second peak 
sound [11]. Solicited cough sounds were collected, though 
any additional naturally triggered passive coughs were also re
corded in order to emulate real-world collection and analysis 
by a cough sound application. Although the repository includes 
cough sounds that were collected longitudinally [11], for the 
challenge we focused only on the coughs collected at enroll
ment. Tuberculosis disease status was based on a microbiolog
ical reference standard, defined by a positive molecular or 
culture result. Further details on the study procedures and 
dataset, including a description of participant demographics 
and country distribution, have been published elsewhere [15]. 
A summary of clinical and demographic characteristics are 
shown in Supplementary Table 1.

A training set (n = 1105) for algorithm development was cre
ated by taking a 50% sample of the dataset randomized at the 
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individual level. Of the remaining data, 24% (n = 248) were 
randomly selected at the individual level for a “leaderboard” 
test set, from which challenge participants could receive peri
odic feedback on their model performance, and the remainder 
(n = 790) was reserved as the final test set for algorithm evalu
ation. Challenge teams were given direct access only to the 
training set, which included the raw peak cough sound record
ings in WAV format, as well as associated age, sex, height, 
weight, smoking status, self-reported duration of cough, prior 
history of tuberculosis, common tuberculosis symptoms (he
moptysis, fever, night sweats, weight loss), heart rate, and tem
perature. These variables were chosen as data that would be 
readily available in routine primary care settings. Human im
munodeficiency virus status was not included as the testing 
and/or results may not be available or known at the time of 
cough assessment.

Patient Consent Statement

All participants provided written informed consent for study 
participation, cough recording and anonymized data sharing. 
Ethical approvals for the studies were obtained from institu
tional review boards in the US (R2D2 TB Network, 
University of California, San Francisco) and Canada (Digital 
Cough Monitoring Project, University of Montreal), as well 
as institutional review boards in each participating country.

Algorithm Development and Evaluation

Participating teams could train an algorithm using any prepro
cessing approach and model, and with any programming lan
guage (eg, R, Python, etc) or framework (eg, Keras or 
Pytorch). For evaluation, models were required to be saved in 
Open Neural Network Exchange format and submitted in a 
Docker container, with any code needed for preprocessing 
the data.

Challenge teams had 5 interim opportunities to evaluate 
their algorithms on the “leaderboard” test set before the final 
algorithms were due for test set evaluation (Supplementary 
Figure 1). The output of each model was continuous tubercu
losis prediction scores used to calculate the area under the re
ceiver operating characteristic curve (AUROC). A limitation 
of the AUROC is that it considers the accuracy across all 
thresholds, including those that are not clinically relevant 
[16]. The partial AUROC [17] (pAUROC) addresses this by 
measuring the AUROC within predefined sensitivity and spe
cificity targets, and a higher pAUROC indicates that a greater 
area falls within these targets.

We calculated a 2-way pAUROC within the thresholds of 
80% sensitivity and 60% specificity, in order to identify prom
ising algorithms that had an accuracy that was at least within 
10% of the minimum World Health Organization (WHO) tar
get product profile (TPP) accuracy for a tuberculosis screening 
test (≥90% sensitivity and ≥70% specificity) [18]. If no model 

receiver operating characteristic curve fell within the 
pAUROC targets, the algorithms were evaluated by the total 
AUROC. Variability in the AUROCs and pAUROCs was as
sessed via bootstrap resampling (n = 1000). Challenge teams 
submitted their preprocessing code (if applicable) and models 
4 months after the launch of the challenge. We then indepen
dently applied each model to the test set to calculate the 
AUROC and pAUROC with 95% confidence intervals (CIs). 
We also calculated the maximum specificity at 80% or 90% sen
sitivity for each subchallenge, with 95% CIs.

Clinical Data Only Model

As a sensitivity analysis to assess the degree that the clinical var
iables alone contributed to the models in subchallenge 2, we de
veloped a random forest model [19] using the clinical and 
demographic variables provided to challenge participants. In 
addition to the variables provided, body mass index was com
puted from height and weight variables, and the duration of 
cough symptoms was log-transformed before model fitting. 
The model was trained using 1000 trees.

Subgroup Analyses

After the challenge was complete, first- and second-ranked 
teams in both subchallenges (n = 5 due to ties) were invited 
to participate in additional model evaluation. We assessed the 
accuracy of the models by country, sex, and human immunode
ficiency virus (HIV) status. We also compared the probability 
of tuberculosis classification for each model by Xpert MTB/ 
RIF Ultra polymerase chain reaction (PCR) semiquantitative 
category.

The original model evaluation was performed with Python 
software (version 3.8.8). All subsequent analyses were per
formed with R software, version 4.2.2 (2022-10-31). 
Evaluations of model statistics were done using the pROC R 
package. Implementation of the pAUROC was provided by 
Chaibub Neto et al [20, 21].

RESULTS

Dataset Summary

As shown in Supplementary Table 1, randomization without 
stratification was sufficient to balance clinical and demographic 
variables across the training (n = 1105) data set and test data set 
(n = 1038; 248 for leadership board and 790 for final test set). 
The median ages in the training and test sets were 40 (inter
quartile range, 28–53) and 40 (29–53) years, respectively; 
46.8% in the training and 44.3% in the test set were female. 
The prevalence of HIV (14.7% and 14.9%, respectively) and pri
or history of tuberculosis (81.7% and 80.4%) were also balanced 
between training and test sets, as was the proportion with mi
crobiologically confirmed tuberculosis (26.9% and 24.7%, re
spectively). The country distribution was largely balanced, 
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although there was a lower proportion from Madagascar in the 
test set than in the training set (7.2% vs 14.4%). There were a 
total of 18 834 coughs (9772 in training and 9062 in test).

Challenge Implementation

In total, 147 individuals and 18 teams registered for the CODA 
TB DREAM Challenge. In each leaderboard round, 2–8 teams 
submitted models. Thirteen teams submitted final models for 
subchallenge 1, and 8 for subchallenge 2. Of those that submit
ted final models, 11 teams for subchallenge 1 and 6 for subchal
lenge 2 submitted a summary of methods and model code. The 
winning models for each subchallenge are described in the 
Supplementary Data. The reports for the full set of submissions 
are available through the challenge website [22].

Subchallenge 1

As shown in Table 1, Figure 1A, and Supplementary Figure 2, 
AUROCs ranged from 0.689 to 0.743. The top model achieved 
a specificity of 55.5% at 80% sensitivity; as further shown in 
Supplementary Table 2, it did not reach the pAUROC thresh
olds and did not achieve the WHO TPP-based accuracy goal 
for a screening test at 90% sensitivity and 70% specificity. Of 
the 11 groups, 4 (36%) used convolutional neural networks, 4 
(36%) used artificial neural networks, and 3 (27%) used 
gradient-boosting decision tree methods.

Subchallenge 2

All groups used the same algorithm approach they used in sub
challenge 1. As shown in Figure 1B, Supplementary Figure 3, 
and Table 2, overall performance improved compared with 
the use of cough sounds alone, and the top performing model 
achieved an AUROC of 0.832 (95% CI, .795–.863) and a 
pAUROC of 0.003 (6.1 × 10−6 to .012). Five of the 6 submissions 
(83%) achieved at least 80% sensitivity and 60% specificity, with 
the top model reaching 73.8% (95% CI, 60.8%–80.0%) at 80% 
sensitivity. Considering the WHO TPP as a tuberculosis screen
ing test, the top-performing model achieved 54% specificity (95% 
CI, 38%–63%) at 90% sensitivity (Supplementary Table 2). In 
sensitivity analysis, the clinical data–only model achieved an 
AUROC of 0.817 (95% CI, .778–.850) and a pAUROC of 0.004 
(5.5 × 10−4 to .010). At 80% sensitivity, the specificity was 
68.1% (95% CI, 63.4%–75.5%; Supplementary Table 2).

Subgroup Assessment

By country, the AUROC for subchallenge 2 ranged from 0.73 to 
0.83, with a higher median AUROC in the Philippines, Uganda, 
Tanzania and Vietnam (Figure 2A). The median AUROC for 
the cough and clinical data models was slightly higher for 
male than for female participants (0.82 vs 0.78; P < .01) 
(Figure 2B). Model performance was also slightly higher among 
people without HIV than among those with HIV (median 
AUROC, 0.83 vs 0.78; P < .01) (Figure 2C). Subgroup results 

for subchallenge 1 (cough sounds only) are shown in 
Supplementary Figures 4–7. Findings were similar, although 
we found slightly lower accuracy in male than in female partic
ipants (median AUROC, 0.69 vs 0.71; P = .02), in contrast to 
subchallenge 2.

For all submitted cough and clinical data models, the median 
predicted probability of being tuberculosis positive increased 
with Xpert MTB/RIF Ultra semiquantitative category, from 
trace positive results to high bacillary load results (Figure 3
and Supplementary Figure 7).

DISCUSSION

The CODA TB DREAM Challenge addressed a critical need to 
accelerate the development of AI-based tools for tuberculosis 
screening through an inclusive, open, and transparent ap
proach. The challenge brought together students, researchers, 
and industry partners from a diverse geographic spectrum 
with a common goal of developing novel tuberculosis diagnos
tic algorithms using cough sounds. In a short period, challenge 
participants created, tested, and improved cough sound–based 
algorithms that approached the WHO TPP accuracy targets for 
a high-sensitivity tuberculosis screening test. Open-access re
search and citizen science represent a potential paradigm shift 
in how digital health solutions can be developed for global 
health and infectious diseases.

The cough sound–only models had similar accuracies, with 
AUROCs ranging from 0.65 to 0.74. This performance is within 
the wide range of previously developed cough-based COVID-19 
models (AUROC, 0.62–0.98) [23–26] A few published cough 
sound tuberculosis models have shown higher performance 
(AUROC, 0.79–0.94) [6, 7], but these were small studies and 
need further validation. A limitation of previous cough models 
for other conditions was the use of crowd-sourced data [9, 27, 
28]. While this approach rapidly generates large real-world data
sets, there are multiple challenges, including selection bias, sub
jective clinical assessment, and heterogenous reference standard 
definitions. In the CODA TB DREAM Challenge, we used a mul
ticountry cohort of consecutively enrolled symptomatic individ
uals, standardized clinical data and cough collection protocols, 
objective tuberculosis testing, and uniform case definitions. 
Our approach increases the confidence that algorithms are 
identifying features specific to the disease condition, reduces 
AI-related biases, and better reflects how the algorithms will 
perform in the intended settings and populations.

Performance improved when routine demographic and 
clinical variables were added to models. Five of 6 algorithms 
approached the WHO-established target accuracy thresholds 
for a tuberculosis screening test by meeting the pAUROC 
targets, although the absolute values were small, and external 
validation is needed. As a postchallenge sensitivity analysis, 
we developed a clinical data–only model that performed well 
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(AUROC, 0.817); the top model that combined clinical and 
cough data had higher AUROC and specificity estimates, al
though with overlapping CIs with the clinical data–only model. 
This highlights that clinical care pathways are valuable for tuber
culosis assessment, and cough sound models should be integrat
ed and optimized within them to further augment accuracy.

The best-performing models used deep learning algorithms; 
while interpretability can be limited with such models, 

subgroup findings increase confidence in a tuberculosis-specific 
signal. For example, lower performance could be expected 
among people with HIV as they often have paucibacillary dis
ease, suggesting that different thresholds may be needed depend
ing on the setting or target group [29–31]. Moreover, the 
probability of tuberculosis classification correlated with bacterial 
burden as measured by semiquantitative PCR results in both 
subchallenges, which was also seen in a study in Kenya [6].

Table 1. Model Performance for Cough Sound–Only Model (Subchallenge 1)

Ranka Team
AUROC 
(95% CI) Model Type Sound Features Usedb

1 Blue Team 0.743 (.703–.780) CNN Spectrogram

2 AI-Campus High School 
Team

0.731 (.691–.771) Gradient-boosting decision 
tree

MFCCs, chromagram

2 Raghava_India_TB 0.730 (.690–.773) CNN Mel spectrogram

4 Yuanfang Guan Lab 
Team

0.727 (.685–.768) Light gradient–boosting 
machine

MFCC, first- and second-order time derivatives of MFCCs, 
magnitude-of-pitch tracking, total no. of coughs recorded

5 Metformin-121 0.704 (.660–.746) MetforNetc z-Score normalization of cough recordings

6 Clare 0.699 (.655, .746) ANN Top 300 features extracted via OpenSMILE and identified using PCA

7 Sakb 0.695 (.654–.739) ANN Top 1024 features extracted via OpenSMILE and identified using PCA

7 chsxashoka 0.693 (.651–.736) ANN MFCC, mel spectrogram

9 LCL 0.689 (.644, .733) CNN, light gradient–boosting 
machine

Zero-crossing rate, MFCC, chromagram, mel spectrogram, root mean 
square

9 sasgarian 0.689 (.647–.732) ANN Top 1024 features extracted via OpenSMILE identified using PCA

11 yhwei 0.645 (.601–.687) CNN Spectrogram

Abbreviations: ANN, artificial neural network; AUROC, area under the receiver operating characteristic curve; CI, confidence interval; CNN, convolutional neural network; MFCC, mel-frequency 
cepstral coefficient; PCA, principal component analysis.
aModels with the same ranking (2, 7 and 9) were statistically indistinguishable.
bKey definitions: A spectrogram is a visualization of the audio frequency and amplitude over time, with a chromagram visualization focused on pitch categories; MFCCs are acoustic features 
derived from the mel scale that approximate how humans perceive sound; and the zero-crossing rate is the number of times an audio signal will change from positive to negative within the time 
period.
cA combined architecture of 5 CNN blocks, followed by a bidirectional gated recurrent unit, an attention layer, and a fully connected layer.

Figure 1. Area under the receiver operating characteristic curves for Cough Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM Challenge final models. 
A. Subchallenge 1—cough sounds only. B. Subchallenge 2—cough sounds and routine demographic and clinical data.
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It is important to recognize that the final submitted models 
were developed rapidly over a short time frame, and there is po
tential for further optimization. This includes exploring more 
complex deep learning architectures and/or ensembles, in
creasing the size of the training set and developing country- 
specific models. We did not include HIV test results in the 

challenge as it may not be available at assessment, but given 
the variation in accuracy by HIV status and given that it is an 
important tuberculosis risk factor, inclusion of HIV results or 
creation of HIV-stratified models may further bolster perfor
mance. The cough sound repository could also be expanded 
and improved in future collection, including more coughs 
per participant and using the whole duration of cough sounds 
rather than the peak period. Passive cough sounds were collect
ed only if the individual naturally coughed after the forced 
cough, but there are differences between solicited and passive 
cough sounds that could be more systematically compared 
for model development [6].

We did not include longitudinal cough sounds for this chal
lenge as the goal was to assess its role for tuberculosis screening, 
but these data may provide additional tuberculosis-specific 
features to improve performance. At the same time, the over
arching goal of the challenge was to accelerate innovation and 
gain key insights into cough-based AI models for tuberculosis. 
In 4 months, the challenge (1) supported multiple new and 

Table 2. Model Performance for Cough Sound and Clinical Data Model 
(Subchallenge 2)

Rank Team pAUROC (95% CI) AUROC (95% CI)

1 Metformin-121 0.003 (6.11 × 10−6 to .012) 0.832 (.795–.863)

2 Yuanfang Guan Lab 
Team

0.003 (0–.009) 0.821 (.784–.853)

3 AI-Campus High 
School Team

0.001 (0–.008) 0.817 (.778–.850)

4 Blue Team 0.001 (0–.007) 0.818 (.779–.853)

5 LCL 0.001 (0–.006) 0.792 (.750–.829)

6 yhwei 0 (0–.003) 0.784 (.741–.822)

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, 
confidence interval; pAUROC, partial AUROC.

Figure 2. Comparison of area under the receiver operating characteristic curve (AUROC) by country and subgroup in subchallenge 2, shown as box plots of median AUROC 
with interquartile range, based on all submissions. A. Stratified by country: South Africa (SA), n = 98; Madagascar (MG), n = 51; India (IN), n = 86; Tanzania (TZ), n = 87; 
Uganda (UG), n = 187; Philippines (PH), n = 150; and Vietnam (VN), n = 131 (median AUROC shown at the top; winning model AUROC shown as a connected line). B. Stratified 
by sex: female, n = 362, male n = 428. C. Stratified by human immunodeficiency virus (HIV) status: HIV negative, n = 615; HIV positive, n = 115.
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independently validated cough sound algorithms that could dis
criminate tuberculosis disease, (2) demonstrated that clinical 
data could augment performance, and (3) transparently shared 
the best-performing algorithms and processing methods.

To further facilitate ongoing model development, the dataset 
remains open source and can be downloaded at the challenge 
website [22]. Moreover, the website supports continuous 
benchmarking so that developers can submit their algorithms 
to receive independent feedback on model performance. 
Through this iterative process, the goal is to support the devel
opment of ≥1 cough-based algorithm that could be integrated 
into a simple mobile device and provide a point-of-care tuber
culosis screening tool that could be deployed in community- 
based settings. Once developed, the continuous benchmarking 
mechanism and held-out data could potentially support its re
view by a regulatory body.

The dataset and challenge had some limitations. The cough 
sounds collected were restricted to 0.5-second recordings 
around the peak; the use of whole cough sounds may further 
improve performance [32]. As all participants were sympto
matic, there are limitations in extending these models for 
community-wide screening, and additional data collection 
from screening cohorts is needed. The participants also all 
had cough; while solicited cough sounds may have value for 
those without cough, this needs to be further evaluated. 
Variation by country may reflect differences in comorbid con
ditions and disease presentation, but also may be due to 
differences in phone model used and environmental noise. 
However, 0.5-second recordings limited background noise, 

and algorithms should be developed to be compatible with 
multiple phone models and environments.

The goal of the challenge was to classify microbiologically con
firmed tuberculosis; if these algorithms are used as part of 2-step 
screening to guide further testing, other outcomes could be consid
ered, such as radiographic evidence of lung disease. Future external 
validation of these models is needed and should include compara
tive assessment with other screening tools and the added yield when 
performed in parallel. The greater probability of tuberculosis clas
sification in individuals with higher bacillary loads may be a useful 
marker of infectiousness and needs further study. By establishing 
the platform and approach, additional challenges can be created 
that update the datasets and goals to support new algorithms.

In conclusion, the CODA TB DREAM Challenge accelerated 
the development of cough sound models that can be integrated 
into mobile devices for a simple, point-of-care screening tool 
for tuberculosis. It also highlighted how open science and col
laborative efforts can support rapid, inclusive, and effective 
health innovations.
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