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Abstract

There are a number of antigens that induce autoimmune response against β-cells, leading to type 1 diabetes mellitus (T1DM). Recently,
several antigen-specific immunotherapies have been developed to treat T1DM. Thus, identification of T1DM associated peptides with
antigenic regions or epitopes is important for peptide based-therapeutics (e.g. immunotherapeutic). In this study, for the first time,
an attempt has been made to develop a method for predicting, designing, and scanning of T1DM associated peptides with high
precision. We analysed 815 T1DM associated peptides and observed that these peptides are not associated with a specific class of
HLA alleles. Thus, HLA binder prediction methods are not suitable for predicting T1DM associated peptides. First, we developed a
similarity/alignment based method using Basic Local Alignment Search Tool and achieved a high probability of correct hits with poor
coverage. Second, we developed an alignment-free method using machine learning techniques and got a maximum AUROC of 0.89 using
dipeptide composition. Finally, we developed a hybrid method that combines the strength of both alignment free and alignment-based
methods and achieves maximum area under the receiver operating characteristic of 0.95 with Matthew’s correlation coefficient of 0.81
on an independent dataset. We developed a web server ‘DMPPred’ and stand-alone server for predicting, designing and scanning T1DM
associated peptides (https://webs.iiitd.edu.in/raghava/dmppred/).
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Introduction
Diabetes mellitus (DM) is a chronic metabolic disorder majorly
occurring due to the abnormality in the blood sugar or glucose
level, which further leads to serious damages in heart, eyes,
nerves, kidney and blood vessels [1, 2]. According to the WHO
(World Health Organization), approximately 422 million people in
the world are affected with DM and 1.5 million deaths have been
reported every year. DM is majorly categorized into two types:
T1DM (type 1 diabetes mellitus) or insulin dependent diabetes
and T2DM (type 2 diabetes mellitus) or adult onset diabetes [1,
3]. T2DM primarily affects middle-aged and older persons who
suffer from persistent hyperglycemia and affects around 6.28% of
the world’s population and is also known as a lifestyle disorder [4].
On the other hand, T1DM is an immune-mediated serious lifelong
incurable autoimmune disorder that affects around 5–10% of all
cases of diabetes and mainly identified in children or adolescents.
It is a serious condition in which insulin producing β-cells in the
pancreas are destroyed [5, 6]; insulin is a peptide hormone that

regulates the blood glucose levels [7, 8]. Yoon et al. [9] reported that
factors which are involved in the pathogenesis of autoimmune
diabetes include macrophages, T-lymphocytes, B-lymphocytes, β-
cell autoantigens and dendritic cells.

The pathogenesis of T1DM includes both genetic and envi-
ronmental factors [10] (Supplementary Figure S1). The genetic
factors involved in disease severity are mainly human leukocyte
antigen (HLA) class-I/II [11]. Primavera et al. [12] reported that
presence of specific allele haplotypes like DR4-DQ8 increases the
pathogenesis of T1DM. The risk is not only limited to the DR4-
DQ8 haplotype but also to some other haplotypes like DR3-DQ2
[12], autoantibodies, autoreactive and anti-islet antigen-specific
T-cells, which have been identified in most T1DM patients [13–
17]. The HLA alleles encoding molecules involved in presenting
antigens to T cells account for 50%–60% of the genetic risk
for T1DM [18]. Autoantibodies act as robust predictive and
diagnostic biomarkers for the detection of T1DM. For example,
insulin autoantibodies and GAD (glutamate decarboxylase)
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autoantibodies are biomarkers for the early detection of beta
cell autoimmunity [13]. Moreover, autoreactive T cells also play
a significant role in the destruction of β cells [18]. As shown in
Supplementary Figure S1, several diseases are associated with
the progression of T1DM such as celiac disease, coronary heart
disease, retinopathy, rheumatoid arthritis, autoimmune thyroid
diseases, type A gastritis, vitiligo, systemic lupus erythematosus,
Addison disease, etc. [19–22]. Identification of T1DM associated
peptides is a crucial step in understanding the fate of disease.
These peptides mainly bind to major histocompatibility complex
(MHC) class II alleles and induce immune responses responsible
for destroying β-cells. In the previous studies, limited attempts
have been made to predict T1DM associated peptides using in
silico techniques. Cai et al. [23] developed a method GPS-MBA for
the prediction of T1DM associated MHC class II binders. The major
limitation of this study is that it is developed on a small dataset
consisting of only HLA-DQ8 binders [23]. Thus, it is the need of the
hour to develop a better and accurate tool for the prediction of
T1DM associated peptides using the latest available information.
In this study, we have collected experimentally validated T1DM
associated peptides from the immune epitope database (IEDB)
[24]. Due to the limited availability of negative data, we generated
random peptides from Swiss-Prot [25]. We analysed these peptides
to understand their characteristics.

Material and methods
Dataset collection
In order to construct a successful prediction model, data acqui-
sition is the primary and the most cumbersome step [26, 27].
The IEDB is a major resource in the field of immunology, as it
maintains experimentally validated MHC binders and epitopes
[27]. We extracted T1DM associated peptides from IEDB and all
redundant peptides were removed. It was observed that most of
the peptides have 8 to 30 amino acids, so we removed peptides
having length more than 30 amino acids or less than 8 amino
acids. Supplementary Figure S2 shows the frequency of length
of peptides in our dataset. Finally, we got 815 unique T1DM
associated peptides which we labelled as positive data. Due to
the limited availability of experimentally validated non-T1DM
associated peptides, we generated random peptides from proteins
in Swiss-Prot [28, 29]. Finally, we got 815 T1DM associated peptides
and 815 random (non-T1DM associated) peptides. In order to
evaluate models without any biases, we used 80% of data for
building models called training dataset. Remaining 20% data is
used for testing our models, this is called independent/validation
dataset. Our independent dataset is not used for any training or
tuning hyperparameters, but only used for evaluating the final
model. On the other hand, our training dataset is used for training
and testing to optimize variables of models.

Composition analysis
Amino acid composition (AAC) is the compositional repre-
sentation of peptide sequences, which represents the percent
occurrence frequency of 20 amino acids in the protein/peptide
sequence. It generates a 20-dimensional feature vector that
specifies the number of each type of amino acid normalized with
the total number of amino acids in the length of the provided
peptide sequence, and can be calculated by using the following
equation: [26, 27]

AACi = Ri

L
× 100 (1)

where AACi is the percent composition of an amino acid i; Ri is the
number of residues of type i and L is the total number of residues
in the peptide [29].

Sequence logo
For the generation of sequence logos, we have used the software
named ‘Weblogo’. It provides the graphical representation in the
form of a stack of amino acids. The sequence conservation is
measured in bits. The logo generation requires FASTA or CLUSTAL
formats. The overall height of each stack indicates the sequence
conservation at that position, whereas the height of symbols
within the stack reflects the relative frequency of the correspond-
ing amino acid at that position [30].

Feature generation
In order to build an alignment free model, we need to generate
features or descriptors corresponding to peptides. As the length
of peptides varies from 8 to 30 amino acids, we need to compute
composition-based features [26, 31]. In this study, we have com-
puted a wide range of compositional features like AAC, dipeptide
composition (DPC) and atomic composition using Pfeature [32].

Feature selection
Another crucial step in classification is feature selection, as most
of the features are not significant. It is commonly used to identify
the most relevant features. Pfeature generates a large pool of
features, and [33] mostly redundant and irrelevant features exist
in the original feature set, which can create over-fitting [31]. The
selection of the best features can minimize the risk of overfitting
and increase efficiency by reducing the model’s complexity [31,
34]. Selecting the relevant set of features from the enormous
dimension of features is one of the primary concerns in this study.
There are numerous approaches for feature selection [28]; we
adopted the mRMR (minimum redundancy maximum relevance)
algorithm [34]. We have applied machine learning (ML) algorithms
on the selected top 50, 100 and 150 features using the mRMR
approach and compute the performance.

ML techniques
We used a number of ML approaches to construct prediction
models [29] including decision tree (DT), logistic regression (LR),
Gaussian Naive Bayes (GNB), Random Forest (RF), k-nearest neigh-
bor (KNNs), Extra-Trees (ET), XGBoost (XGB) and support vector
classification (SVC). The scikit-learn python library was used to
implement these classification approaches [28].

Five-fold cross-validation
In order to develop general models that are not biased/overfitted
for a dataset, we have implemented a 5-fold cross-validation
algorithm [28, 33]. According to standard protocols of 5-fold cross-
validation, in each cycle the complete training dataset was divided
into five equal sets where the four sets were designated as the
training dataset, and the fifth set was assigned as the testing
dataset. In the results section, we presented the average scores
of five cycles after repeating this approach five times.

Similarity search
One of the commonly used techniques for annotation of pro-
teins/peptides is based on similarity search. In this technique,
the query peptide is aligned with all peptides whose function
is known. The query peptide is annotated based on its align-
ment score with known peptides. Basic Local Alignment Search
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Figure 1. Overall architecture of DMPPred including creation of dataset, training, internal and external validation.

Tool (BLAST) is a very popular method for similarity search [35–
38]. Currently, we have implemented BLAST-based search for
identifying similarity of peptides/epitopes with T1DM associated
and non-T1DM associated peptides. We have implemented the
blastp-short task of the blastp (BLAST+ 2.7.1) suite with the
default parameters (scoring matrix = PAM30; word_size = 2; win-
dow_size = 15; gapopen = 9; gapextend = 1; and threshold = 16) [39].
This returns the most similar sequence from the database for
the query sequences. Initially, a database was created using the
sequences in the training dataset, and query sequences from the
independent dataset were queried against it at various e-values
ranging from 1e-6 to 1e+4. We have considered the top hits only
and assigned the class based on the same, such that, if the top
hit is T1DM associated then the query sequence was assigned as
T1DM associated and vice versa.

Evaluation parameters
Our study includes the well-established evaluation parameters
for the evaluation of the ML models. We include both the
parameters, i.e. threshold-dependent parameters and threshold-
independent parameters. Sensitivity, specificity, accuracy and
Matthew’s correlation coefficient (MCC) are threshold dependent
parameters, while area under the receiver operating characteristic
(AUROC) curve is a threshold-independent parameter [28, 29, 33].
These measurements are calculated using Equations (2)–(6):

Sensitivity = TP

TP + FN
(2)

Specificity = TN

TN + FP
(3)

Accuracy = TP + TN

TP + TN + FP + FN
(4)

F1 − Score = 2TP

2TP + FP + FN
(5)

MCC = (TP ∗ TN) − (FP ∗ FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(6)

where TP, TN, FP and FN stands for true positive, true negative, false
positive and false negative, respectively.

Results
In this study, we incorporate 815 T1DM associated peptides
and annotate them as a positive dataset. The negative dataset
includes random 815 non-T1DM associated peptides generated
from proteins in Swiss-Prot. The prediction and analysis was
performed on these peptides. Figure 1 represents the overall
workflow of the study.

Positional analysis
In this study, we have developed a sequence logo to check the
frequency of a particular residue at a specific position in T1DM
associated peptides. As depicted in Figure 2, the hydrophobic
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Figure 2. Sequence logo of T1DM associated peptides, leucine residue is dominant in most of the positions.

Figure 3. Percent average amino acid composition of T1DM associated peptides, random peptides and general proteome.

residue leucine (L) is a highly abundant and conserved residue,
whereas alanine (A) is more preserved at 2nd, 9th, 11th and 14th
position; however, valine (V) dominates the 2nd, 3rd, 9th and 16th,
position. On the other hand, hydrophilic residue like glutamic acid
(E) is predominant at 2nd, 4th, 11th and 14th position.

Composition-based analysis
Here, we compute the AAC for T1DM associated and non-T1DM
associated peptides, by calculating the average composition of
T1DM associated peptides, random peptides and general pro-
teome as shown in Figure 3. The residues leucine (L), methionine
(M), valine (V) and glutamic acid (E) are most abundant amino
acids in the positive dataset, whereas residues aspartic acid (D),
lysine (K) and arginine (R) are highly conserved in the negative
dataset.

Frequency of HLA alleles
In the past, several studies report that class II HLA alleles play a
key role in the development of T1DM [14]. In order to check the

Table 1. Frequency distribution of HLA-binders in type 1
diabetes mellitus associated peptides

HLA allele T1DM associated peptides

HLA-A∗02:01 345
HLA-DRB1∗04:01 185
HLA-DQA1∗03:01/DQB1∗03:02 103
HLA-DR4 59
HLA-A2 57
HLA-DQA1∗05:01/DQB1∗03:02 45
HLA-DR 45
HLA-DR3 39
HLA-DR53 21
HLA-DRB4∗01:01 20

binding efficacy of T1DM associated peptides, we have computed
the frequency of HLA alleles with the T1DM associated peptides.
In Table 1, we represented the top 10 class I and II HLA binders in
the T1DM associated dataset.
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Table 2. The performance of machine-learning-based models developed on 12 different composition-based features using ET algorithm

Name and description of descriptor Training Validation

AUROC MCC AUROC MCC

AAC (amino acid composition) 0.869 0.572 0.870 0.571
DPC (dipeptide composition) 0.893 0.621 0.891 0.620
APAAC (amphiphilic pseudo amino acid composition) 0.869 0.551 0.875 0.571
ATC (atomic composition) 0.710 0.302 0.749 0.356
CETD (composition-enhanced transition distribution) 0.849 0.531 0.864 0.546
DDR (distance distribution of residue) 0.837 0.500 0.797 0.417
PAAC (pseudo amino acid composition) 0.868 0.569 0.869 0.546
PCP (physico-chemical properties composition) 0.840 0.503 0.847 0.497
QSO(quasi-sequence order) 0.858 0.552 0.861 0.565
RRI (residue repeat Information) 0.854 0.54 0.81 0.423
SPC (Shannon entropy of physico-chemical properties) 0.791 0.442 0.812 0.462
CTD (conjoint triad descriptors) 0.856 0.537 0.835 0.473

AUROC, area under receiver operating curve; MCC, Matthew’s correlation coefficient.

ML and performance evaluation
Performance of composition-based features
We have used ML algorithms such as DT, RF, LR, GNB, ET, XGB,
KNN and SVC to develop prediction models. Initially, we devel-
oped prediction models based on 12 different types of features
computed using Pfeature. We observe that the ET-based classi-
fier performs best among all other ML models. In Table 2, we
incorporate the prediction performance of all 12 descriptors in
terms of the AUROC and MCC. As shown in Table 2, DPC-based
features outperform other models with an AUROC of 0.893 on
training and 0.891 the on validation dataset. Models developed
using AAC-based features also perform quite well on both training
and validation datasets with an AUROC of 0.869 and 0.870, respec-
tively. Comprehensive results of other classifiers are reported in
Supplementary Table S1.

Performance of selected features
As we have obtained maximum performance on DPC features
using an ET-based model, hence we used these features in order
to improve the classification performance. Here, we have used
the mRMR feature selection algorithm to obtain the best set
of features which can classify T1DM associated peptides and
non-T1DM associated peptides. In terms of AUROC, the top-50,
100 and 150 selected features have reasonable discriminatory
power. Figure 4 shows the performance (in terms of AUROC)
of different classifiers using different feature sets for training
and validation dataset. The detailed results are provided in
Supplementary Table S2.

As shown in Table 3, we have provided the performance of the
top-150 features selected using the mRMR approach. We observed
that ET achieves maximum performance with an AUROC 0.893
and 0.871 on training and validation datasets, respectively, with
balanced sensitivity and specificity. RF-based models also achieve
quite similar performance with a slight dip in the accuracy and
AUROC on the training dataset.

Furthermore, we ranked the selected 150 features on the
basis of their dipeptide composition difference between positive
dataset and negative dataset. In order to check the significance
of the difference, we have applied a two-sample t-test for each
dipeptide composition in the positive and negative dataset,
and the difference was found to be statistically significant
(see Supplementary Table S3). Bases on the analysis, the top-
10 dipeptides were found out to be LL, VE, LV, SL, AL, LQ, LE,

IL, ER and LA, which were considerably more frequent in the
T1DM associated peptides as compared to non-T1DM associated
peptides.

Similarity search approach
To further improve our model accuracy, we have designed a
similarity search module based on the BLAST similarity search
score, as BLAST has been previously used for the annotation and
assignment of the function to a protein on the basis of similarity
search [35, 40]. We also used the same approach (blastp) for
assigning the query peptides as T1DM associated or non-T1DM
associated peptides. We created a local database using the train-
ing dataset against which the query sequence (test set sequences)
were searched at different e-values ranging from 1e−6 to 1e+4. We
have used the top hit to assign the class to each query sequence,
such as, if the query sequence has the top hit against a T1DM-
associated peptide then the query peptide is assigned as a T1DM-
associated peptide, non-T1DM associated peptide elsewise. As
shown in Table 4, probability of correct prediction (chits) ranges
from 17.18% to 87.73% on T1DM associated dataset and 0.00% to
61.96% on non-T1DM associated dataset.

Performance of hybrid method
In the current study, we have applied a hybrid/ensemble approach
by combining ML prediction and BLAST similarity search score.
At first, a given peptide is classified using BLAST at different e-
values, in which query peptides in the independent dataset are
searched against the local database of sequences in the training
dataset. Based on the top hit, we assigned the score of ‘+0.5’ for a
correct positive prediction (T1DM associated peptides), ‘–0.5’ for a
correct negative prediction (non-T1DM associated peptides) and
‘0’ if hit is not found. This similar approach has been heavily
used in previous studies [40, 41]. Secondly, the prediction score
was computed using ML-based models. Finally, the BLAST score
and ML score were added for each query sequence to get the
overall score. Further, the overall score was used to find the
optimal threshold at which the difference between the sensitivity
and specificity measure is minimum. As shown in Tables 2 and
3, ET-based classifier performs the best using DPC and DPC-150
features. Hence, we generated hybrid models using DPC-150 fea-
tures (see Table 5). We have calculated performance at different
e-values and found that at e-value ‘0.1’ we obtained maximum
AUROC of 0.94 and 0.95, with accuracy 88.57 and 90.46 on both
training and validation datasets, respectively.
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Figure 4. Performance of different classifiers on selected 50, 100 and 150 features: (A) training dataset, (B) validation dataset.

Table 3. The performance of machine learning-based models developed using DPC-150 selected features on training and validation
datasets

Classifier Training Validation

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC

DT 69.479 69.939 69.709 0.741 0.394 68.098 64.417 66.258 0.669 0.325
RF 79.908 79.755 79.831 0.881 0.597 76.074 74.233 75.153 0.837 0.503
LR 75.460 75.613 75.537 0.827 0.511 71.779 69.325 70.552 0.781 0.411
XGB 77.607 77.914 77.761 0.858 0.555 74.847 74.233 74.540 0.817 0.491
KNN 77.914 78.374 78.144 0.866 0.563 73.006 76.074 74.540 0.817 0.491
GNB 72.853 74.693 73.773 0.795 0.476 68.712 69.325 69.018 0.745 0.380
ET 81.902 81.135 81.518 0.893 0.630 82.209 77.301 79.755 0.871 0.596
SVC 78.374 77.761 78.067 0.865 0.561 73.620 74.233 73.926 0.831 0.479

Sens, sensitivity; Spec, specificity; Acc, accuracy; AUROC, area under receiver operating curve; MCC, Matthew’s correlation coefficient; DT, Decision Tree; RF,
Random Forest; LR, logistic regression; XGB, XGBoost; KNNs, k-nearest neighbours; GNB, Gaussian Naive Bayes; ET, Extra-Trees Classification; SVC, support
vector classification.

Table 4. The performance of BLAST-based search on validation dataset

E-Value T1DM associated Non-T1DM associated

Chits Whits No-hits Chits Whits No hits

1e-6 28 (17.18%) 0 (0.00%) 135 (82.82%) 0 (0.00%) 0 (0.00%) 163 (100.00%)
1e-5 41 (25.15%) 0 (0.00%) 122 (74.85%) 0 (0.00%) 0 (0.00%) 163 (100.00%)
1e-4 54 (33.13%) 0 (0.00%) 109 (66.87%) 0 (0.00%) 0 (0.00%) 163 (100.00%)
1e-3 62 (38.04%) 0 (0.00%) 101 (61.96%) 0 (0.00%) 0 (0.00%) 163 (100.00%)
1e-2 81 (49.69%) 0 (0.00%) 82 (50.31%) 1 (0.61%) 0 (0.00%) 162 (99.39%)
1e-1 91 (55.83%) 0 (0.00%) 72 (44.17%) 1 (0.61%) 0 (0.00%) 162 (99.39%)
1e+0 111 (68.10%) 2 (1.23%) 50 (30.67%) 2 (1.23%) 0 (0.00%) 161 (98.77%)
1e+1 124 (76.07%) 5 (3.07%) 34 (20.86%) 21 (12.88%) 11 (6.75%) 131 (80.37%)
1e+2 143 (87.73%) 19 (11.66%) 1 (0.61%) 90 (55.21%) 46 (28.22%) 27 (16.56%)
2e+2 143 (87.73%) 19 (11.66%) 1 (0.61%) 97 (59.51%) 53 (32.52%) 13 (7.98%)
1e+3 143 (87.73%) 19 (11.66%) 1 (0.61%) 100 (61.35%) 55 (33.74%) 8 (4.91%)
1e+4 143 (87.73%) 19 (11.66%) 1 (0.61%) 101 (61.96%) 56 (34.36%) 6 (3.68%)

Chits: correct hits; Whits: wrong hits.

Web server interface
To better serve the scientific community, we have developed a
user-friendly prediction web interface named ‘DMPPred (https://
webs.iiitd.edu.in/raghava/dmppred/) and executed our best mod-
els to predict the T1DM associated peptides. The modules avail-
able on the web server include “Predict”, “Design”, “Protein Scan”
and “Blast Scan”. The module ‘Predict’ allows users to classify the
submitted sequence as T1DM associated peptides or random pep-
tides. The ‘Protein Scan’ module allows users to scan or identify
T1DM associated regions in the submitted amino-acid sequence.

The module ‘Design’ allows users to create all possible analogs
of T1DM associated peptides of the input sequence. The module
‘Blast Scan’ allows users to search the query sequence against the
database of known T1DM associated peptides. A query sequence
is predicted as T1DM associated, or random peptide depending
upon the match or hit in the database. If found matched or hit in
the database predicted as T1DM associated peptide; otherwise it
is classified as a random peptide. We also allow users to download
the positive and negative dataset that we have used in this study,
available in FASTA file format.
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Table 5. Model performance developed using hybrid method (BLAST and DPC-150) on training and validation dataset

E-value Training Validation

Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC

1e-6 83.55 83.72 83.64 0.91 0.67 81.58 90.13 85.86 0.93 0.72
1e-5 84.05 84.87 84.46 0.91 0.69 81.58 91.45 86.51 0.93 0.73
1e-4 84.87 84.87 84.87 0.92 0.70 82.24 91.45 86.84 0.93 0.74
1e-3 85.53 85.53 85.53 0.92 0.71 84.87 91.45 88.16 0.94 0.76
1e-2 86.84 86.51 86.68 0.93 0.73 85.53 92.11 88.82 0.94 0.77
1e-1 88.98 88.16 88.57 0.94 0.77 87.50 93.42 90.46 0.95 0.81
1e+0 89.80 89.15 89.47 0.94 0.79 86.84 90.13 88.49 0.94 0.77

Sens, sensitivity; Spec, specificity; Acc, accuracy; AUROC, area under receiver operating characteristics curve; MCC, Matthews correlation coefficient; ET,
Extra-Trees Classification.

Table 6. Potential T1DM inducing antigenic peptides predicted
by our tool in CBV4 virus polyprotein, selected based on hybrid
score

Start End Sequence Hybrid score

1128 1142 EWLKVKILPEVREKH 0.97
1129 1143 WLKVKILPEVREKHE 0.97
1130 1144 LKVKILPEVREKHEF 0.97
1122 1136 KIQKFIEWLKVKILP 0.96
1127 1141 IEWLKVKILPEVREK 0.92
1126 1140 FIEWLKVKILPEVRE 0.89
1125 1139 KFIEWLKVKILPEVR 0.86
1131 1145 KVKILPEVREKHEFL 0.86
1123 1137 IQKFIEWLKVKILPE 0.85
1124 1138 QKFIEWLKVKILPEV 0.85

Case study
Previous studies have shown that there are a number of factors
responsible for the progression of diabetes. These studies have
reported viruses that promote T1DM including enteroviruses
like coxsackievirus B (CVB) [42], cytomegalovirus [43], mumps
virus [44] and rotavirus [14, 45–48]. The most commonly found
enteroviral strain in diabetic and pre-diabetic patients is CBV4
[49]. We predicted T1DM associated peptides in two proteins of
CBV4, polyprotein and VP1 using the ‘Protein Scan’ module of
DMPPred with peptide length 15 residues. In order to minimize
false positive prediction, we used a high cut-off score (threshold)
0.70 instead of default cut-off 0.58. Our method predicted 46
T1DM associated peptides in polyprotein which have a score
0.70 or more. It was found that none of the peptides had a
score of more than 0.65 in VP1 proteins. It means that the
polyprotein is dominated by T1DM associated peptides according
to DMPPred. These results are in alignment with existing studies
where it has been shown that polyprotein of CBV4 is involved
in T1DM [45]. In Table 6, we have shown the top 10 highly
potential T1DM associated peptides in the polyprotein. We
have provided the complete result in Supplementary Tables S4
and S5.

Discussion and conclusion
The treatment for T1DM is still a long way off [3]. Currently,
only insulin treatment is available that helps in the man-
agement of T1DM [50]. Another therapy used for treatment
purposes is glucagon therapy, which is provided at the time
when the concentration of blood glucose decreases [51]. A few

non-insulin drugs are also available for type 1 diabetes, such as
dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor
agonists, metformin and sodium-glucose co-transporter-2 (SGLT2)
inhibitors [52]. Recently developed antigen-specific immunother-
apy for T1DM has higher efficacy and has proven to be safe in
clinical outcomes. These antigens are easy to synthesize and can
be delivered as proteins, peptides, DNA plasmids or nanoparticles,
etc. [53–55]. Of note, it is very crucial to identify T1DM-specific
epitopes/peptides for the experimental and biomedical designing.
In this study, we have proposed a new method for the prediction
of T1DM associated and non-T1DM associated peptides. Here
we have selected experimentally validated 815 T1DM associated
peptides from IEDB. For the negative dataset, we have generated
815 random peptides of the same length using the Swiss-Prot
database. The compositional and positional analysis reveals
that amino acid ‘L’, ‘M’ and ‘E’ are highly conserved in the
T1DM associated peptides in comparison with the negative
dataset. We have used Pfeature to compute composition-based
features using a sequence dataset. Here we have computed a
total of 1153 features, and they were further reduced using
mRMR feature selection technique. We have developed various
prediction models using different ML techniques such as DT,
RF, LR, XGB, KNN, GNB, ET and SVC. We observed dipeptide
composition-based features outperform other models with an
AUROC of 0.893 and 0.891 on the training and validation dataset.
After that, we develop prediction models on selected features,
i.e. DPC-50, 100 and 150 using the mRMR method. DPC-150
features perform best with an AUROC of 0.893 and 0.871 on the
training and validation dataset using ET classifier. Finally, the
hybrid model was developed by combining BLAST and DPC-150; it
achieved the highest AUROC of 0.945 and 951 on both the training
and validation dataset. We compared the performance of our
method with the existing method GPS-MBA [23]. GPS-MBA takes
sequences with the length of 9 amino acids as input; therefore, we
selected the peptides of length 9 from our independent dataset
(i.e. 50 T1DM associated and 50 non-T1DM associated sequences).
We have provided these sequences to GPS-MBA and DMPPred
server. We computed the sensitivity, specificity and accuracy,
and it was observed that DMPPred outperformed the existing
method resulting in the sensitivity of 92%, specificity of 100% and
accuracy of 96.0%, whereas GPS-MBA attained sensitivity of 6%,
specificity of 90% and accuracy of 48.0%. In addition, we have
identified the antigenic regions of CVB4 virus using DMPPred,
most importantly EWLKVKILPEVREKH, WLKVKILPEVREKHE,
LKVKILPEVREKHEF and KIQKFIEWLKVKILP, that induce TIDM
with maximum prediction score. We anticipate that our method
has several applications in the field of immunotherapy and vac-
cine development. As shown in previous studies, antigen-based
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immunotherapy is designed for specifically targeting T-cell
population which can drive disease; therefore, developing antigen
specific T-cell tolerance is required to design for therapeutic use
[56, 57]. Our method will provide the facility for identification
of potential disease causing antigens which can cause β-cell
destruction in T1DM. In addition, it is also reported that few
environmental factors, such as food, virus and toxins, also favour
T1DM progression [45, 49, 58–60]. The peptide regions that are
associated with the progression of T1DM can be identified
using our tool. In addition, several therapeutic peptides have
failed during clinical trials due to the presence of allergic and
toxin regions. Our method can predict the antigenic regions in
therapeutic proteins/peptides that are associated with T1DM. We
anticipate that this method will serve the scientific community
working in this era. DMPPred is a highly accurate method for
the classification of T1DM associated peptides, as this method
utilizes the strengths of two techniques, i.e. alignment-based
(BLAST) and alignment-free (ML) to improve the performance.
We have provided a user-friendly web-server DMPPred (https://
webs.iiitd.edu.in/raghava/dmppred/) for the prediction, scanning
and designing of T1DM associated peptides.

BioRxiv doi
https://doi.org/10.1101/2022.07.20.500753.

Key Points

• Prediction of peptides responsible for inducing immune
system against β-cells

• Compilation and analysis of type 1 diabetes associated
HLA binders

• BLAST-based similarity search against type 1diabetes
associated peptides

• Alignment free method using machine learning tech-
niques and composition

• A hybrid method using alignment free and alignment-
based approach
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