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It is still not possible to predict whether a given molecule will have a perceived odor or what
olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction
Prediction Challenge. Using a large olfactory psychophysical data set, teams developed
machine-learning algorithms to predict sensory attributes of molecules based on their
chemoinformatic features. The resulting models accurately predicted odor intensity and
pleasantness and also successfully predicted 8 among 19 rated semantic descriptors (“garlic,”

“fish,” “sweet,” “fruit,” “burnt,

spices,” “flower,” and “sour”). Regularized linear models

performed nearly as well as random forest—based ones, with a predictive accuracy that closely
approaches a key theoretical limit. These models help to predict the perceptual qualities of
virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule.

n vision and hearing, the wavelength of
light and frequency of sound are highly
predictive of color and tone. In contrast, it
is not currently possible to predict the smell
of a molecule from its chemical structure
(1, 2). This stimulus-percept problem has been
difficult to solve in olfaction because odors do
not vary continuously in stimulus space, and
the size and dimensionality of olfactory percep-
tual space is unknown (7, 3, 4). Some molecules
with very similar chemical structures can be dis-
criminated by humans (5, 6), and molecules with
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very different structures sometimes produce nearly
identical percepts (2). Computational efforts de-
veloped models to relate chemical structure to
odor percept (2, 7-11), but many relied on psycho-
physical data from a single 30-year-old study that
used odorants with limited structural and per-
ceptual diversity (12, 13).

Twenty-two teams were given a large, un-
published psychophysical data set collected by
Keller and Vosshall from 49 individuals who
profiled 476 structurally and perceptually diverse
molecules (14) (Fig. 1A). We supplied 4884 physi-
cochemical features of each of the molecules
smelled by the subjects, including atom types, func-
tional groups, and topological and geometrical
properties that were computed using Dragon
chemoinformatic software (version 6, Talete S.r.l.,
see supplementary materials) (Fig. 1B).

Using a baseline linear model developed for
the challenge and inspired by previous efforts to
model perceptual responses of humans (8, 11), we
divided the perceptual data into three sets. Chal-
lenge participants were provided with a training
set of perceptual data from 338 molecules that
they used to build models (Fig. 1C). The orga-
nizers used perceptual data from an additional
69 molecules to build a leaderboard to rank
performance of participants during the com-
petition. Toward the end of the challenge, the
organizers released perceptual data from the
69 leaderboard molecules so that participants
could get feedback on their model and to en-
able refinement with a larger training + leader-
board data set. The remaining 69 molecules
were kept as a hidden test set available only to
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challenge organizers to evaluate the performance
of the final models (Fig. 1C). Participants de-
veloped models to predict the perceived inten-
sity, pleasantness, and usage of 19 semantic
descriptors for each of the 49 individuals and
for the mean and standard deviation across
the population of these individuals (Fig. 1, D
and E).

We first examined the structure of the psycho-
physical data using the inverse of the covariance
matrix (I5) calculated across all molecules as a
proxy for connection strength between each of
the 21 perceptual attributes (Fig. 1F and fig. S1).
This yielded a number of strong positive inter-
actions, including those between “garlic” and
“fish”; “musky” and “sweaty”; and “sweet” and
“bakery”; and among “fruit,” “acid,” and “urinous”;
and a negative interaction between pleasantness
and “decayed” (Fig. 1F and fig. S1A). The percep-
tion of intensity had the lowest connectivity to the
other 20 attributes. To understand whether a
given individual used the full rating scale or a
restricted range, we examined subject-level vari-
ance across the ratings for all molecules (Fig. 1G).
Applying hierarchical clustering on Euclidean dis-
tances for the variance of attribute ratings across
all the molecules in the data set, we distinguished
three clusters: subjects that responded with high-
variance for all 21 attributes (left cluster in green),
subjects with high-variance for four attributes
(intensity, pleasantness, “chemical,” and “sweet”)
and either low variance (middle cluster in blue)
or intermediate variance (right cluster in red) for
the remaining 17 attributes (Fig. 1G).

We assessed the performance of models sub-
mitted to the DREAM Challenge by computing
for each attribute the correlation between the
predictions of the 69 hidden test molecules and
the actual data. We then calculated a Z-score by
subtracting the average correlations and scaling
by the standard deviation of a distribution based
on a randomization of the test-set molecule iden-
tities. Of the 18 teams who submitted models to
predict individual perception, Team GuanLab
(author Y.G.) was the best performer with a Z-
score of 34.18 (Fig. 1H and table S1). Team IKW
Allstars (author R.C.G.) was the best performer
of 19 teams to submit models to predict pop-
ulation perception, with a Z-score of 8.87 (Fig.
1H and table S1). The aggregation of all par-
ticipant models gave Z-scores of 34.02 (indi-
vidual) and 9.17 (population) (Fig. 1H), and a
postchallenge community phase where initial
models and additional molecular features were
shared across teams gave even better models
with Z-scores of 36.45 (individual) and 9.92
(population) (Fig. 1H).

Predictions of the models for intensity were
highly correlated with the observed data for both
individuals (r = 0.56; t test, P < 10722%) and the
population (r = 0.78; P < 10™°) (Fig. 1, T and J).
Pleasantness was also well predicted for individ-
uals (7 = 0.41; P < 10 *%) and the population (7 =
0.71; P < 107®) (Fig. 1, I and J). The 19 semantic
descriptors were more difficult to predict, but the
best models performed respectably (individual:
7= 0.21; P < 107, population: 7 = 0.55; P < 10™°)
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(Fig. 1, T and J). Previously described models to
predict pleasantness (8, 10) performed less well
on this data set than our best model (Fig. 1J). To
our knowledge, there are no existing models to
predict the 19 semantic descriptors.
Random-forest (Fig. 2A and table S1) and
regularized linear models (Fig. 2B and table S1)
outperformed other common predictive model
types for the prediction of individual and pop-

ulation perception (Fig. 2, fig. S2, and table S1).
Although the quality of the best-performing model
varied greatly across attributes, it was exceptionally
high in some cases (Fig. 2C), and always consider-
ably higher than chance (dotted line in Fig. 1I),
while tracking the observed perceptual values (fig.
S2 for population prediction). In contrast to most
previous studies that attempted to predict olfactory
perception, these results all reflect predictions of a

hidden test set and avoid the pitfall of inflated cor-
relations due to overfitting of the experimental data.

The accuracy of predictions of individual per-
ception for the best-performing model was highly
variable (Fig. 2C), but the correlation of six of the
attributes was above 0.3 (white circles in Fig. 2D).
The best-predicted individual showed a correlation
above 0.5 for 16 of 21 attributes (Fig. 2D). We asked
whether the usage of the rating scale (Fig. 1G)
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Fig. 1. DREAM Olfaction Prediction Challenge. (A) Psychophysical data.
(B) Chemoinformatic data. (C) DREAM Challenge flowchart. (D) Individual and
population challenges. (E) Hypothetical example of psychophysical profile of a
stimulus. (F) Connection strength between 21 attributes for all 476 molecules.
Width and color of the lines show the normalized strength of the edge. (G) Per-
ceptual variance of 21 attributes across 49 individuals for all 476 molecules at
both concentrations sorted by Euclidean distance. Three clusters are indicated
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by green, blue, and red bars above the matrix. (H) Model Z-scores, best per-
formers at left. (1 and J) Correlations of individual () or population (J) perception
prediction sorted by team rank. The dotted line represents the P < 0.05 sig-
nificance threshold with respect to random predictions. The performance of four
equations for pleasantness prediction suggested by Zarzo (10) [from top to
bottom: equations (10, 9, 11,7, 12)] and of a linear model based on the first seven
principal components inspired by Khan et al. (8) are shown.
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Fig. 2. Predictions of individual perception. (A) Example of a random-forest
algorithm that utilizes a subset of molecules from the training set to match a
semantic descriptor (e.g., “garlic”) to a subset of molecular features. (B) Example
of a regularized linear model. For each perceptual attribute y;, a linear model
utilizes molecular features x;; weighted by p; to predict the psychophysical data
of 69 hidden test-set molecules, with sparsity enforced by the magnitude of A.
(C) Correlation values of best-performer model across 69 hidden test-set mol-
ecules, sorted by Euclidean distance across 21 perceptual attributes and 49
individuals. (D) Correlation values for the average of all models (red dots, mean
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SD), best-performing model (white dots), and best-predicted individual (black
dots), sorted by the average of all models. (E) Prediction correlation of the best-
performing random-forest model plotted against measured standard deviation
of each subject’s perception across 69 hidden test-set molecules for the four
indicated attributes. Each dot represents one of 49 individuals. (F) Correlation
values between prediction correlation and measured standard deviation for
21 perceptual attributes across 49 individuals, color coded as in (E). The dotted
line represents the P < 0.05 significance threshold obtained from shuffling
individuals.

3of7

9202 ‘6T Afenuer uo 1y ABOJouYdS | UOITRLLIOU| JO 3IN1NSu| eyiseidelpu| 12 610°80us 105 MMM//:SANY WOJ) pepeojumod



RESEARCH | REPORT

Ry

[2]
©
kS
_§ [
88
S5 06 ++ c
o )
58 5
% :‘; 0.4 g Ethyl heptanoat ;
Ew (8} 3-Methyl cyclohexanone o
35 5 ‘
Q2 + 2 04
®© 5 0.2+ 3 Glycerol
g g o Benzyl ether
<o 02 4 @ Average of all models Ethyl formate
% 0.0- O Aggregated models L-Cysteine
252955 E8E55828FEST3E3 00 o
TiL @ T532228>888s2:828 . T T T
8“;5%“mg§;”§§o§§§g°;< 0 20 40 60
=3 a 5 Ranked molecules
[
o
C E
Grass Sour
B Random-forest model -l-l;-;- 06
c M Linear model +* 0.4
:‘g < 02
8o : 0.0
s § Intensity Pleasantness T 100 102 104 100 102 104
g2 0.6
£8 o4 Decayed Acid
af 0.6
c > 0.2 ol .
23 S 04
o ° 0.0 5 .
28 100 102 104 100 102 10* S o5
S o
5] Number of features 2 0.0
[o% . +
D 9 109 102 10*  10° 102 10
o
Fish Warm Garlic @
06 o Cold Musky
. el
ko S 06
3 04 f \ c
Bl . sy g o ﬁﬁ ﬁ
S 02 o
Eg g 02
§ %0 107 10t 100 07 10t 100 102 10t S oo
5 @ 100 102 104 100 102 10*
> - [0
g 2
. . [0
o Bakery Chemical Fruit 2 Urinous Sweaty
® 06 S o6
s 5
g 04 ?ﬂ‘pi S T 04
el o
(0]
g 02 S w /J’Q
§ 00 -5 2 4 0 2 4 0 2 4 0.0
2 10 10 10 10 10 10 10 10 10 100 102 104 100 102 10*
3
s Spices Sweet Wood Flower Burnt
5 06 0.6
[0)
5 o f#::: 0.4
0.2 f‘ - 0.2
0.0 0.0
100 102 10* 10° 102 10* 100 102 104 10 102 10* 10° 102 10*

Number of features Number of features
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could be related to the predictability of each
individual. Overall, we observed that individuals
using a narrow range of attribute ratings—
measured across all molecules for a given attribute—
were more difficult to predict (Fig. 2, E and F,

>

derived from the variance in Fig. 1G). The relations
between range and prediction accuracy did not
hold for intensity and pleasantness (Fig. 2, E and F).

We next compared the results of predicting
individual and population perception. The seven

C

best-predicted attributes overall (intensity, “garlic,”
pleasantness, “sweet,” “fruit,” “spices,” and “burnt”)
were the same for both individuals and the
population (Fig. 2D and Fig. 3A except “fish”).
Similarly, the seven attributes that were the most
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model-test correlation coefficient for “burnt” (15) was statistically distinguishable
from the corresponding test-retest coefficient (P < 0.05 with FDR correction).
(D) Schematic for reverse-engineering a desired sensory profile from molecular fea-
tures. The model was presented with the experimental sensory profile of a molecule
(spider plot, left) and tasked with searching through 69 hidden test-set molecules
(middle) to find the best match (right, model prediction in red). Spider plots rep-
resent perceptual data for all 21 attributes, with the lowest rating at the center and
highest at the outside of the circle. (E) Example where the model selected a mol-
ecule with a sensory profile 7th closest to the target, butyric acid. (F) Population
prediction quality for the 69 molecules in the hidden test set when all 19 models are
aggregated. The overall area under the curve (AUC) for the prediction is 0.83, com-
pared with 0.5 for a random model (gray dashed line) and 1.0 for a perfect model.
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difficult to predict (“acid,” “cold,” “warm,” “wood,”
“uarinous,” “chemical,” and “musky”) were the same
for both individual and population predictions
(Figs. 2D and 3A), and except for alow correlation
for “warm,” these attributes are anticorrelated or
uncorrelated to the “familiarity” attribute (14).
This suggests some bias in the predictability of
more familiar attributes, perhaps due to a better
match to a well-defined reference molecule (14),
and that, in this categorization, individual per-
ceptions are similar across the population. For the
population predictions, the first 10 attributes have
a correlation above 0.5 (Fig. 3A). The connectivity
structure in Fig. 1F follows the model’s perform-
ance for the population (Fig. 3A). “Garlic”™-“fish”
(P <107, “sweet”-“fruit” (P < 10~%), and “musky”-
“sweaty” (P < 10~%) are pairs with strong connectiv-
ity that were also similarly difficult to predict.

We analyzed the quality of model predictions
for specific molecules in the population (Fig. 3B).
The correlation between predicted and observed
attributes exceeded 0.9 (¢ test, P < 10™*) for 44 of
69 hidden test-set molecules when we used ag-
gregated model predictions, and 28 of 69 when
we averaged all model correlations (table S1). The
quality of predictions varied across molecules, but
for every molecule, the aggregated models exhib-
ited higher correlations (Fig. 3B). The two best-
predicted molecules were 3-methyl cyclohexanone
followed by ethyl heptanoate. Conversely, the five
molecules that were most difficult to predict were
1-lysine and 1-cysteine, followed by ethyl formate,
benzyl ether, and glycerol (Fig. 3B and fig. S3).

To better understand how the models suc-
cessfully predicted the different perceptual at-
tributes, we first asked how many molecular
features were needed to predict a given popula-
tion attribute. Although some attributes required
hundreds of features to be optimally predicted
(Fig. 3, Cto E), both the random-forest and linear
models achieved prediction quality of at least
80% of that optimum with far fewer features. By
that measure, the algorithm to predict intensity
was the most complex, requiring 15 molecular
features to reach the 80% threshold (Fig. 3C). “Fish”
was the simplest, requiring only one (Fig. 3D).
Although Dragon features are highly correlated,
these results are remarkable because even those
attributes needing the most molecular features
to be predicted required only a small fraction of
the thousands of chemoinformatic features.

We asked what features are most important
for predicting a given attribute (figs. S4 to S6 and
table S1). The Dragon software calculates a large
number of molecular features but is not exhaus-
tive. In a postchallenge phase (triangles in Fig.
1H), four of the original teams attempted to
improve their model predictions by using addi-
tional features. These included Morgan (16) and
neighborhood subgraph pairwise distance kernel
(NSPDK) (17), which encode features through the
presence or absence of particular substructures
in the molecule; experimentally derived partition
coefficients from EPI Suite (I8); and the common
names of the molecules. We used cross-validation
on the whole data set to compare the performance
of the same models using different subsets of

Keller et al., Science 855, 820-826 (2017)

Dragon and these additional molecular features.
Only Dragon features combined with Morgan fea-
tures yielded decisively better results than Dragon
features alone, both for random-forest (Fig. 4A)
and linear (Fig. 4B) models. We then examined
how the random-forest model weighted each fea-
ture (table S1 for a similar analysis using the linear
model). As observed previously, intensity was
negatively correlated with molecular size but was
positively correlated with the presence of polar
groups, such as phenol, enol, and carboxyl fea-
tures (fig. S6A) (1, 7). Predictions of intensity relied
primarily on Dragon features.

There is already anecdotal evidence that some
chemical features are associated with a sensory
attribute. For example, sulfurous molecules are
known to smell “garlic” or “burnt,” but no quantita-
tive model exists to confirm this. Our model con-
firms that the presence of sulfur in the Dragon
descriptors used by the model correlated positively
with both “burnt” ( = 0.661; P < 10~%) (fig. S4A) and
“garlic” (r = 0.413; P < 10>, table S1). Pleasantness
was predicted most accurately using a mix of both
Dragon and Morgan-NSPDK features. For exam-
ple, pleasantness correlated with both molecular
size (r = 0.160; P < 107%) (9) and similarity to pac-
litaxel (r = 0.184; P < 10~*) and citronellyl phenyl-
acetate (r = 0.178; P < 107" (fig. S6B). “Bakery”
predictions were driven by similarity to the mol-
ecule vanillin (~ = 0.45; P < 102*) (fig. S4B). Morgan
features improved prediction in part by enabling a
model to template-match target molecules against
reference molecules for which the training set
contains perceptual data. Thus, structural sim-
ilarity to vanillin or ethyl vanillin predicts “bakery”
without recourse to structural features.

Twenty of the molecules in the training set
were rated twice (“test” and “retest”) by each in-
dividual, providing an estimate of within-individual
variability for the same stimulus. This within-
individual variability places an upper limit on
the expected accuracy of the optimal predictive
model. We calculated the test-retest correlation
across individuals and molecules for each percep-
tual attribute. This value of the observed correla-
tion provides an upper limit to any model, because
no model prediction should produce a better
correlation than data from an independent trial
with an identical stimulus and individual. To
examine the performance of our model com-
pared with the theoretically best model, we cal-
culated a correlation coefficient between the
prediction of a top-performing random-forest
model and the test data. All attributes except
“burnt” were statistically indistinguishable from
the test-retest correlation coefficients evaluated
at the individual level (Fig. 4C). The slope for the
best linear fit of the test-retest and model-test
correlation coefficients was 0.80 + 0.02, with a
slope of 1 expected for optimal performance (Fig.
4C). Similar results were obtained using a model-
retest correlation. Thus, given this data set, per-
formance of the model is close to that of the
theoretically optimal model.

We evaluated the specificity of the predictions
of the aggregated model by calculating how fre-
quently the predicted sensory profile had a better
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correlation with the actual sensory profile of the
target molecule than it did with the sensory pro-
files of any of the other 68 molecules in the hidden
test set (Fig. 4, D and E). For 14 of 69 molecules,
the highest correlation coincided with the actual
sensory profile (P < 10™). For an additional 20%, it
was second highest, and 65% of the molecules
ranked in the top-ten predictions [Fig. 4F and
table S1; area under the curve (AUC) = 0.83]. The
specificity of the aggregated model shows that its
predictions could be used to reverse-engineer a de-
sired sensory profile by using a combination of mol-
ecular features to synthesize a designed molecule.

Finally, to ensure that the performance of our
model would extend to new subjects, we trained
it on random subsets of 25 subjects from the
DREAM data set and consistently predicted the
attribute ratings of the mean across the popula-
tion of the 24 left-out subjects (fig. S7A). To test
our model across new subjects and new molecules,
we took advantage of a large unpublished data set
of 403 volunteers who rated the intensity and
pleasantness of 47 molecules, of which only 32
overlapped with the stimuli used in the original
study (table S1). Using a random-forest model
trained on the original 49 DREAM Challenge sub-
jects and all the molecules, we are able to show
that the model robustly predicts the average per-
ception of all of these molecules across the pop-
ulation (fig. S7B).

The DREAM Olfaction Prediction Challenge
has yielded models that generated high-quality
personalized perceptual predictions. This work
substantially expands on previous modeling efforts
(2, 3, 7-11) because it predicts not only pleasantness
and intensity, but also 8 out of 19 semantic de-
scriptors of odor quality. The predictive models
enable the reverse-engineering of a desired per-
ceptual profile to identify suitable molecules from
vast databases of chemical structures and closely
approach the theoretical limits of accuracy when
accounting for within-individual variability. Al-
though highly significant, there is still much room
for improving, in particular, the individual pre-
dictions. Although the current models can only be
used to predict the 21 attributes, the same
approach could be applied to a psychophysical
data set that measured any desired sensory at-
tribute (e.g., “rose,” “sandalwood,” or “citrus”).
How can the highly predictive models presented
here be further improved? Recognizing the in-
herent limits of using semantic descriptors for
odors (12-14), we think that alternative percep-
tual data, such as ratings of stimulus similarity,
will be important (7).

What do our results imply about how the brain
encodes an olfactory percept? We speculate that,
for each molecular feature, there must be some
quantitative mapping, possibly one to many, be-
tween the magnitude of that feature and the
spatiotemporal pattern and activation magnitude
of the associated olfactory receptors. If features
rarely or never interact to produce perception, as
suggested by the strong relative performance of
linear models in this challenge, then these
feature-specific patterns must sum linearly at the
perceptual stage (19). Peripheral events in the
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olfactory sensory epithelium, including receptor
binding and sensory neuron firing rates might
have nonlinearities, but the numerical represen-
tation of perceptual magnitude must be linear in
these patterns. It is possible that stronger
nonlinearity will be discovered when odor mix-
tures or the temporal dynamics of odor perception
are investigated. Many questions regarding human
olfaction remain that may be successfully addressed
by applying this method to future data sets that
include more specific descriptors; more molecules
that represent different olfactory percepts than those
studied here; and subjects of different genetic,
cultural, and geographic backgrounds.

Results of the DREAM Olfaction Prediction
Challenge may accelerate efforts to understand
basic mechanisms of ligand-receptor interactions,
and to test predictive models of olfactory coding
in both humans and animal models. Finally, these
models have the potential to streamline the pro-
duction and evaluation of new molecules by the
flavor and fragrance industry.
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