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Background. Open-access data challenges can accelerate innovation in artificial intelligence-based tools. In the Cough
Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM Challenge, we developed and independently validated cough
sound-based artificial intelligence algorithms for tuberculosis screening.

Methods. We included data from 2143 adults with >2 weeks of cough from outpatient clinics in India, Madagascar, the
Philippines, South Africa, Tanzania, Uganda, and Vietnam. A standard tuberculosis evaluation was completed, and >3 solicited
coughs were recorded using a smartphone. We invited teams to develop models using training data to classify microbiologically
confirmed tuberculosis disease using (1) cough sound features only and/or (2) cough sound features with routinely available
clinical data. After 4 months, they submitted the algorithms for independent test set validation. Models were ranked by area
under the receiver operating characteristic curve (AUROC) and partial AUROC (pAUROC) to achieve at least 80% sensitivity
and 60% specificity.

Results.  Eleven cough models and 6 cough-plus-clinical models were submitted. AUROCs for cough models ranged from 0.69
to 0.74, and the highest performing model achieved 55.5% specificity (95% confidence interval, 47.7%-64.2%) at 80% sensitivity.
The addition of clinical data improved AUROCs (range, 0.78-0.83); 5 of the 6 models reached the target pAUROC, and the
highest performing model had 73.8% specificity (95% confidence interval, 60.8%-80.0%) at 80% sensitivity. The AUROC varied
by country and was higher among male and human immunodeficiency virus-negative individuals.

Conclusions. In a short period, an open-access data challenge facilitated the development of new cough-based tuberculosis
algorithms and demonstrated potential as a tuberculosis screening tool.
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As ongoing challenges in global infectious diseases intersect
with rapid advancements in technology and artificial intelli-
gence (Al), digital health tools have the potential to enhance
disease surveillance, diagnosis, and management [1, 2]. The
widespread availability of smartphones and wearable sensors
create opportunities for low-cost, noninvasive applications to
increase healthcare access and quality [3]. However, a major
challenge to equitable implementation of these tools is a lack
of available datasets from diverse geographic settings, and lim-
ited focus on conditions that disproportionally affect low- and
middle-income countries [2]. Moreover, available datasets may
be proprietary, preventing open-access sharing and transparent
algorithm development. The consequence is a dearth of Al
tools validated in low- and middle-income countries that ad-
dress the public health challenges they face.

Tuberculosis is the leading cause of death from infectious dis-
ease worldwide [4]. The high mortality rate is driven by a large
case detection gap, in which tuberculosis disease has not been di-
agnosed or reported to public health programs in 3.1 million of the
estimated 10 million individuals in whom it occurs each year [4].
Al has already supported tuberculosis diagnosis through automat-
ed reading of chest radiographs [5], but the required infrastructure
limits implementation at primary health facilities. Cough isa com-
mon symptom of tuberculosis, and initial studies suggest that
unique acoustic features can distinguish pulmonary tuberculosis
from other respiratory conditions [6, 7]. Furthermore, cough de-
tection applications have already been developed for mobile
phones and smart watches [8], providing an opportunity to inte-
grate cough-based Al algorithms for point-of-care tuberculosis as-
sessment by providers and patients. In other diseases, including
coronavirus disease 2019 (COVID-19) [9], open-access, crowd-
sourced data challenge initiatives have been used to accelerate
the development of novel algorithms [10].

To expedite AI diagnostic development for tuberculosis, we
established a cough sound repository from individuals prospec-
tively enrolled with presumptive tuberculosis across 7 high
tuberculosis-burden countries and implemented the Cough
Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM
Challenge [11].

METHODS

CODA TB DREAM Challenge
The CODA TB DREAM Challenge launched on 26 October
2022. Participants were asked to develop a model to classify tu-
berculosis disease in 2 subchallenges: (1) using cough sounds
alone and (2) using cough sounds and basic demographic
and clinical variables. Participants were required to submit an
outline of their methods and source code. The timeline of the
challenge is shown in Supplementary Figure 1.

The challenge was hosted by Sage Bionetworks, which
has developed an open-science, collaborative competition

framework for evaluating and comparing computational algo-
rithms, using the DREAM Challenges framework. DREAM fo-
cuses exclusively on biomedicine with an explicit mandate for
transparency, openness, and collaboration. The challenge was
set up on Synapse (www.synapse.org/tbcough), which provided
all instructions, a secure platform for data sharing, a forum for
communication with challenge participants, and supported
submission of models for independent validation.

Any individual or team could participate in the challenge af-
ter certifying that they understood the Synapse data use policy,
verifying their identify, and agreeing to the challenge guidelines
to not attempt to identify or contact any study participants, to
not share the data with others, and to comply with the intended
use of the data. The challenge was broadly advertised, including
on social media, to multiple academic institution listservs and
departments of global health, bioinformatics and computer sci-
ence, companies interested in cough-based or tuberculosis di-
agnosis, and previous DREAM Challenge participants.

Study Dataset

Data for the CODA TB DREAM Challenge were obtained from
2 multicountry tuberculosis diagnostic evaluation studies [11].
The Rapid Research in Diagnostic Development TB Network
(R2D2 TB Network) enrolled participants at outpatient health
centers in Uganda, South Africa, Vietnam, the Philippines and
India [12], and the Digital Cough Monitoring Project enrolled
participants in Tanzania and Madagascar [13].

Participants >18 years old presenting with new or worsening
cough for >2 weeks were enrolled and evaluated with a clinical
questionnaire and examination, sputum-based molecular test-
ing (Xpert MTB/RIF Ultra; Cepheid) and liquid or solid medi-
um culture testing. Participants were asked to produce >3
solicited cough sounds during the baseline visit before any tu-
berculosis treatment initiation. The coughs were collected on
an Android-based smartphone using the Hyfe Research app
[14], which uses a convolutional neural network model to au-
tomatically detect the cough and saves the 0.5-second peak
sound [11]. Solicited cough sounds were collected, though
any additional naturally triggered passive coughs were also re-
corded in order to emulate real-world collection and analysis
by a cough sound application. Although the repository includes
cough sounds that were collected longitudinally [11], for the
challenge we focused only on the coughs collected at enroll-
ment. Tuberculosis disease status was based on a microbiolog-
ical reference standard, defined by a positive molecular or
culture result. Further details on the study procedures and
dataset, including a description of participant demographics
and country distribution, have been published elsewhere [15].
A summary of clinical and demographic characteristics are
shown in Supplementary Table 1.

A training set (n = 1105) for algorithm development was cre-
ated by taking a 50% sample of the dataset randomized at the
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individual level. Of the remaining data, 24% (n=248) were
randomly selected at the individual level for a “leaderboard”
test set, from which challenge participants could receive peri-
odic feedback on their model performance, and the remainder
(n=790) was reserved as the final test set for algorithm evalu-
ation. Challenge teams were given direct access only to the
training set, which included the raw peak cough sound record-
ings in WAV format, as well as associated age, sex, height,
weight, smoking status, self-reported duration of cough, prior
history of tuberculosis, common tuberculosis symptoms (he-
moptysis, fever, night sweats, weight loss), heart rate, and tem-
perature. These variables were chosen as data that would be
readily available in routine primary care settings. Human im-
munodeficiency virus status was not included as the testing
and/or results may not be available or known at the time of
cough assessment.

Patient Consent Statement

All participants provided written informed consent for study
participation, cough recording and anonymized data sharing.
Ethical approvals for the studies were obtained from institu-
tional review boards in the US (R2D2 TB Network,
University of California, San Francisco) and Canada (Digital
Cough Monitoring Project, University of Montreal), as well
as institutional review boards in each participating country.

Algorithm Development and Evaluation

Participating teams could train an algorithm using any prepro-
cessing approach and model, and with any programming lan-
guage (eg, R, Python, etc) or framework (eg, Keras or
Pytorch). For evaluation, models were required to be saved in
Open Neural Network Exchange format and submitted in a
Docker container, with any code needed for preprocessing
the data.

Challenge teams had 5 interim opportunities to evaluate
their algorithms on the “leaderboard” test set before the final
algorithms were due for test set evaluation (Supplementary
Figure 1). The output of each model was continuous tubercu-
losis prediction scores used to calculate the area under the re-
ceiver operating characteristic curve (AUROC). A limitation
of the AUROC is that it considers the accuracy across all
thresholds, including those that are not clinically relevant
[16]. The partial AUROC [17] (pAUROC) addresses this by
measuring the AUROC within predefined sensitivity and spe-
cificity targets, and a higher pAUROC indicates that a greater
area falls within these targets.

We calculated a 2-way pAUROC within the thresholds of
80% sensitivity and 60% specificity, in order to identify prom-
ising algorithms that had an accuracy that was at least within
10% of the minimum World Health Organization (WHO) tar-
get product profile (TPP) accuracy for a tuberculosis screening
test (>90% sensitivity and >70% specificity) [18]. If no model

receiver operating characteristic curve fell within the
pAUROC targets, the algorithms were evaluated by the total
AUROC. Variability in the AUROCs and pAUROCs was as-
sessed via bootstrap resampling (n =1000). Challenge teams
submitted their preprocessing code (if applicable) and models
4 months after the launch of the challenge. We then indepen-
dently applied each model to the test set to calculate the
AUROC and pAUROC with 95% confidence intervals (ClIs).
We also calculated the maximum specificity at 80% or 90% sen-
sitivity for each subchallenge, with 95% ClIs.

Clinical Data Only Model

As a sensitivity analysis to assess the degree that the clinical var-
iables alone contributed to the models in subchallenge 2, we de-
veloped a random forest model [19] using the clinical and
demographic variables provided to challenge participants. In
addition to the variables provided, body mass index was com-
puted from height and weight variables, and the duration of
cough symptoms was log-transformed before model fitting.
The model was trained using 1000 trees.

Subgroup Analyses

After the challenge was complete, first- and second-ranked
teams in both subchallenges (n =5 due to ties) were invited
to participate in additional model evaluation. We assessed the
accuracy of the models by country, sex, and human immunode-
ficiency virus (HIV) status. We also compared the probability
of tuberculosis classification for each model by Xpert MTB/
RIF Ultra polymerase chain reaction (PCR) semiquantitative
category.

The original model evaluation was performed with Python
software (version 3.8.8). All subsequent analyses were per-
formed with R software, version 4.2.2 (2022-10-31).
Evaluations of model statistics were done using the pROC R
package. Implementation of the pAUROC was provided by
Chaibub Neto et al [20, 21].

RESULTS

Dataset Summary

As shown in Supplementary Table 1, randomization without
stratification was sufficient to balance clinical and demographic
variables across the training (n = 1105) data set and test data set
(n=1038; 248 for leadership board and 790 for final test set).
The median ages in the training and test sets were 40 (inter-
quartile range, 28-53) and 40 (29-53) years, respectively;
46.8% in the training and 44.3% in the test set were female.
The prevalence of HIV (14.7% and 14.9%, respectively) and pri-
or history of tuberculosis (81.7% and 80.4%) were also balanced
between training and test sets, as was the proportion with mi-
crobiologically confirmed tuberculosis (26.9% and 24.7%, re-
spectively). The country distribution was largely balanced,
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although there was a lower proportion from Madagascar in the
test set than in the training set (7.2% vs 14.4%). There were a
total of 18 834 coughs (9772 in training and 9062 in test).

Challenge Implementation

In total, 147 individuals and 18 teams registered for the CODA
TB DREAM Challenge. In each leaderboard round, 2-8 teams
submitted models. Thirteen teams submitted final models for
subchallenge 1, and 8 for subchallenge 2. Of those that submit-
ted final models, 11 teams for subchallenge 1 and 6 for subchal-
lenge 2 submitted a summary of methods and model code. The
winning models for each subchallenge are described in the
Supplementary Data. The reports for the full set of submissions
are available through the challenge website [22].

Subchallenge 1

As shown in Table 1, Figure 14, and Supplementary Figure 2,
AUROC:s ranged from 0.689 to 0.743. The top model achieved
a specificity of 55.5% at 80% sensitivity; as further shown in
Supplementary Table 2, it did not reach the pAUROC thresh-
olds and did not achieve the WHO TPP-based accuracy goal
for a screening test at 90% sensitivity and 70% specificity. Of
the 11 groups, 4 (36%) used convolutional neural networks, 4
(36%) used artificial neural networks, and 3 (27%) used
gradient-boosting decision tree methods.

Subchallenge 2

All groups used the same algorithm approach they used in sub-
challenge 1. As shown in Figure 1B, Supplementary Figure 3,
and Table 2, overall performance improved compared with
the use of cough sounds alone, and the top performing model
achieved an AUROC of 0.832 (95% CI, .795-.863) and a
pAUROC 0f 0.003 (6.1 X 107% to .012). Five of the 6 submissions
(83%) achieved at least 80% sensitivity and 60% specificity, with
the top model reaching 73.8% (95% CI, 60.8%-80.0%) at 80%
sensitivity. Considering the WHO TPP as a tuberculosis screen-
ing test, the top-performing model achieved 54% specificity (95%
CI, 38%-63%) at 90% sensitivity (Supplementary Table 2). In
sensitivity analysis, the clinical data—only model achieved an
AUROC of 0.817 (95% CI, .778-.850) and a pAUROC of 0.004
(55%107* to .010). At 80% sensitivity, the specificity was
68.1% (95% CI, 63.4%-75.5%; Supplementary Table 2).

Subgroup Assessment

By country, the AUROC for subchallenge 2 ranged from 0.73 to
0.83, with a higher median AUROC in the Philippines, Uganda,
Tanzania and Vietnam (Figure 2A). The median AUROC for
the cough and clinical data models was slightly higher for
male than for female participants (0.82 vs 0.78; P <.01)
(Figure 2B). Model performance was also slightly higher among
people without HIV than among those with HIV (median
AUROC, 0.83 vs 0.78; P <.01) (Figure 2C). Subgroup results

for subchallenge 1 (cough sounds only) are shown in
Supplementary Figures 4-7. Findings were similar, although
we found slightly lower accuracy in male than in female partic-
ipants (median AUROC, 0.69 vs 0.71; P=.02), in contrast to
subchallenge 2.

For all submitted cough and clinical data models, the median
predicted probability of being tuberculosis positive increased
with Xpert MTB/RIF Ultra semiquantitative category, from
trace positive results to high bacillary load results (Figure 3
and Supplementary Figure 7).

DISCUSSION

The CODA TB DREAM Challenge addressed a critical need to
accelerate the development of Al-based tools for tuberculosis
screening through an inclusive, open, and transparent ap-
proach. The challenge brought together students, researchers,
and industry partners from a diverse geographic spectrum
with a common goal of developing novel tuberculosis diagnos-
tic algorithms using cough sounds. In a short period, challenge
participants created, tested, and improved cough sound-based
algorithms that approached the WHO TPP accuracy targets for
a high-sensitivity tuberculosis screening test. Open-access re-
search and citizen science represent a potential paradigm shift
in how digital health solutions can be developed for global
health and infectious diseases.

The cough sound-only models had similar accuracies, with
AUROC:s ranging from 0.65 to 0.74. This performance is within
the wide range of previously developed cough-based COVID-19
models (AUROC, 0.62-0.98) [23-26] A few published cough
sound tuberculosis models have shown higher performance
(AUROG, 0.79-0.94) [6, 7], but these were small studies and
need further validation. A limitation of previous cough models
for other conditions was the use of crowd-sourced data [9, 27,
28]. While this approach rapidly generates large real-world data-
sets, there are multiple challenges, including selection bias, sub-
jective clinical assessment, and heterogenous reference standard
definitions. In the CODA TB DREAM Challenge, we used a mul-
ticountry cohort of consecutively enrolled symptomatic individ-
uals, standardized clinical data and cough collection protocols,
objective tuberculosis testing, and uniform case definitions.
Our approach increases the confidence that algorithms are
identifying features specific to the disease condition, reduces
Al-related biases, and better reflects how the algorithms will
perform in the intended settings and populations.

Performance improved when routine demographic and
clinical variables were added to models. Five of 6 algorithms
approached the WHO-established target accuracy thresholds
for a tuberculosis screening test by meeting the pAUROC
targets, although the absolute values were small, and external
validation is needed. As a postchallenge sensitivity analysis,
we developed a clinical data—only model that performed well
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Table 1. Model Performance for Cough Sound-Only Model (Subchallenge 1)

AUROC
Rank?® Team (95% ClI) Model Type Sound Features Used®
1 Blue Team 0.743 (.703-.780) CNN Spectrogram
2 Al-Campus High School ~ 0.731 (.691-.771)  Gradient-boosting decision MFCCs, chromagram
Team tree

Raghava_India_TB
Yuanfang Guan Lab

0.730 (.690-.773) CNN

0.727 (.685-.768)  Light gradient-boosting

Mel spectrogram
MFCC, first- and second-order time derivatives of MFCCs,

Team machine magnitude-of-pitch tracking, total no. of coughs recorded
5 Metformin-121 0.704 (.660-.746) MetforNet® z-Score normalization of cough recordings
6 Clare 0.699 (.655, .746) ANN Top 300 features extracted via OpenSMILE and identified using PCA
7 Sakb 0.695 (.654-.739) ANN Top 1024 features extracted via OpenSMILE and identified using PCA
7 chsxashoka 0.693 (.651-.736) ANN MFCC, mel spectrogram
9 LCL 0.689 (.644, .733) CNN, light gradient-boosting  Zero-crossing rate, MFCC, chromagram, mel spectrogram, root mean
machine square
9 sasgarian 0.689 (.647-.732) ANN Top 1024 features extracted via OpenSMILE identified using PCA
11 yhwei 0.645 (.601-.687) CNN Spectrogram

Abbreviations: ANN, artificial neural network; AUROC, area under the receiver operating characteristic curve; Cl, confidence interval; CNN, convolutional neural network; MFCC, mel-frequency

cepstral coefficient; PCA, principal component analysis.
#Models with the same ranking (2, 7 and 9) were statistically indistinguishable.

bKey definitions: A spectrogram is a visualization of the audio frequency and amplitude over time, with a chromagram visualization focused on pitch categories; MFCCs are acoustic features
derived from the mel scale that approximate how humans perceive sound; and the zero-crossing rate is the number of times an audio signal will change from positive to negative within the time

period.

°A combined architecture of 5 CNN blocks, followed by a bidirectional gated recurrent unit, an attention layer, and a fully connected layer.

Team name
Blue Team
Al-Campus High School
Raghava_India_T8
Yuantang Guan Lab Team
Methormin-121

Clare
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yhwei

Spe}:iﬁcirv

g7 Team name

Metiormin-121

f- Yuanfang Guan Lab Team
Al-Campus High Schoal
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.

Bive Team
r Lo

yhwel

Specificity

Figure 1. Area under the receiver operating characteristic curves for Cough Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM Challenge final models.
A. Subchallenge 1—cough sounds only. B. Subchallenge 2—cough sounds and routine demographic and clinical data.

(AUROC, 0.817); the top model that combined clinical and
cough data had higher AUROC and specificity estimates, al-
though with overlapping ClIs with the clinical data—only model.
This highlights that clinical care pathways are valuable for tuber-
culosis assessment, and cough sound models should be integrat-
ed and optimized within them to further augment accuracy.
The best-performing models used deep learning algorithms;
while interpretability can be limited with such models,

subgroup findings increase confidence in a tuberculosis-specific
signal. For example, lower performance could be expected
among people with HIV as they often have paucibacillary dis-
ease, suggesting that different thresholds may be needed depend-
ing on the setting or target group [29-31]. Moreover, the
probability of tuberculosis classification correlated with bacterial
burden as measured by semiquantitative PCR results in both
subchallenges, which was also seen in a study in Kenya [6].
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It is important to recognize that the final submitted models
were developed rapidly over a short time frame, and there is po-
tential for further optimization. This includes exploring more
complex deep learning architectures and/or ensembles, in-
creasing the size of the training set and developing country-
specific models. We did not include HIV test results in the

Table 2. Model Performance for Cough Sound and Clinical Data Model
(Subchallenge 2)

Rank Team pAUROC (95% Cl) AUROC (95% Cl)

1 Metformin-121 0.003 (6.11x107°t0 .012)  0.832 (.795-.863)

2 Yuanfang Guan Lab  0.003 (0-.009) 0.821 (.784-.853)
Team

3 Al-Campus High 0.001 (0-.008) 0.817 (.778-.850)
School Team

4 Blue Team 0.001 (0-.007) 0.818 (.779-.853)

5 LCL 0.001 (0-.006) 0.792 (.750-.829)

6 yhwei 0 (0-.003) 0.784 (.741-.822)

Abbreviations: AUROC, area under the receiver operating characteristic curve; Cl,
confidence interval; pAUROC, partial AUROC.

challenge as it may not be available at assessment, but given
the variation in accuracy by HIV status and given that it is an
important tuberculosis risk factor, inclusion of HIV results or
creation of HIV-stratified models may further bolster perfor-
mance. The cough sound repository could also be expanded
and improved in future collection, including more coughs
per participant and using the whole duration of cough sounds
rather than the peak period. Passive cough sounds were collect-
ed only if the individual naturally coughed after the forced
cough, but there are differences between solicited and passive
cough sounds that could be more systematically compared
for model development [6].

We did not include longitudinal cough sounds for this chal-
lenge as the goal was to assess its role for tuberculosis screening,
but these data may provide additional tuberculosis-specific
features to improve performance. At the same time, the over-
arching goal of the challenge was to accelerate innovation and
gain key insights into cough-based AI models for tuberculosis.
In 4 months, the challenge (1) supported multiple new and
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Figure 2. Comparison of area under the receiver operating characteristic curve (AUROC) by country and subgroup in subchallenge 2, shown as box plots of median AUROC
with interquartile range, based on all submissions. A. Stratified by country: South Africa (SA), n = 98; Madagascar (MG), n=51; India (IN), n = 86; Tanzania (TZ), n =87,
Uganda (UG), n = 187; Philippines (PH), n = 150; and Vietnam (VN), n = 131 (median AUROC shown at the top; winning model AUROC shown as a connected line). B. Stratified
by sex: female, n =362, male n =428. C. Stratified by human immunodeficiency virus (HIV) status: HIV negative, n = 615; HIV positive, n = 115.
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Figure 3. The probability of each cough and clinical model to classify tuberculosis, stratified by Xpert semiquantitative category for subchallenge 2. Box plot shows median
probability with interquartile range. Rank indicates the final challenge ranking by team. Higher probability scores indicate higher likelihood that the model would classify the

individual as having tuberculosis.

independently validated cough sound algorithms that could dis-
criminate tuberculosis disease, (2) demonstrated that clinical
data could augment performance, and (3) transparently shared
the best-performing algorithms and processing methods.

To further facilitate ongoing model development, the dataset
remains open source and can be downloaded at the challenge
website [22]. Moreover, the website supports continuous
benchmarking so that developers can submit their algorithms
to receive independent feedback on model performance.
Through this iterative process, the goal is to support the devel-
opment of >1 cough-based algorithm that could be integrated
into a simple mobile device and provide a point-of-care tuber-
culosis screening tool that could be deployed in community-
based settings. Once developed, the continuous benchmarking
mechanism and held-out data could potentially support its re-
view by a regulatory body.

The dataset and challenge had some limitations. The cough
sounds collected were restricted to 0.5-second recordings
around the peak; the use of whole cough sounds may further
improve performance [32]. As all participants were sympto-
matic, there are limitations in extending these models for
community-wide screening, and additional data collection
from screening cohorts is needed. The participants also all
had cough; while solicited cough sounds may have value for
those without cough, this needs to be further evaluated.
Variation by country may reflect differences in comorbid con-
ditions and disease presentation, but also may be due to
differences in phone model used and environmental noise.
However, 0.5-second recordings limited background noise,

and algorithms should be developed to be compatible with
multiple phone models and environments.

The goal of the challenge was to classify microbiologically con-
firmed tuberculosis; if these algorithms are used as part of 2-step
screening to guide further testing, other outcomes could be consid-
ered, such as radiographic evidence of lung disease. Future external
validation of these models is needed and should include compara-
tive assessment with other screening tools and the added yield when
performed in parallel. The greater probability of tuberculosis clas-
sification in individuals with higher bacillary loads may be a useful
marker of infectiousness and needs further study. By establishing
the platform and approach, additional challenges can be created
that update the datasets and goals to support new algorithms.

In conclusion, the CODA TB DREAM Challenge accelerated
the development of cough sound models that can be integrated
into mobile devices for a simple, point-of-care screening tool
for tuberculosis. It also highlighted how open science and col-
laborative efforts can support rapid, inclusive, and effective
health innovations.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases
online. Consisting of data provided by the authors to benefit the reader, the
posted materials are not copyedited and are the sole responsibility of the
authors, so questions or comments should be addressed to the correspond-
ing author.
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