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Abstract

Recent technological developments allow us to measure the status
of dozens of proteins in individual cells. This opens the way to
understand the heterogeneity of complex multi-signaling networks
across cells and cell types, with important implications to under-
stand and treat diseases such as cancer. These technologies are,
however, limited to proteins for which antibodies are available
and are fairly costly, making predictions of new markers and of
existing markers under new conditions a valuable alternative. To
assess our capacity to make such predictions and boost further
methodological development, we organized the Single Cell Signal-
ing in Breast Cancer DREAM challenge. We used a mass cytometry
dataset, covering 36 markers in over 4,000 conditions totaling 80
million single cells across 67 breast cancer cell lines. Through four
increasingly difficult subchallenges, the participants predicted
missing markers, new conditions, and the time-course response of
single cells to stimuli in the presence and absence of kinase inhibi-
tors. The challenge results show that despite the stochastic nature
of signal transduction in single cells, the signaling events are
tightly controlled and machine learning methods can accurately
predict new experimental data.
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Introduction

Cell signaling governs most activities of cells as it underlies the abil-
ity to correctly respond to stimuli from the cellular microenviron-
ment. This dynamic process of signaling is tightly regulated by the
interactions of proteins. Deregulation and major disturbances in this
finely tuned machinery can lead to diseases such as cancer (Hynes
& MacDonald, 2009), autoimmunity (Benveniste et al, 2014), and
diabetes (Boucher et al, 2014).

The abundance of signaling proteins and the mutation status of
underlying genes vary across cell lines; therefore, different cell lines
have distinct signaling networks. But not only different cell lines
have different signaling networks: Cells of the same type display
dissimilar signaling patterns in response to stimuli depending on
history, cell state, and microenvironment. This heterogeneity has
important implications for the treatment of diseases. For example,
intratumor heterogeneity in cancer is a key contributor to therapeu-
tic failure and drug resistance: Often subpopulations do not respond
to therapies, resulting in relapses. Thus, a better understanding of
signaling and its heterogeneity might unlock better treatments
(Yaffe, 2019).

Single-cell measurements, particularly mass cytometry (Boden-
miller et al, 2012; Spitzer & Nolan, 2016), have opened a new way
to monitor the signaling in individual cells. With this technique, we
can measure the cellular response to multiple perturbations, paving
the way for understanding the heterogeneity of the underlying cellu-
lar mechanisms.

However, the measured nodes are limited to a handful of
proteins for fluorescence-based live cell imaging and several dozens
for highly multiplexed mass cytometry. If we could predict nodes
that are not measured via computational approaches, we could
overcome this technological limitation. In addition, the number of
combinatorial treatments in studies is often limited by the budget or
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available material, since these experiments are complicated and
expensive. Therefore, it would also be desirable whether models
could predict the single-cell response of a cell line to new treatments
after training on response data of other cell lines. One could even
conceive models that predict the response to perturbations from
only basal, unperturbed data.

Answering these questions requires advanced computational
methods. Predictive mathematical models are often used for bulk
data analysis (Byrne et al, 2016; Rukhlenko et al, 2018), but they
have not yet been applied extensively to single-cell data (Loos et al,
2018). Therefore, as a first step, we need to assess the available
modeling frameworks for single-cell predictions on a fair platform
and explore their use, capabilities, and also limits.

To accelerate the development of methods, we organized the
Single Cell Signaling in Breast Cancer (SCSBrC) DREAM challenge.
The Dialogue for Reverse Engineering Assessments and Methods
(DREAM) Challenges provides a framework for participants across
the globe to compare their methods for solving biomedical problems
(Saez-Rodriguez et al, 2016). The participants are ranked according
to predefined metrics, and the solutions are analyzed to find the best
ways to approach the particular problems. Further, the predictions,
the methods, and the code that reproduce the results are made
publicly available after the challenge as a stepping stone for further
improvements. DREAM challenges have enabled the benchmark
and development of methods in systems biology (Meyer & Saez-
Rodriguez, 2021), including the inference of signaling networks
(Prill et al, 2011; Hill et al, 2016).

We based the SCSBrC challenge on a single-cell signaling mass
cytometry dataset (Tognetti et al, 2021). In this dataset, 67 cell lines
were stimulated with EGF and serum (referred hereafter as EGF
treatment) in combination with one of five kinase inhibitors (PKC,
PI3K, mTOR, MEK, and EGFR), and in each condition, 31 phospho-
proteins and 5 cellular markers were measured at 10 different time
points over the course of one hour (Fig 1, Appendix Fig S1 and
Appendix Fig S2A). In total, this dataset includes more than 80
million single cells and more than 4,000 experimental conditions.
The data are complemented with population-level protein abun-
dance experiments, transcriptomic data (RNAseq), and genomic
data (Single Nucleotide Polymorphism and Copy Number Aberra-
tion; Marcotte et al, 2016). A portion of this data was kept for scor-
ing (test data), and the rest was provided as training data to the
participants to develop their methods. Further, we encouraged
participants to incorporate external data and resources of prior
knowledge, such as pathways and protein-protein interaction data-
bases, in their models.

Specifically, in our challenge we aimed to answer the following
questions of increasing complexity: “Can we predict the signaling
response (i) of nodes that are not directly measured from other
measurements on the same cells?”, (ii) “to new combinatorial treat-
ments based on how other cell lines respond to that treatment?”,
(iii) “to perturbations for which we have no data but know the
target?”, and (iv) purely from basal omics data?”. We defined four
corresponding subchallenges (Fig 1).

We evaluated 73 models from 27 teams across the four subchal-
lenges and found that machine learning-based methods worked well
for these prediction tasks (Fig 2). Subchallenge 1 showed that the
signaling dynamics in nodes that are measured in some cell lines
can be accurately predicted in other cell lines. In some cell lines, the
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basal phosphorylation of the nodes is significantly different from
others, which may lead to a shift between measurements and
predictions; therefore, we recommend to include the basal phospho-
rylation in the predictive models. Subchallenge 2 showed that the
effect of kinase inhibitors can be learnt from other cell lines and
predicted with high accuracy. Predictions performed better than
random even when only the target of the kinase inhibitor is given
(Subchallenge 3). Further, we found major differences between
model types in terms of performance at capturing intra-cell line
heterogeneity. Finally, we found in Subchallenge 4 that models can
partially predict the dynamics of a cell line from the basal omics if
one uses the general signaling response of other cell lines.

Results

The SCSBrC DREAM challenge was organized in three rounds
between September and December 2019. A total of 261 individuals
registered, and 22, 16, 14, and 20 teams around the world submitted
predictions in the final round of each subchallenge, respectively. The
teams were ranked in each subchallenge (SC1-4) based on their
predictions on the test dataset (Fig 2A-D, respectively). The chal-
lenges were followed by a post-challenge period where participants
submitted write-ups and code, and participated in a survey about their
methods. The experimental data, models, and results are freely avail-
able for further use (https://www.synapse.org/singlecellproteomics).

The missing marker prediction subchallenge

The goal of subchallenge 1 (SC1) was to build a model that can
predict the phosphorylation of a node that one may not be able to
measure experimentally. To obtain such models, we asked partici-
pants to predict the phosphorylation of selected proteins in single
cells from specific cell lines and conditions (pink box; Fig 1). To do
this, the participants could use the other nodes of the signaling
network for the same condition and cell lines as well as the same
nodes from different cell lines (green box; Fig 1; Appendix Fig S1).
Specifically, we asked the participants to predict five markers (p-
ERKThrZOZ/Tyr-ZO4’ p_AKTSer473’ p-PLCgZTyr759, p_HERZTyrllQG’ and p-
§G5er235/5er236) in six cell lines, measured in all the 49 different
conditions, totaling 11.9 million cells. The participants submitted
their predictions for each measured single cell, and we compared
them to the actual measurements of the markers using the root
mean square error (RMSE) (see Materials and Methods and Fig 1).
This performance was also compared against a reference model we
built before the challenge using a random forest predictor (see Mate-
rials and Methods).

Quality of predictions

First, we ranked the teams and compared their performance with
random predictions and with a random forest-based reference (see
Materials and Methods, Appendix Table S4). For robust ranking, we
used bootstrap sampling of the test conditions to generate a distribu-
tion of scores for each team (see Materials and Methods; Fig 2A).
This identified the winner (icx_bxai, RMSEicx bxai = 0.849), which
strongly outperformed other participants (Bayes factor > 499). For
the random prediction, we took the test data and shuffled the
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Figure 1. Overview of the Single Cell Signaling in Breast Cancer challenge.

The challenge data consist of genomic, basal transcriptomic, and proteomic data, and perturbation single-cell phosphorylation datasets from 67 breast cancer cell lines.
The datasets were divided into training (green; given to participants) and test (pink; withhold for scoring). The training data were common but test data different for
each subchallenge. In each subchallenge, a suitable metric was chosen to score the predictions.
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Figure 2. Summary of the ranking of teams and their methods and data usage across subchallenges.

A-D A B, C, and D summarize subchallenge 1-4, respectively. The violin plots show the distribution of the scores obtained on bootstrap samples of the conditions in the
test data. In all challenges, lower scores mean better predictions. Reference models that we built before the challenge are highlighted with blue color, and random
and null models (EGF condition-based predictions and average cell line-based predictions) are shown with magenta. The tile-plots summarize the approach and
data used by each team. Data types that are used by at least one team are shown in each subchallenge. *Team 22 in SC1 scored worse than random, and their
score exceeds the limit of the y-axis.
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unique cell-ids in each cell line and experimental condition. This
way, when we scored this randomized dataset, each cell was
predicted by a randomly chosen other cell in the same cell line and
experimental condition. Almost all teams performed better than this
random prediction (Fig 2A), with 32% average improvement
(RMSE(eams average = 0.979 & 0.238, RMSE andom = 1.44 £ 2.6e-4).
Six teams achieved better predictions than a reference model that
we built before the challenge started (RMSE eference = 0.903,
Materials and Methods).

Models predicted the trend of the data well, but for a few cell
lines the predictions under- or overestimated the test data. Model
predictions correlated strongly with the test data (median correla-
tion coefficient: 0.761) in each condition (Fig 3A top) and explained

see

Molecular Systems Biology

large amounts of variance (R*median = 0.40, R*max = 0.803) across
all teams (Fig 3A bottom). The explained variance was negative in
some conditions, which means that the predictions of node phos-
phorylation were worse than the sample mean in those condi-
tions. These conditions were found to belong to specific cell lines
that had strongly different initial activation (at time 0, before stim-
ulating) of the predicted nodes than the majority of cell lines (de-
tails below), leading to a
measurements.

The training data did not contain measurements of the initial
activation of the test cell lines. To quantify how much the knowl-
edge of this initial phosphorylation influences the accuracy of the
predictions, we corrected the predictions by the difference between

shift between predictions and
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Figure 3. Summary of subchallenge 1.

A Distribution of the correlation coefficients and explained variances across conditions, cell lines, and markers (Ngata = 1,165), for each team. The medians are indicated

by thick lines, the 0.25 and 0.75 quantiles are indicated by the boxes. The whiskers extend up to the maximum/minimum, but no further than 1.5 *

range. Values beyond the whiskers are plotted individually.

bars represent the P-value from a t-test.

interquartile

Comparison of the performance of the teams using a specific method or dataset; individual performances are marked with dots (Nieams = 22). Numbers above the

Distribution of the prediction errors for cell lines, markers, treatments, and time points. Each violin is built from the prediction errors of all teams. The dashed red

horizontal line shows the global mean RMSE. The significance of a t-test between the groups and the global RMSE is shown above each violin plot (*P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant).
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the predicted and measured mean basal activities of the cell lines.
All the predictions improved significantly (Appendix Fig S3D): in
average teams’ error decreased by 10.4%, and even for the top team
the error decreased by 7% (from RMSEicx pxai = 0.849 to
RMSEicx bxai, corrected = 0.789). This suggests that it is very hard to
predict phosphorylation without any data for the phospho-protein of
interest in the cell line where it has to be predicted.

We evaluated the winner’s team method and a random predic-
tion on a similar, but independent mass cytometry dataset (Lun
et al, 2017), where the authors studied the differences in signaling
dynamics due to node abundance (Appendix section “Single cell
prediction on independent dataset”). We used the winner’s method
to learn signaling relationships among the measured markers in a
set of cells overexpressing some proteins and then predict missing
markers on cells expressing other proteins (Appendix Table S7). We
found that the challenge winner’s method greatly outperformed a
random prediction (RMSEeam, run = 0.508 vs. RMSE andom, Lun =
1.298; Appendix Fig s10)» Which demonstrates the applicability of the
method on other datasets.

What makes a good model for node prediction?

To understand what makes a model better than others, we
analyzed the participants’ write-up of methods and their answers
to a questionnaire. The best three teams approached the prediction
task with different methods: an ensemble of linear and tree-based
methods, convolutional neural networks, and gradient boosting,
respectively (read about the details of each method in Appendix).
Further, while teams 1 and 3 built models for each missing marker
separately, the neural network model of team 2 predicted all the 5
missing markers together. Common among the three approaches
are that all of them included all the 32 measured markers as model
features among others and each team addressed the problem of
missing data.

We compared the building blocks of the methods to see which
elements contributed to better predictions (Fig 3B). Although we did
not find a single model type or modeling procedure strikingly bene-
ficial, several features improved the accuracy of predictions. In
particular, pre-processing of the data (mean RMSE improvement:
0.13, P =0.0731 from a t-test), using an ensemble of models (esti-
mated RMSE improvement: 0.094, P = 0.0935), and training models
on similar cell lines (improvement: 0.0949, P = 0.0975) had the
largest individual impact on the score.

While some teams relied on a single method to build their
models, the top-ranked team (icx_bxai) built a model for each
marker independently and included the 32 provided markers, treat-
ment, and time, and the top principal components of the proteomic
data as features. Further, when estimating the marker values at time
ti, they also considered the median signaling levels of the 32
measured markers at time t;, ti_;, and t;,;. They used subsets of
these features to train an ensemble of models: ElasticNet, Extra-
Trees, RandomForest, Light Gradient Boosting, and linear model. To
make a prediction, they averaged the predictions of all models.

The successful combination of methods by the best performers
suggests that, as experienced in other DREAM challenges (Mar-
bach et al, 2012; Saez-Rodriguez et al, 2016), the combinations of
methods provide robust predictors. We performed multiple aggre-
gation of the predictions (see Materials and Methods and
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Appendix Fig S3C), but could not achieve significant improve-
ment: The combination of the top two teams led to 0.5% improve-
ment over the best team. This is probably due to the large
correlation between the residuals of the teams predictions, which
means that when a team overshot their predictions, other teams
did similarly.

Time-course analysis of predictions

We investigated whether there were specific markers, conditions, or
cell lines that are harder to predict than others (Fig 3C). Prediction
errors distributed heterogeneously across the cell lines and markers
(ANOVA test, P < 2.2e-16; Appendix Table S1), but homogeneously
across treatments (P =0.67) and time after the perturbation
(P =0.68) (Fig 3C). In particular, p-Her2 was the most accurately
predicted marker (improvement of 0.142 of the global mean RMSE;
Appendix Table S2) and the largest prediction error was found for p-
S6 (deterioration of 0.305). Cell line HCC2218 has the largest predic-
tion errors (0.246 above global mean RMSE), while other cell lines
had similarly small prediction error values. The prediction error dif-
ferences between cell lines and markers suggest that the cell lines
show diverse signaling patterns that influence the models” accuracy
(Appendix Fig S4).

As signaling is a dynamic process, we aggregated the predic-
tions of each team and the test data at each time point and
compared the time-courses. The dynamic response of phospho-
sites changed strongly across the different perturbations and also
between cell lines (Appendix Fig S4), which was captured well by
the predictions. For example, MDAMB436 cells showed strong p-
AKT activation upon all perturbations with EGF, except when a
PI3K inhibitor (iPI3K) was applied. The majority of models
captured both the initial dynamics and the level at which the
phosphorylation saturated and predicted the low response of p-
AKT when iPI3K was added. The measured members of the
mitogen-activated protein kinase (MAPK) pathway (e.g., p-MEK,
p-ERK, and downstream p-p90RSK) show similar activation
dynamics in response to EGF stimulations, which was accurately
predicted by most participants (Fig 4B). For example, there is a
strong decrease in p-ERK when we compare its response between
EGF and iMEK conditions (mean phosphorylation decreases: log,
fold change —7.66, adj. P-value = 4.14e-23; Fig 4A), which was
also predicted well by most models (Fig 4B). However, in five cell
lines (four training cell lines: HCC2185, HCC1599, DU4475,
CAL148 and one test cell line HCC2218), the p-ERK phosphoryla-
tion did not decrease after inhibiting MEK (Fig 4B), indicating a
rare (observed for 5 out of 67 cell lines) MEK independent ERK
signaling.

The estimates of p-HER2 in HCC2218 cells also showed a large
prediction error (Fig 4C). This is mostly due to the large shift in the
initial (time 0) signal between the predictions and the data;
HCC2218 shows higher activation of p-HER2 than other cell lines in
the test set. This also emphasizes the importance to measure and
incorporate the basal phosphorylation of predicted markers in all
cell lines in the modeling whenever possible.

In summary, this subchallenge shows that models can learn the
signaling relationship of the markers on a single-cell level and they
can predict the response of individual markers. Further, the basal
activation of the marker in the new cell line can improve these

© 2021 The Authors
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Figure 4. Effect of kinase inhibitors.

A The population-level effect of inhibitors on the phosphosites averaged across all 67 cell lines. (log, fold change in signal level between cells treated with EGF + Serum

and EGF + Serum in combination with a kinase inhibitor).

B Measured and predicted population-level p-ERK response to EGF and EGF + iMEK inhibitor.
C Measured and predicted population-level p-HER2 response to EGF and EGF + iEGFR inhibitor.

predictions and particular attention has to be paid on non-canonical
signaling effects.

The missing conditions subchallenges
In SC2 and SC3, we challenged participants to predict the effect of
known and new inhibitors. We asked them to estimate the response

of populations of cells from selected cell lines to specific kinase inhi-
bitors, i.e., all markers at all measured time points. This is a

© 2021 The Authors

fundamentally different task from SC1, because all the nodes are
unknown in the predicted condition, and therefore, the models have
to capture the signaling relationships of all the markers to predict
between conditions (Fig 1).

The task in SC2 was to predict the response to EGF stimulus in
combination with four inhibitors (targeting EGFR, MEK, PI3K, and
PKC; Appendix Table S3) in twelve test cell lines (Appendix Fig
S2). The training data in SC2 contained the response of the other
cell lines to these inhibitors, as well as the basal phosphorylation

Molecular Systems Biology 17: €10402|2021 7 of 16



Molecular Systems Biology

data for those cell lines. In contrast, in SC3 we asked the partici-
pants to predict the effect of an mTOR inhibitor, without giving
them any training data for this specific condition. We only
provided the name of the inhibitor and the concentration applied
in the experiments (Appendix Table S3), and data upon treatment
with other inhibitors on those cell lines. Since the effect of this
inhibitor could not be observed from training data, participants
were encouraged to use prior knowledge for this task.

Attila Gabor et al

The predictive models were scored and ranked based on 10,000
single-cell predictions submitted for each target cell line and condi-
tion by each team. We scored the predictions using population-
level statistics; the mean value of each marker and the covariance
between marker pairs (see Materials and Methods) in each condi-
tion. This way we capture not only the accuracy of individual
markers, but also the changing interplay (covariance) between
markers in the score (Fig 5B). A reference model was built using a

Subchallenge
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Figure 5. Summary of subchallenges 2 and 3.

A Comparison of teams’ predictions for SC2 and SC3 on a subset of data (15 mins of incubation with inhibitors, no stimuli); the distribution of prediction error is
obtained via bootstrapping (Nsampies = 1,000). In addition, the prediction error that one would obtain using either biological replica A or replica B as predictions is
also shown on the subset of data that overlaps between both biological replicas. The medians are indicated by thick lines, and the 0.25 and 0.75 quantiles are
indicated by the boxes. The whiskers extend up to the maximum/minimum, but no further than 1.5 * interquartile range. Values beyond the whiskers are plotted

individually.

B Comparison of single-cell predictions from winning team with the data in a single condition: test cell line MDAMB468, iEGFR perturbation, 7 min after treatment.
C Test data shown on two-dimensional Uniform Manifold Approximation and Projection (UMAP) with annotated clusters that belong to different cell cycle phases (left);
projection of the challenge winner’s prediction on the same manifold (middle), projection of the fourth team’s, sampling-based prediction on the same manifold

(right).

D Comparison of performance of teams using statistical inference and then applying Gaussian sampler against teams using other methods (Nieams = 17). The medians
are indicated by thick lines, and the 0.25 and 0.75 quantiles are indicated by the boxes. The whiskers extend up to the maximum/minimum, but no further than 1.5 *

interquartile range. Values beyond the whiskers are plotted individually.
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random forest predictor before the challenge (see Materials and
Methods).

Quality of predictions

As for SC1, we ranked the participants based on bootstrap samples
of the conditions (SC2: Fig 2B and SC3: Fig 2C) and compared the
ranked predictions in SC2 to a reference model that we built before
the challenge (Fig 2B, model described in Materials and Methods).
Seven out of the 16 teams performed better than our reference
model (RMSE eference = 44.67), with up to 48% improvement (me-
dian improvement: 39.3%). Of note, a predictor corresponding to
the lack of effect of the kinase inhibitor, thus using the measure-
ments to the stimulus alone, leads to a score of RMSEggr = 29.156.
This relatively good score could be due to the fact that each inhi-
bitor showed strong effect only on a few nodes in the measured part
of the signaling network. Surprisingly, only the top four teams
managed to perform better (Fig 2B, Appendix Table S5).

A subset of the test data (all cell lines, 15 min after incubation
with inhibitor, without EGF stimulation), contains two biological
replicates (replica A and B). Their variation can be considered as an
estimate of the upper-bound of performance as it corresponds to the
experimental error. Therefore, we also scored the participants on
this subset of conditions and compared their scores to the variation
of the measured individual biological replicas. Since SC2 and SC3
used different numbers of cell lines (12 and 38, respectively), we
computed the prediction error per total number of predicted statis-
tics. This allowed us to summarize the two subchallenges together
(Fig 5A); however, they remain not directly comparable as the test
cell lines and conditions were different. With that in mind, in SC2
the mean score of replica A and B (0.0753) is just slightly better than
the top-performing team (0.0782), which also holds for SC3, where
the average score of the two biological replica is 0.0712 and the best
team achieved 0.0725. This shows that the best team could predict
single-cell response with very good accuracy, close to that of a
biological replica.

Similarly to SC1, we found that in both SC2 and SC3 the prediction
error fluctuated across cell lines (ANOVA, P = 8.8e-4), less so across
treatments (P = 0.034) and not significantly across time (P = 0.54)
(Appendix Fig SS5A). The differences across cell lines were more
prominent when only the top four teams, which performed better
than the reference model, were considered (Appendix Fig S5B).

Modeling approaches

Interestingly, five teams, including the top three (icx_bxai, pqui, and
orangeballs), followed similar modeling approaches for SC2 (more
about the approaches in the Appendix). These teams inferred the
median phosphorylation level of the proteins and their covariance
matrices for each sample (cell line, treatment, and time point) using
linear models (Elastic-net by icx_bxai and linear regression by pqui
and orangeballs). Further, all three predicted the cells in the target
conditions using the available conditions of the same cell line,
rather than from the same conditions of other cell lines. In the next
step, they sampled from a multidimensional Gaussian distribution
that followed the inferred statistics in each condition which resulted
in the single-cell predictions. Despite all these similarities, the Z-
score transformation, handling the missing time points and using

© 2021 The Authors
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other statistical features of the single-cell distributions (means,
medians, and quantiles), led icx_bxai to the first place.

We also evaluated multiple scenarios for combining the predic-
tions for SC2 (see Materials and Methods). The combination of top N
teams led to 1-4.2% improvement over the top-ranked team for the
range of N = 2-8 teams, and the best score was achieved with the top
four teams (Appendix Fig S6). A random forest model trained on the
predictions errors also performed similarly. The combination of any
number of random teams occasionally achieved good scores and had
a decreasing trend as the number of teams increased, but on average
performed worse than simply assuming no inhibition effect.

Intra-cell line heterogeneity

The evaluation metric for SC2 and SC3 compared the predictions
and data based on population-level statistics (mean and covari-
ance), but we were curious how well the predictions captured
further single-cell features. Therefore, we analyzed, for SC2, how
the different methods generated heterogeneity and how this
matched the heterogeneity found in the data (Fig 5C). We could
distinguish two fundamentally different prediction methods. Five
teams (including the top three teams) used methods that involve the
estimation of population-level statistics of the cells (mean and
covariance) and then used a Gaussian sampler that generated single
cells that followed the estimated statistics. Due to the Gaussian
sampler, these approaches inherently assume homogeneity. These
types of methods showed good performance: teams using this
approach achieved on average 38.7% better score (Wilcoxon test, P-
value: 0.069) than teams relying on other methods (Fig 5D).
Another popular method (3 teams) was to resample and then
optionally scale the available training data (e.g., the 4th best team).
This method does not rely on a similar assumption of normality,
and thus manages to keep the underlying heterogeneity of the cells.

The measured cells show heterogeneity: The single-cell measure-
ments have the tendency of forming multiple clusters that are driven
by the cell cycle states (see Materials and Methods), and where all
the cell lines are represented in each main cluster (Fig 5C). The
global layout of the predictions that are either based on Gaussian
sampler (Fig SC middle) or based on resampling and scaling real
measurements (Fig 5C right) are in good agreement with the
measurements (Fig 5C left). However, when we focused on cells in
a single-cell line and single treatment conditions (Appendix Fig S7),
the heterogeneity due to cell cycle states was only visible in the
resampling method because resampling inherits the heterogeneity of
the sampled cell lines, while the Gaussian sampler-based method
predicted homogeneously distributed cells.

In summary, the participants predicted the time response of all
markers in response to kinase inhibitors, first (SC2) to inhibitors
with known effects and then (SC3) to an inhibitor which was absent
from the training data. The results show that predicting distributions
of single cells” populations after perturbations with kinase inhibitors
is almost as good as a biological replica and that, at least for some
cases, this is possible even if no data are available upon perturba-
tion with those specific inhibitors. The four best teams were better
than the reference model, and the top team achieved an accuracy
similar to a biological replica. Although overall machine learning-
based methods performed better, sampling methods were better
able at capturing single-cell heterogeneity.
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The time-course prediction subchallenge

Perturbation data contain invaluable information about the direc-
tionality, magnitude, and timescale of the cell response. It also
reveals causal interactions of nodes; therefore, it is often used for
network inference (Zoppoli et al, 2010). However, do we need to do
perturbation experiments on each and every cell line or is this infor-
mation already available from the genome, basal protein expression
and basal phosphorylation? We formulated subchallenge 4 (SC4) to
investigate how well the dynamic response of cell lines can be
predicted from their unperturbed, basal state. The participants had
to predict the population-level response (median of single cells) of
five test cell lines to EGF stimulus alone and in combination to four
kinase inhibitors across the measured time-course (Appendix Fig
S2). As in previous subchallenges, they were allowed to build their
models based on the training cell lines data (for some of which data
under all conditions are available) and use the basal omics (unper-
turbed, basal proteomics and phosphoproteomics and genomics)
data of the test cell lines.

Quality of the predictions compared with an average cell line

We ranked the predictions of the participants based on the RMSE
(Fig 2D) and compared them with a reference prediction (model
built before the challenge, see details in Materials and Methods) and
with a baseline model in which we simply averaged all the training
cell lines in each condition. Clearly, the baseline model captures the
general trends (Fig 6A) and does not capture any cell line-specific
responses. Based on the scoring metric (RMSE), 11 of the 20 teams
predicted better than the baseline model and the top team
performed 40% better than the baseline (score of the baseline:
0.428, reference model: 0.3408, top team: 0.260).

The top three participants outperformed the average cell line model
(baseline model) for all the markers (Fig 6B) except for GAPHD, for
which their prediction error was similar to the average cell line model
(prediction approaches are summarized in Appendix; statistical
comparison in Appendix Table S6). Comparing the predictions with the
baseline model, the RMSE was not the same for all markers: Certain
markers, for example, p.p53 and p.MKK3/6, were predicted much
better by the top teams than by the average cell line model (Fig 6B).

To understand which markers can be modeled more accurately,
we compared the marker variance across cell lines to the prediction
errors (Fig 6B) and we found that the variance correlates strongly
with the error in the average cell line (corr. coeff: 0.944), but less to
the errors in the participants’ prediction (corr.coeff: 0.73). This
means that the participants’ models performed better than the aver-
age cell line model, especially for the markers that changed strongly
between cell lines.

Further, we also compared the prediction errors with the longitu-
dinal variance of the markers (Fig 6B) that tells us how strongly the
markers respond to the perturbation in time. The longitudinal vari-
ance correlated more with the participants error (corr. coeff: 0.858)
than with the average cell line prediction error (corr. coeff: 0.501).
We can also see that the participant prediction was much better than
the average cell line model when the marker longitudinal variance
was lower (Fig 6B), i.e., when the marker changed less in time.

Surprisingly, in contrast to SC1, the prediction errors were simi-
lar across cell lines. Although the distribution of the prediction error
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across the test cell lines showed statistically significant differences
(ANOVA test, P-value = 4.8e-13; Fig 6C), the differences are not
strong: The largest difference in RMSE (0.0528) was found between
cell line HCC1143 and the mean cell line. This shows that modeling
approaches generalizes well across cell lines.

In summary, in the last subchallenge, the goal was to predict the
dynamics of the population response to perturbations from unper-
turbed basal data. Only 11 teams achieved better performance than
random, underscoring the difficulty of the task. Unsurprisingly,
predictions were particularly good for markers that did not change
across time, but changed across cell lines.

Discussion

New technologies allow us to interrogate cell signaling at the single-
cell level. New types of data come with new challenges for data
analysis, and it is crucial to understand and tackle the limitations of
existing computational methods. Toward this goal, we organized
the Single Cell Signaling in Breast Cancer DREAM challenge to draw
the attention of the computational community to single-cell predic-
tion problems, obtain state-of-the-art solutions, and evaluate their
performance. Our results provide a baseline for further development
and a reference for the community to learn what approaches work
best and what the limitations are.

The participants built predictive models from a rich and complex
dataset, composed of the largest single-cell signaling dataset to date
and complementary bulk data types. In Subchallenge 1, the majority
of the teams predicted missing nodes in the signaling network build-
ing models based on all the other measured nodes in each single cell
and a summary (e.g., principal components) of the RNAseq and
proteomic data. These types of models were trained on the cell lines
provided and then used to predict the test cell lines. This implicitly
assumes that the relationship among the nodes can be transferred
between cell lines. This, in turn, could reflect common molecular
programs driven by the shared lineage of the cell lines. We would
thus expect less transferability when considering different tissues or
processes that are less linked to each other as the ones considered
here. The predictions strongly correlated with the test data and
explained large amounts of variance, suggesting that there are
indeed signaling interactions transferable among cell lines.

However, we found two major pitfalls in the predictions. First,
the models captured much better the trends than the absolute value
of nodes’ activities in cases where the basal marker intensity of the
test cell lines was much higher than of the training cell lines. If the
absolute values are important, this can be an important limitation,
but not for downstream analysis where the data are rescaled, e.g.
(Tognetti et al, 2021). In addition, the functional effect of at least
some main pathways is driven by fold changes, and thus, predicting
these, even if not being able to do so accurately for the absolute
values, is helpful (Adler & Alon, 2018). The second pitfall is related
to rare signaling cases: In the majority of cell lines, MEK phosphory-
lated ERK and the inhibition of MEK resulted in the lower phospho-
rylation of ERK. However, in a few cell lines, ERK showed a similar
level of phosphorylation to EGF and Serum with and without the
MEK inhibitor CI-1040. This phenomenon was not captured by the
predictions either because the number of such cell lines was low in
the training data or because there was no information on this

© 2021 The Authors
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A Time-course comparison of the dynamic response of the test cell lines with the average of the training cell lines and the teams’ predictions (highlighting the top 3

teams).

B Comparison of the error of predictions and mean of the training cell lines for each marker (top), variance of each marker between cell lines, and mean variance of

each marker in time.

C Comparison of prediction errors in each cell line. The red dashed horizontal line shows the global mean RMSE. The significance of a t-test between the groups and
the global RMSE is shown above each violin plot (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant).

alternative relationship in the data, for example, if this phenomenon
depends on the expression of non-measured nodes. It might also be
that those cell lines showed this behavior because the high concentra-
tion of MEK inhibitor resulted in cell type-specific off-target effects.
This example illustrates the potential limitations of inhibitors for
network inference, as off-target effects can confound the results.

The activity of cellular markers within a single condition in a cell
line could show twofold to threefold differences across single cells.
The fact that models can explain up to 80% of this variance by the
other measured markers shows that despite the loose regulation
between the cells, the intracellular signaling is highly ordered and

© 2021 The Authors

the activity of the proteins is strongly connected. This phenomenon
is already recognized and is used by network inference algorithms,
e.g. (Krishnaswamy et al, 2014). Furthermore, the models were
trained on some cell lines and predicted the behavior in other cell
lines, which show that the learnt regulations are transferable
between cell lines. However, our finding that certain rare signaling
patterns were not captured well shows that the transferred knowl-
edge is limited and prediction algorithms should improve to capture
rare cases.

We tested the winner’s method on an independent mass cytome-
try dataset (Lun et al, 2017), where we found that the predictions are
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much better than random and the prediction error is smaller than
what we observed in Subchallenge 1. This is likely because the
“pseudo-cell lines” (cells that overexpress different proteins) are more
similar to each other than the breast cancer cell lines. In any case,
this result suggests that the method is applicable on other datasets.

The approach to predict the whole signaling response of the cells
to kinase inhibitors (Subchallenges 2 and 3) was fundamentally dif-
ferent from Subchallenge 1. The top-performing models learnt the
signaling relationships among the nodes and how these changed
between conditions within each cell line, and transferred this knowl-
edge to the target condition. Further, instead of predicting each indi-
vidual single cell directly, the top-performing models derived
statistical descriptors of the markers in each condition, predicted the
distribution of cells in the target condition, and then sampled that
distribution to generate the single cell predictions. We found that the
predictions of the top team were almost as accurate as biological repli-
cas, although it should be noted that we only had two replicates.
Although models that inferred directly the median and variance of
cells performed better than models based on resampling similar cell
lines, the analysis of the distribution across cells showed that the latter
approach performed better at capturing the cell lines’ heterogeneity.

In Subchallenge 4, the task was even more challenging: predict
the time-course response of cell lines for which only basal (before
perturbation) data were provided. Many methods performed better
than using an average of the provided cell lines as a predictor,
showing that participants were able to capture to some degree the
differences between the cell lines, particularly for phosphoproteins
that did not change much across time, but varied between cell lines.

The teams used various prediction algorithms, including linear
models (ordinary least squares, ridge regression, regularized linear
regression), (recurrent-) neural networks, tree-based algorithms
(e.g., random forest, gradient boosting), deep networks, and custom
differential equation-based models (see Appendix: Prediction meth-
ods of the best teams). However, similarly to previous we did not
find evidence for the idea that a specific type of algorithm performed
significantly better than other types of models for these prediction
challenges. Across subchallenges, we found that the ensemble of
predictions of multiple teams is better than an average team, which
means that the risk for a bad prediction can be mitigated by combin-
ing multiple approaches. However, the combined prediction is not
significantly better than the best team, which might be because the
best team already used an ensemble of models.

Only some teams used the prior knowledge we provided, and
none added any further external prior knowledge. Teams that did use

Materials and Methods

Reagents and Tools table

Resource Reference or source
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this knowledge did not perform better, in contrast to the previous
network inference challenge (Hill et al, 2016). In fact, top-performing
teams did not use prior knowledge, except the best performing team
that used the prior network to predict the effect of mTOR inhibition
on other nodes in Subchallenge 3. While the value of prior knowledge
is considered helpful for network inference, it is not trivial to embed
this in general machine learning frameworks, which could explain
why it was not particularly relevant in this challenge.

The results of our challenge also provide general guidelines to
design experiments aimed to characterize signaling events at the
single-cell level. Given the broadly good results from Subchallenge
1, one could design experiments where only subsets of markers are
measured in the different conditions, as long as each phospho-
protein is measured in at least one condition for each cell line, even
if some of these are bulk measurements. Further, in agreement with
previous studies (Behbehani et al, 2012; Rapsomaniki et al, 2018),
the data in subchallenges 2 and 3 show that some processes, like
cell cycle (Fig 5C), strongly influence signaling. It is important to
include markers that either capture these processes or are co-
regulated by them.

Further challenges could also address how to predict specifi-
cally the basal single-cell signaling from other omics data. If
achieved, combining this with improvements of the methods from
subchallenge 4, one could predict the single-cell dynamics of
signaling networks directly from bulk omics data. In this chal-
lenge, we focused on predicting early signaling responses in breast
cancer. Signaling responses have been used for predicting long-
term phenotypic changes, such as drug response. Bulk signaling
response was used to successfully predict long-term drug response
(Niepel et al, 2013) and dynamic pathway models derived from
signaling responses to perturbations predicted single and
combined treatments in cancer cell lines (Korkut et al, 2015;
Eduati et al, 2017; Silverbush et al, 2017; Tognetti et al, 2021). An
interesting prospect for future challenges would thus be to predict
long-term phenotypes from cell signaling at the single-cell level,
which can provide important insights into the mechanisms of drug
resistance.

In summary, the results of this DREAM challenge provide a snap-
shot of our collective ability to predict signal transduction at the
single-cell level. The best performing methods can be applied to
other datasets and used as a baseline for those interested in develop-
ing methods for these aims. To support those further developments,
all data and descriptions of methods are made freely available for
the community to use.

Identifier or catalog number

Experimental data

Single-cell data Tognetti et al (2021) NA
Proteomics data Tognetti et al (2021) NA
Genomics data Marcotte et al (2016) NA
External single-cell data Lun et al (2017) NA
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Resource Reference or source Identifier or catalog number
Predictions from the teams https://www.synapse.org/#!Synapse:syn20366914/wiki/594733 NA

Software

Code for analysis and figures https://codeocean.com/capsule/7326564/ NA

Prediction methods of each team https://www.synapse.org/#!Synapse:syn20366914/wiki/594733 NA

Methods and Protocols

Single cell signaling in breast cancer DREAM challenge

The challenge was divided into three rounds which lasted between
2 and 4 weeks each. In each round, participants were limited to
maximum three submissions, to avoid learning on the test dataset.
After each round, the current scores were publicly presented on a
scoring board. In total 127, 77, 61, and 83 valid predictions were
submitted by 22, 16, 14, and 25 teams for each subchallenge,
respectively.

A requirement for the challenge participation is a summary of
method, which is publicly available (https://www.synapse.org/#!
Synapse:syn20366914/wiki/593925) and open source code that
reproduces the results. Further, we collected information on the
methods via a questionnaire.

Experimental data used in the challenge

In the challenge, the participants were provided with 3 main data-
sets (summarized by Appendix Fig S2): (i) the single-cell phospho-
proteomic data and median intensities of the phosphoproteomics
data, (ii) protein abundance data, and (iii) genomic data: RNA
sequencing data, copy number variation (CNV), and single nucleo-
tide polymorphism (SNP). The raw data and the experimental proto-
col for (i) and (ii) are described in Tognetti et al (2021) and for (iii)
in Tognetti et al (2021); Marcotte et al (2016). In what follows, we
summarize the experimental detail that is relevant to the challenge.

The single-cell phosphoproteomic comprises the
measurement of 62 breast cancer and 5 normal cell lines in six treat-
ment conditions. The treatment conditions included stimuli with
EGF and serum after 24 h of starvation and stimuli with EGF and
serum after 24 h of starvation and 15 min of incubation with one of
the five kinase inhibitors. The kinase inhibitors and their concentra-
tions are listed in Appendix Table S3. The adhesive cells were
detached 5 min prior to fixation. The effect of detachment is
expected to increase the baseline level of certain pathways, but this
effect is constant across all experiments and is not expected to
impact significantly time-dependent effects. The response of the
cells was measured at 7-10 time points in the first hour after treat-
ment (Appendix Fig S2A). In each condition, 36 markers were
measured by mass cytometry, which included 31 phosphoproteins
and 5 cellular markers.

The protein abundance data were measured at normal growth
condition in basal state. Participants were provided by both the raw
proteomic data, which contained biological and technical replicates,
and the protein abundance output from MSstat (Choi et al, 2014),
which provides the relative quantification (log2 fold changes) to the
set of five cell lines that were derived from healthy patients (184A1,
184B5, MCF10A, MCF10F, and MCF12A).

dataset

© 2021 The Authors

The RNAseq, CNV, and SNP datasets were generated and
published (Marcotte et al, 2016) and have information for 64 of the
characterized 67 cell lines.

Scores and robust ranking by resampling

In subchallenge 1, we computed the root mean square error
between the measured data y and prediction "y for each marker m,
separately in each condition, on single-cell level. In a particular
condition, there are N single cells that are measured and
predicted in each test cell line cl, treatment tr, and time point ¢ after
the perturbation. The RMSE is computed as

Nt (y 5. )2
icltrt,m yl,Cl.tTJJTl
RMSEcl,tr‘t.m = Z
=1 Ncl.tr,r

For the final score of a team, we computed the average RMSE
error across the five predicted markers (p-ERK, p-PLCg2, p-HER2, p-
S6, and p-AKT_S473), six cell lines (AU565, EFM19, HCC2218, LY2,
MACLS2, and MDAMB436), and all measured timepoints (11 in stim-
ulated experiments, 7 in case of combined stimulus and inhibition):

score = > RMSEcrim

cond cl,tr,t,m

We found that the RMSE score changes in each condition, most
significantly based on the cell line that was predicted. Therefore, for
a robust ranking of participants, we resampled 1000 times the
conditions used to compute the final score with replacement and
computed the bootstrap score on each sample. Finally, the team are
compared by Bayes factors based on the bootstrap scores:

10001 (score(Tx)i < score(Ty) )

l

BF (T, Ty) =
) = 0001 (care(r) > seorelT,),)

where score(Ty) is the score of team Ty, 1() is the indicator function.

In subchallenges 2 and 3, the participants submitted 10000
representative single-cell predictions (predicting Nmarker = 35 mark-
ers) for each validation cell line and condition (treatment and time).
For each condition i, we compared the mean marker value from the
gold standard data (u) with the mean of the predicted sample (z).

Nmarker ~ N2
Sui = (.“ij - #i.}) >
j=1

and also for the covariance of marker pairs:

Nmarker ~ N 2
B (COV(VL]" )’i.k) - COV(Vi,j» )’i.k))
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and combined the two parts equally when computed the average
across all cell lines and conditions (N):

1
=N

M=z

S (Sﬂﬁi + 5,771').

I
—

For a robust ranking, we created bootstrap samples of scores by
resampling the conditions and cell lines with replacement. Then, we
computed the Bayes factors between teams, based on the bootstrap
scores.

In subchallenge 4, the participants predict the population mean
response to perturbation over time for each marker. Therefore, for
each cell line and treatment, we computed the RMSE across time:

T IERY
RMSEcl,tr,m = 2 w
t=1

The final score is computed by averaging the error for all condi-
tions.

For a robust ranking, we created bootstrap samples of scores by
resampling the treatments and cell lines with replacement, as
before. Then, we computed the Bayes factors between teams.

Reference models

In SC1, our model predicted the missing marker based on the
measured markers in each individual cell. We built a random
forest model for each marker independently, across all conditions
using the ranger R package (Wright & Ziegler, 2017). The model
features included all the measured markers and time as continuous
variables, and the treatments, starvation status (cells in treatment
“full” were not starved), and stimulated status (cells at time 0 and
in “full” treatment are not stimulated with EGF) as one-hot-
encoded variables. The model was trained on a subset of the train-
ing cell lines: We selected 7 cell lines randomly (BT474, CAL148,
HBL100, MCF7, MDAMBI157, TD47D, and ZR7530) and 500
random cells from each condition.

The idea for the reference model in SC2 was to predict the
means and covariance matrix of the markers in the missing condi-
tions based on the available conditions and then use a simulator
that generates samples from a multivariate normal distribution
following the estimated mean and covariance values. Thus, first
we computed the mean and covariance matrix of the markers in
each cell line, treatment, and time point. Then, we built an inde-
pendent random forest model for each statistical variable y (mean
of a marker or entry in the covariance matrix), for each cell line
and time point:

)/7\tr( = RF(Ytr#.,)

For example, the mean value of marker Ki-67, in cell line BT474,
time 0, treatment iMEK was predicted based on the available values
of Ki-67 levels in the same cell line, in time 0, in {EGF, iEGFR,
iPI3K, iPKC} conditions. For the training of the models, we selected
the same 7 training cell lines as in SC1.

We have not built a reference model for subchallenge 3.

In subchallenge 4, we hypothesized that each marker response
(Ver,tr1ime) €an be described as the superposition of the average cell
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line response (yaverage.[r‘time = NLIZ ytr.zime) and cell hne’speCiﬁC
response difference (deir time), i-€., &

ycl,lr.time = Yavemge.zr.time + dcl,tr.lime~ (1)

The average cell line response (Vgperage,trime) Was calculated by
taking the mean of all the training cell lines for each marker, in each
condition (treatment and time point). Note that all the three terms
in Equation (1) can be easily calculated for the training data. Then,
we built a random forest model that predicts the cell line-specific
response (de ¢ ime) based on the data that is available for the test
conditions, i.e., based on the proteomic data and based on the basal
activation of markers (“full” condition). We also used the treatment,
time, and stimulation status (i.e., if time > 0) as model features. We
trained a model for each reporter independently based on all the
training cell lines.

Random and systematic combinations of predictions

Predictions of randomly selected teams and the top-performing
teams were aggregated. Different sizes of ensembles (n) were
scored, from the minimum of one team up to the maximum of all
teams. In subchallenges 1 and 4, the predicted values of different
teams were combined by taking the median of the predictions. In
subchallenges 2 and 3, representative cells were predicted and
scored based on the statistics. Here, we used two approaches: (i)
Predictions were combined by sampling an equal number of
predicted values per condition from all selected submissions and (ii)
computing the statistics for each submission and then averaging
across the selected teams. In all subchallenges, the resulting ensem-
bles were scored the same way as individual submissions. For the
random combination of teams, we repeated the procedure 100 times
to see the distribution of score.

Machine learning-based combination of predictions

We used Random Forest (RF) models in SC1 and SC2 to combine
the predictions for the test cell lines. We used a cross-validation
scheme for the model training and for the predictions to avoid over-
fitting these RF models and to generate predictions for all the test
cell lines. We divided the data into sixfold: In SC1, each fold of data
contained a single test cell line, and in SC2, each fold contained two
cell lines. This way the training and predictions of the RF models
also mimic the setup of the subchallenges; i.e., they are trained on
part of the cell lines and predict other cell lines. Then in six itera-
tions, we trained our RF models on fivefold and predicted the sixth
fold until we had predictions for all the test data and could compare
the performance of RF predictions with the participants’ predictions.

In SC1, we trained a random forest model per marker and used
the single-cell predictions from the teams and the time point as
continuous variables and the treatment and predicted marker as
one-hot encoded features. Due to the chosen cross-validation
scheme, we could not use “cell line” as a feature. Therefore, we also
included the 32 non-predicted marker values as model features.

In SC2, our RF predicted the mean and covariances per condition
using the mean and covariance matrix from the participants’ predic-
tions. The model also included as features the median expression
per marker at treatment EGF. The predicted statistics were used to
create a multivariate normal distribution, from which 10,000 cells
per condition were sampled and subsequently scored.
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Cell cycle phases

Cell cycle phases were identified from the single-cell data based on
the markers Histone H3 (p.H3), iododeoxyuridine (I1dU), retinoblas-
toma protein (p.RB), and cyclinB (Appendix Fig S8). Following
(Behbehani et al, 2012), GO-phase and G1-phase are both character-
ized by low expression of IdU, p.H3, and cyclinB, but we could not
differentiate between GO and Gl based on the expression of
retinoblastoma protein (p.RB). High expression of IdU and low
expression of p.H3 characterize S-phase; high expression of p.H3
with low IdU identifies M-phase; finally, low expression of IdU and
p.H3 with high expression of cyclinB identifies G2 phase. Apoptotic
cells were detected by high cleaved Caspase 3 (cleavedCas) levels.

Data availability

The datasets and computer code produced in this study are available
in the following databases:

Single-cell proteomic, bulk proteomic, transcriptomic, and genomic
data: https://www.synapse.org/#!Synapse:syn20564743

Description of prediction methods and code of the challenge
participants: https://www.synapse.org/#!Synapse:syn20366914/
wiki/594733

Prediction data and analysis scripts: CodeOcean capsule.

Single Cell Signaling in Breast Cancer DREAM challenge analysis:
https://doi.org/10.24433/C0.6078101.v2.

Expanded View for this article is available online.
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