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Abstract

In past, numerous methods have been developed for predicting efficacy of short interfering RNA (siRNA). However these
methods have been developed for predicting efficacy of fully complementary siRNA against a gene. Best of author’s
knowledge no method has been developed for predicting efficacy of mismatch siRNA against a gene. In this study, a
systematic attempt has been made to identify highly effective complementary as well as mismatch siRNAs for silencing a
gene. Support vector machine (SVM) based models have been developed for predicting efficacy of siRNAs using
composition, binary and hybrid pattern siRNAs. We achieved maximum correlation 0.67 between predicted and actual
efficacy of siRNAs using hybrid model. All models were trained and tested on a dataset of 2182 siRNAs and performance was
evaluated using five-fold cross validation techniques. The performance of our method desiRm is comparable to other well-
known methods. In this study, first time attempt has been made to design mutant siRNAs (mismatch siRNAs). In this
approach we mutated a given siRNA on all possible sites/positions with all possible nucleotides. Efficacy of each mutated
siRNA is predicted using our method desiRm. It is well known from literature that mismatches between siRNA and target
affects the silencing efficacy. Thus we have incorporated the rules derived from base mismatches experimental data to find
out over all efficacy of mutated or mismatch siRNAs. Finally we developed a webserver, desiRm (http://www.imtech.res.in/
raghava/desirm/) for designing highly effective siRNA for silencing a gene. This tool will be helpful to design siRNA to
degrade disease isoform of heterozygous single nucleotide polymorphism gene without depleting the wild type protein.
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Introduction

RNA interference (RNAi) is a natural mechanism evolved

in complex organisms to regulate the gene expression. This

mechanism also provide defense against viruses and transposable

material to maintain the genome integrity [1]. There has been

increasing interest to harness this mechanism to silence a specific

mRNA. RNAi is triggered whenever a cell encounter long dsRNA

molecules and subsequently cleave them into small interfering

RNAs (siRNAs) using Dicer enzyme. siRNA is ,21 nucleotide (nt)

long dsRNA having 2 nt overhang on 39-end. Afterward, siRNA

unwound and one strand associated with nuclease-containing

protein complex (RISC). Subsequently RISC containing siRNA

bind to the complementary mRNA and promotes cleavage/

degradation of mRNA [2].

siRNAs have become an important tool for silencing gene of

interest and have emerging as potential therapeutics. The beauty

of the system that makes it a powerful tool lies in sequence

specificity towards particular gene, its quick effect, and cost

effectiveness. Importantly, it makes feasible for large-scale func-

tional genomics studies. It has been shown that knockdown effect

(efficacy) of siRNA is varying according to target site on mRNA

and hence, very limited set of siRNAs show high efficacy [3].

Huesken et al. analyzed experimental data to understand

relationship between the siRNA sequence and its silencing effect

on 34 mRNA species [4]. They also developed an Artificial Neural

Network (ANN) based method BIOPREDsi and achieved

maximum correlation 0.66 between actual and predicted efficacy

[4]. In past, number of methods have been developed for

predicting efficacy of siRNA [5,6,7,8,9]. In a recent study, perfor-

mance of various methods have been evaluated which showed

BIOPREDsi, ThermoComposition21 and DSIR are highly accu-

rate and reliable methods [8,10].

Initially it was believed that full complementary siRNA is

needed to silence a target gene. However, studies have shown that

siRNA behaves like miRNA and suppress protein synthesis when it

is not fully complementary to the target, indicating mismatches are

allowed during target selection by siRNA [2,11]. This phenom-

enon also raised very important problem about off-target effect

where unintended target genes suppressed by siRNA [12,13,14]. A

study indicates that seed region of siRNA, 2-8 nt from 59-end, is

important for target finding and single mismatch within seed

region can change the off-target transcripts without effecting

silencing efficiency of original target transcript [14]. Initially off-

target sequences were searched using similarity based methods

against mRNA sequence database but the strategy was not suc-

cessful due to lack of knowledge about level of sequence similarity

required for off-target effect. To understand the silencing effect of

mismatch between siRNA and target, several studies were

conducted [15,16,17,18,19,20,21]. The study by Du et al. reveals

position of the mismatch generated in the target influence silencing

and categorized them as; (a) High tolerance: mismatch at position
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1, 2, 18, or 19, which does not affect the efficacy. (b) Low

tolerance: mismatch at position 5-11 which results into abolishing

the RNAi activity and remain position is (c) of moderate tolerance

[15]. It also showed the impact of mismatched nucleotide and

found A:C and G:U are well tolerated mismatch. Furthermore the

silencing effect of double-nucleotide mismatches were also studied

[17]. Recently, a very systematic study was conducted by using 20

siRNAs against 400 various mismatched targets to generate a

model for single nucleotide-mismatch [21]. This study analyzed all

combinations of mismatched siRNA:target and demonstrated that

efficacy can be influenced by position and type of nucleotide

mismatched. The work also demonstrated that most tolerant

mismatch was A:C while least one was A:G in term of siRNA:

target. It was observed that swapping of mismatched nucleotides at

some position dramatically changed the efficacy e.g. at position 17

of siRNA both A:C and C:A mismatched are well tolerated while

at position 12 only A:C mismatch is tolerated not C:A. However,

study also demonstrated the importance of creating mismatch

between sense and antisense strand of siRNA in order to make

more asymmetric siRNA which leads to improve silencing efficacy

[20]. In order to find off target sequence, methods has been

developed which incorporate features like seed complementary

region and nucleotide mismatch to predict potential off-targets

[22]. To the best of author’s knowledge, lack of specificity of

siRNA is considered as major drawback in designing any siRNA

based therapy.

Investigation indicates that a large portion in mRNA could not

be targeted for siRNA because of having low efficacy [3]. Thus, it

makes limited choice for selecting target site. Furthermore, the

requirement to enhance efficacy of a siRNA against particular

target site is not fulfilled by available methods. In this study, we

have examined whether weakness of siRNA (poor specificity) can

be exploited to design mutant siRNA of desired efficacy. It is well

known that all siRNAs is not equally effective even if they are fully

complementary to mRNA. On the other side, we also know from

experimental studies that few mismatches at specific position can

be tolerated. Based on this hypothesis a prediction method has

been developed for designing effective mismatch siRNA against

mRNA.

This study having two sections: (1) The development of a model

for predicting siRNA efficacy, and (2) The creation of mutation in

the siRNA sequence to enhance its efficacy. This facility is acces-

sible to scientific community through web based portal at http://

www.imtech.res.in/raghava/desirm/.

Methods

Datasets
The main dataset used in this study contains 2182 siRNAs.

All models trained, tested and evaluated using five-fold cross-

validation techniques on main dataset. This dataset was obtained

from Huesken et al. [4] and have been used for developing number

of existing methods. In order to compare performance of our

method with existing methods, we obtained benchmarking data

from Ichihara et al. [8]. This benchmarking data contains two

datasets; I) training dataset having 2431 siRNAs [consist of 2182

(main dataset) + 249 (testing dataset)] taken from [4] and ii) testing

dataset consists of 419 siRNAs [23,24,25,26,27].

Features used for models development
Composition based features. Nucleotide composition: The

nucleotide composition determines the occurrences of different

types of nucleotides, dinucleotides, trinucleotide etc. We compute

mono-, di,- tri-, and tetra-nucleotide composition of siRNAs that

generate vector of 4 (A, C, G, and U), 16 (AA, AC, AG, CG,

AU,…, UU), 64 (AAA, AAC, AAG,…, UUU), and 256 (AAAA,

AAAC, AAAG,…,UUUU) respectively.

Split nucleotide composition: In this case whole sequence was

divided into two equal parts and nucleotide composition of each

part is calculated separately. Composition of both part is used to

develop our models, in this case dimension of input vector was

doubled [28]. For instance 21 nt sequence was divided into nearly

half 11 nt and 11 nt, mononucleotide composition was calculated

for each part and combine to form vector dimensions of 8.

Higher order nucleotide composition: In simple dinucleotide

composition we considered local order (1st order) where interac-

tion between ith and (i + 1)th nucleotide is taken into account. In

case of second order dinucleotide composition, interaction of 1st

with 3rd nucleotide is considered i.e. ith and (i + 2)th. Similarly in

case of third order dinucleotide composition interaction of 1st with

4th nucleotide is considered.

Position specific features. Binary pattern of nucleotides:

This gives information about occurrences of position specific

nucleotide in siRNA sequence. In this case each nucleotide was

represented by binary pattern of dimensions four (A by [1,0,0,0],

C by [0,1,0,0], G by [0,0,1,0] and U by [0,0,0,1]). Thus, a

sequence of 21 nucleotides of miRNA was represented by a vector

of dimensions 84 (4621).

Binary pattern of dinucleotides: Instead of considering one

nucleotide as in binary pattern, occurrence of two consecutive

nucleotides at particular position was considered.

Binary of condense: Sequence was divided into two equal parts

and binary pattern of both part were calculated and merged into

each other (like hairpin structure) so that 59-end and 39-end of a

sequence are at same position.

Hydrogen bond: The hydrogen bonding properties were

depicted as ‘‘3’’ for G and C while ‘‘2’’ was assigned in case of

A and U.

Thermodynamic: The value of thermodynamic propertied at

each position were taken from [10].

Target site accessibility: Target site accessibility in terms of

probability of being unpaired is calculated using RNAplfold

[29]. We used parameter (W = 80, L = 40, u = 16) for calculating

target site accessibility which was considered as the best para-

meters for differentiating between functional and non-functional

siRNA [6].

Scaling of feature: During hybrid approach various different

features were considered at a time creating a large range of feature

values that resulted into the poor performance of models [30].

Hence we normalized the values in the range of 1–10 using scaling

feature of libSVM software (http://www.csie.ntu.edu.tw/̃cjlin/

papers/guide/guide.pdf).

Prediction approaches. In order to develop models for

siRNA efficacy prediction, various features of siRNAs were used.

SVMlight [31], was implemented for models development.

Performance measures. In order to evaluate performance of

our models, we used following standard parameters; 1) correlation

coefficient (R), II) coefficient of determination (R2), III) mean

absolute error (MAE), root mean squared error (RMSE). All models

were evaluated using five-fold cross validation technique.
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Where n is the size of test set, Ei
pred, and Ei

act is the predicted

and actual efficacy respectively. E
act

i is the average of actual

efficacy in test set.

Results

All models were trained and tested on main datasets consist of

2182 siRNAs where each siRNA is 21 nucleotides long. In this

strategy dataset was randomly divided into five sets, four sets were

used for training and remaining set for testing. This process is

repeated five times so that each set is used once for testing.

Composition based models
First, SVM based models have been developed using different

types of nucleotide compositions and obtained maximum cor-

relation of 0.574 between predicted and actual efficacy using

tetranucleotide composition. The performance of all composition-

based models has been shown in Table 1. Similarly, SVM based

models have been developed using split nucleotide composition

and achieve maximum correlation of 0.508 using trinucleotide

composition. Finally models were developed using higher order

nucleotide composition and achieved best correlation 0.579

between predicted and actual efficacy. In comparison to simple

trinucleotide composition (R = 0.574), substantial increase in

efficacy was observed using 2nd order trinucleotide composition

reveals the importance of pattern of nucleotides and influence of

single gap on efficacy (Table 1).

Models based on position specific features
One of major disadvantage of above composition based models is

that they used only frequency of different types of nucleotides and

hence do not consider the information about position of nucleotides

in siRNA. In order to overcome this problem we created binary

patterns for siRNA, which provide complete information (position

and type of nucleotide). First SVM based model was developed

using binary pattern of nucleotide composition and achieve

correlation coefficient of 0.637 (Table 2). This model outperforms

all the models based on composition, which indicate importance of

position of nucleotides in siRNA. As shown in Table 2, SVM models

were developed using various types of binary patterns like

dinucleotide, hydrogen bond. However, we got maximum perfor-

mance using binary pattern of nucleotides.

Hybrid models
In this study we developed models using two or more than two

types of features and called Hybrid models. First hybrid models

were developed using composition based features where two or

more than two types of compositions were used for developing

models (Table S1). Similarly, we developed hybrid models using

position specific features; we found binary pattern and thermody-

namics achieved better performance (Table S1). We also

developed hybrid models using percent nucleotide composition,

nucleotide frequency and binary pattern as input feature. Finally,

we achieved highest correlation coefficient of 0.670 by using our

hybrid model, which uses nucleotide frequency and position

specific based features (Mono+Di+Tri+Binary pattern). We called

this model desiRm21 in this study (Table 2).

Comparison with existing methods
It is important to compare performance of newly developed

method with existing methods. In order to compare any two

Table 1. Performance of SVM-based models for siRNA efficacy prediction developed using composition based features.

Composition Features Vector R R2 MAE RMSE g c j

Nucleotide Composition Mono 4 0.316 0.095 0.152 0.190 0.001 1 1

Di 16 0.450 0.145 0.145 0.185 0.001 3 2

Tri 64 0.515 0.248 0.138 0.173 0.001 1 2

Tetra 256 0.574 0.312 0.131 0.166 0.0001 10 2

Split nucleotide composition Mono 8 0.355 -0.03 0.161 0.203 0.001 1 3

Di 32 0.453 0.203 0.143 0.178 0.001 1 3

Tri 128 0.508 0.243 0.137 0.174 0.0001 2 2

Higher order composition 2nd order Di 16 0.420 0.115 0.149 0.188 0.001 1 2

3rd order Di 16 0.467 0.207 0.143 0.178 0.001 1 1

4th order Di 16 0.461 0.150 0.146 0.184 0.001 1 2

2nd order Tri 64 0.579 0.332 0.128 0.163 0.001 1 1

3rd order Tri 64 0.483 0.218 0.141 0.177 0.001 1 1

2nd order Tetra 256 0.502 0.222 0.139 0.176 0.0001 10 2

Mono: mononucleotide; di: dinucleotide; tri: trinucleotide; tetra: tetranucleotide; R: correlation coefficiet; R2: Coefficient of determination; MAE: Mean absolute error;
RMSE: Root mean square of error; g, c, and j are SVM parameters.
doi:10.1371/journal.pone.0023443.t001
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methods, one should use same dataset for training and testing.

Recently, Ichihara et al. [8] compare performance of major existing

methods. In this study we used same data for evaluating per-

formance of our newly developed method desiRm21. We trained

our model on 2431 siRNAs and tested on 419 siRNAs. As shown in

Table 3, performance of desiRm21 is comparable to previously

developed methods.

Increase of siRNA efficacy by base substitution
The siRNA pathway is a multistep procedure and one crucial

step is the integration of the guide strand into the RISC complex.

The efficiency of integration depends on the sequence of siRNA

duplexes, but likely not on the sequence of the target sites itself

[20,30]. Here in this section we propose an ingenious approach to

design non-perfect siRNAs, which are more efficient in the earlier

steps of the process such as RISC integration resulting more potent

siRNAs.

RNAi studies in human cells showed effective siRNAs may have

length from 16 to 21 nt [32], siRNA of length of 19 nt have been

successfully used to silent mRNAs [23,24,27,33]. Previously, it has

been shown that performance of siRNA prediction method

developed using 19 nt is very similar to method developed using

21 nt [8]. In order to understand the effect of mismatch between

siRNA and target, first time a systematic experimental analysis was

conducted by Liang’s group [15,17]. They used 19 nt long siRNA

for targeting human CD46 gene (XM_036622) at nucleotides

position 604–622. In order to get more insight on single-nucleotide

mismatch, same group studied all combinations of base-mismatch

across each position on target sites [21]. They employed 20

siRNAs against ,400 target sites and generate most comprehen-

sive data on efficacy of single mutation on target site. Hence, for

implementing the result of these studies we developed a SVM

model desiRm19. This model uses same nucleotide features as with

desiRm21 but on 19 nt long sequence, which were made by

removing last two bases from 39-end of each 21 nt long sequence

[34]. desiRm19 achieved correlation coefficient of 0.646, 0.648,

and 0.553 on training dataset, independent datasets of 249- and

419-sequences respectively. The performance of desiRm19 is

marginally lower than desiRm21 because of less information

content on 19 nt long sequence.

In past, several investigations reported the importance of target

site accessibility in mRNA to design effective siRNA. Hence, we

also integrated target site accessibility feature along with nucleo-

tide frequency and binary pattern feature (desiRm19) for model

development. The best SVM model (desiRm) achieved correlation

coefficient of 0.647 and 0.654 on training dataset (2182-sequences)

and independent dataset (249-sequences) respectively. The

marginal improvement in the performance was observed due to

incorporating target site accessibility information. This supports

earlier finding about the importance of this feature in designing

functional siRNA [6,35].

In order to get more potent siRNA, we generated mutation on

every position of 19 nt antisense with all four nucleotides of an

siRNA. Efficacies of these mutated siRNAs were predicted using

our SVM model desiRm. However, the mutant siRNA when

bound with target sequence caused mismatch and hence affected

the silencing efficiency. Therefore, based on the experimental data

a scoring method has been developed, which deduced effect of

position and/or identity of mismatch from predicted efficacy to

find out overall Mismatch Efficacy (ME) of mutated siRNA.

ME = predicted efficacy- S reduced efficacy (due to mismatch)

Mismatch efficacy incorporating both position and
identity of nucleotide.

Initially we generated the single mutation that makes 57

different permutation of single siRNA. The repression changes

affected by position of mismatch and identity of mismatch between

siRNA:target is taken from experimental data [21]. We obtained

the mismatch tolerance efficacy data by personal communication

with author (Figure S4 of [21]). Therefore a mismatch efficacy is

calculated by deducing efficacy due to mismatch from predicted

efficacy.

Suppose an siRNA (CAGUGGAAAGUACAUCAGA) is made

against a target region (UCUGAUGUACUUUCCACUG) in a

mRNA NM015213. The siRNA is fully complementary with

target having actual and predicted efficacy of 0.479 [4] and 0.588

respectively (Figure 1). If C is replaced by U at 1th position

(uAGUGGAAAGUACAUCAGA) its predicted efficacy will be

0.776, when it is fully complementary with target sequence. But as

we noticed that first base of siRNA causes mismatch of U:G and

causes decrease in efficacy by 0.066 (from [21]). Thus mismatch

efficacy of uAGUGGAAAGUACAUCAGA is 0.776-0.066 =

0.710. To find out efficacy of siRNA with two mismatches

experimental data were taken from Dahlgren et al., [17]. Thus,

subsequent mutations resulting siRNA of uAGUGGAAAGUA-

CAaCAGA with mismatch efficacy of 0.929.

Mismatch efficacy incorporating only position effect
The experimental studies carried out by Dahlgren et al. only

used single siRNA against mutated targets [17]. Thus, the effects

of all possible types of siRNAs and double nucleotides mismatches

were not studied. The experimental data has 709 different com-

binations for double nucleotide mismatch out of 1539 possible.

Therefore, in case of more than two mismatches or lack of

similarity with experimental data we only incorporated average

position specific effect from single-nucleotide mismatch [21]. For

Table 2. Performance of SVM-based model for siRNA efficacy
prediction developed using position specific feature and our
method desiRm.

Features Vector R R2 MAE RMSE g c j

Binary pattern 84 0.637 0.406 0.122 0.154 0.01 1 1

Binary of di 320 0.563 0.272 0.135 0.170 0.001 6 2

Binary of Condense 40 0.449 0.200 0.142 0.179 0.001 10 1

AU, GC 42 0.362 0.130 0.149 0.186 0.001 1 1

Hydrogen bond 21 0.579 0.335 0.130 0.163 0.01 2 1

Thermodynamics 19 0.577 0.332 0.129 0.163 0.001 10 1

desiRm21 168 0.670 0.448 0.118 0.148 0.001 2 1

doi:10.1371/journal.pone.0023443.t002

Table 3. Performance of desiRm21 and other four algorithms
on test dataset containing 419 siRNA.

Methods R R2 MAE RMSE

i-Score 0.557 0.217 0.243 0.284

s-Biopredsi 0.546 0.296 0.218 0.270

Thermocomposition21 0.577 0.200 0.221 0.288

DSIR 0.555 0.158 0.222 0.295

desiRm21 0.558 0.164 0.222 0.294

doi:10.1371/journal.pone.0023443.t003
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Figure 1. Schematic diagram of efficacy of complementary and mismatch siRNAs against a target site. Fully complementary siRNA has
actual and predicted efficacy of 0.479 and 0.588 respectively. Single mutation at 1st position in the siRNA has predicted efficacy of 0.776 but overall
efficacy due to single mismatch is 0.710 (0.776-0.066). Further mutation at 15th position in siRNA has predicted mismatch efficacy of 0.929. Base
pairing is denoted by ‘‘ | ’’, mismatch with ‘‘ : ’’, and mutant base with small case.
doi:10.1371/journal.pone.0023443.g001

Table 4. Comparative study of increase/decrease efficacy of siRNAs by using our method, desiRm.

siRNA antisense
Target
access

Actual
Efficacy

desiRm
Efficacy Mutated siRNA antisense

desiRm
Efficacy

Position of
Mutation

UCCUCACCAUCCGUCCAGU 0.003895 0.465 0.577 UCCUCACCcUCCGUCCAGg 0.771 9, 19

CUAAUAUGUUAAUUGAUUU 0.054683 0.462 0.647 CUAAUAUGUUAAUUGAUUg 0.813 19

CUAAUAUcUUAAUUGAUUg 0.855 8,19

uUAAUAUGUUAAUUGAUUg 0.909 1,19

CAGAUUCCACACCAUGUGG 0.000327 0.402 0.732 uAGAUUCCACACCAUGUGG 0.864 1

aAGAUUCCACACCAUGUGG 0.923 1

uAGAUUCCACACCAaGUGG 1.033 1,15

uAGAUUCCACACCAcGUGG 0.148 1, 15

uAGAUcCCACACCAUGUGG 0.061 1,6

GGUCCACAUUCUAUUUUAA 0.007570 0.388 0.397 aGUCCACAUUCUAUUUUAA 0.628 1

uGUCCACAUUCUAUUUUAg 0.798 1, 19

uGUCCACAUUCUAUUUUcg 0.757 1, 18, 19

CCUCACCAUCCGUCCAGUA 0.002853 0.326 0.473 aCUCACCAUCCGUCCAGUA 0.653 1

uCUCACCAUCCGUCCAGUg 0.760 1, 19

UGUCUACAAUCCACUGUGU 0.008437 0.993 0.878 UGUCUACAAaCCACUGUGU 0.188 10

UGUCUACAuUCCACUGUGU 0.038 9

AACUUCUUGGCUUUGUACU 0.023926 0.995 0.895 AACUUCUUGuCUUUGUACU 0.228 10

AACAGCUCCGGAUUCUGUG 0.000321 0.978 0.926 AACAGCUCCGGAUaCUGUG 0.273 14

AACAGCUCCcGAUUCUGUG 0.260 10

AACAGCUCCGGAUUaUGUG 0.189 15

UAGAAAUGCACACAUCACC 0.001601 0.947 1.019 UAGAAAUGCACAaAUCACC 0.343 13

AAAACUUCACUACAAAUUC 0.008497 0.967 0.914 AAAACUUCuCUACAAAUUC 0.083 9

AAAACUUCAaUACAAAUUC 0.027 10

Sequence taken from Huesken data, mutated nucleotide is denotes in lower case. Target access: probability of being unpaired at target site calculated by RNAplfold.
doi:10.1371/journal.pone.0023443.t004
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position specific mismatch, average effect of that position was

considered (Figure S1).

Description of web server
A user-friendly webserver has been developed on SUN server

under Solaris environment using HTML, PERL, and CGI-PERL.

There are two input fields; (1) submit mRNA: effective siRNA

can be detected against the mRNA (Figure S2). The output result

is in descending order of efficacy that contains sequences of

antisense with fully complementary target sequence, position in

mRNA, target site accessibility and its efficacy (Figure S3). If one

wants to further increase the potency of siRNA then more

efficacious antisense sequence can be clicked which is submitted

automatically to generate single mutant siRNAs and rank them

according to ME efficacy (Figure S4). The output result shows the

position of mismatch, mutated nucleotide, target site accessibility

as well as targets sequence. The increase in efficacy using mutation

can also be obtained directly by using second input field, (2)
submit siRNA, where user can put its 19 nt long antisense

siRNA generated from other software and its target sequence.

However, this field did not consider the target site accessibility

feature during efficacy calculation. Further mutations in siRNA

can be generated by clicking the antisense sequence. This strategy

can also be used to generate siRNA with very low efficacy against

an off-target.

Comparison of efficacy due to mismatch
An analysis was carried out to assess the effect on efficacy due to

mismatch between siRNA and target sequence. We considered

mutant siRNAs sequence against a particular target. By using our

server it was found that 1–2 mutation can be use to reverse the

efficacy of a siRNA from ineffective to effective and vice-versa but

need experimental verification (Table 4). Therefore, in order to

evaluate real performance of desiRm, we evaluated its perfor-

mance on experimentally verified 78 mutated siRNA, taken from

Ohnishi et al. [36]. In this study, they design allele specific siRNA

to degrade mutant mRNA of human Prion Protein (PRNP) gene

without depleting wild type transcript (Figure S5). They utilized

same strategy which we are proposing, i.e. targeting same site with

different siRNAs (each siRNA having one-base substitution at

different position) to manipulate the efficacy of siRNA and to get

those siRNAs which can better discriminate between mutant and

wild type target. Thus siRNA give rise to single-nucleotide

mismatch with mutant-target while two-nucleotide mismatch with

wild-type. They reported that introducing base-substitution at

specific position in siRNA depleted the mutant transcript while

least affected on wild-type. When we predict the efficacy of siPrnp

102 (T9) by desiRm a correlation coefficient of 0.725 was achieved

between actual and predicted efficacy (Table 5). This high

correlation supports the applicability of our tool in real life.

Furthermore, we also used desiRm on another set of siRNA data

Table 5. Assessment of desiRm on experimentally verified mismatched siRNAs of siPrnp102(T9).

Name of siRNA
siRNA sequence (antisense)
Mutated sequence

# Mismatch
(mRNA) Target sequence

siRNA:Target (base
mismatch position
on siRNA)

Actual
Efficacy

Predicted
efficacy

siPrnp102(T9) UGGCUUACUCAGCUUGUUC 0 (mutant) GAACAAGCUGAGUAAGCCA 0 0.972 0.942

siPrnp102(T9)-5U UGGCUUACUCAGCUaGUUC 1(mutant) GAACAAGCUGAGUAAGCCA A:A(15) 0.953 0.199

siPrnp102(T9)-6U UGGCUUACUCAGCaUGUUC 1(mutant) GAACAAGCUGAGUAAGCCA A:A(14) 0.864 0.267

siPrnp102(T9)-7C UGGCUUACUCAGgUUGUUC 1(mutant) GAACAAGCUGAGUAAGCCA G:G(13) 0.867 0.531

siPrnp102(T9)-12C UGGCUUAgUCAGCUUGUUC 1(mutant) GAACAAGCUGAGUAAGCCA G:G(8) 0.931 0.645

siPrnp102(T9)-13A UGGCUUuCUCAGCUUGUUC 1(mutant) GAACAAGCUGAGUAAGCCA U:U(7) 0.951 0.821

siPrnp102(T9)-14U UGGCUaACUCAGCUUGUUC 1(mutant) GAACAAGCUGAGUAAGCCA A:A(6) 0.949 0.571

siPrnp102(T9)-15U UGGCaUACUCAGCUUGUUC 1(mutant) GAACAAGCUGAGUAAGCCA A:A(5) 0.964 0.720

siPrnp102(T9)-16C UGGgUUACUCAGCUUGUUC 1(mutant) GAACAAGCUGAGUAAGCCA G:G(4) 0.850 0.664

siPrnp102(T9)-17G UGcCUUACUCAGCUUGUUC 1(mutant) GAACAAGCUGAGUAAGCCA C:C(3) 0.941 0.782

siPrnp102(T9) UGGCUUACUCaGCUUGUUC 1 (wt) GAACAAGCCGAGUAAGCCA A:G (11) 0.763 0.450

siPrnp102(T9)-5U UGGCUUACUCaGCUaGUUC 2 (wt) GAACAAGCCGAGUAAGCCA A:A(15)/A:G (11) 0.513 0.150

siPrnp102(T9)-6U UGGCUUACUCaGCaUGUUC 2 (wt) GAACAAGCCGAGUAAGCCA A:A(14)/A:G (11) 0.403 0.134

siPrnp102(T9)-7C UGGCUUACUCaGgUUGUUC 2 (wt) GAACAAGCCGAGUAAGCCA G:G(13)/A:G (11) 0.400 0.033

siPrnp102(T9)-12C UGGCUUAgUCaGCUUGUUC 2 (wt) GAACAAGCCGAGUAAGCCA G:G(8)/A:G (11) -0.041 0.143

siPrnp102(T9)-13A UGGCUUuCUCaGCUUGUUC 2 (wt) GAACAAGCCGAGUAAGCCA U:U(7)/A:G (11) 0.183 0.286

siPrnp102(T9)-14U UGGCUaACUCaGCUUGUUC 2 (wt) GAACAAGCCGAGUAAGCCA A:A(6)/A:G (11) -0.135 0.176

siPrnp102(T9)-15U UGGCaUACUCaGCUUGUUC 2 (wt) GAACAAGCCGAGUAAGCCA A:A(5)/A:G (11) 0.388 0.217

siPrnp102(T9)-16C UGGgUUACUCaGCUUGUUC 2 (wt) GAACAAGCCGAGUAAGCCA G:G(4)/A:G (11) 0.126 0.265

siPrnp102(T9)-17G UGcCUUACUCaGCUUGUUC 2 (wt) GAACAAGCCGAGUAAGCCA C:C(3)/A:G (11) -0.063 0.178

siPrnp102(T9) and its various mutant siRNAs were targeted against prion protein genes (PRNP) and its mutant allele (PRNP-P102L). Mutated base in siRNA is denoted by
small letter while mismatch base between siRNA and target are denoted by bold letter. Data of actual efficacy of siRNAs were taken from experimental work reported by
Ohnishi et al [36]. Predicted efficacy denotes efficacy of desiRm. All sequences are in 59 to 39 direction. Correlation coefficient between actual and predicted efficacy is
R = 0.725.
doi:10.1371/journal.pone.0023443.t005
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and achieved correlation coefficient of 0.586, 0.607 and 0.666

between actual and predicted efficacy for siPrnp105(T10),

siPrnp102(T10) and siPrnp178(A9) respectively (See Table S2,

S3, S4).

Discussion

It is well known that final outcome of siRNA efficacy is the

contribution of efficacy gain at each step of RNAi pathway from

loading of guide strand into RISC, target accessibility, and

cleavage efficiency [23,30,37,38]. However, their degree of con-

tribution is not fully known. Taken together these studied indicate

that there are rooms to make mutations in siRNA which become

more accessible to different proteins involved in RNAi pathway to

enhance the silencing effect. In past, various regression methods

were developed to predict the efficacy of siRNA using large

experimental data. But there is lack of method that can design the

highly effective siRNA by generating mismatch between siRNA

and target sequence. The principle of our method is to design

siRNAs, which gain efficacy at various steps of RNAi pathways

and at last step, silencing, incorporate the mismatch effect with

target site.

Here first we have developed robust SVM model for efficacy

prediction of siRNA using nucleotide features. Although we got

similar performance of our method, desiRm, as other methods but

extensive improvement of performance was not possible even

using other various nucleotide features. Several studies indicated

that target site accessibility can improve the siRNA efficacy

[6,35,39]. Thus we integrated the target site accessibility feature

along with nucleotide features and achieved marginally better

performance of model. This final model was implemented with

mismatched-tolerance data. In the mismatch efficacy prediction

we have incorporated both position as well as identity of

nucleotide for single, double-nucleotide mismatch taken from

experimental data [17,21]. Dahlgren et al. only used single siRNA

in their study, thus all possible combination of siRNA and double-

nucleotide mismatch was not covered. Therefore, in case of more

than two mismatches or lack of similarity with experimental data

we only incorporate average position specific effect from single-

nucleotide mismatch [21]. A previous method developed specific-

ity score to find out off-target genes but only considered position

specific effect from single-nucleotide mismatch data from Du el al.

[15,22]. However, Du et al. studied the effect of 57 combinations of

mismatch while 219 combinations of mismatched out of 228 was

covered by Huang et al. across all target position [15,21]. Thus we

implemented most comprehensive data of Huang et al. in desiRm.

Several studies showed the importance of mismatch siRNA for

targeting disease associated SNP genes without effecting the

normal gene [20,21,36,40,41]. Performance of our method on

experimental data showed better correlation coefficient on

mismatch efficacy (R = 0.725) than that of SVM model (R =

0.647) indicating usefulness of desiRm for predicting mutant

siRNA.

Conclusions
In this study we have developed a method to design siRNA

against fully complementary as well as partial complementary

region. This novel method helps to make siRNA of desired efficacy

without changing the target site. This is very important because

some region in mRNA can be best candidate because of having

least similarity with non-intended mRNA but at same time having

lowest efficacy. Furthermore, our method helpful to design siRNA

against SNP associated disease causing gene and mutation prone

virus like HIV.

Supporting Information

Figure S1 Position specific effect on efficacy due to
single-nucleotide mismatch. Position 1,2,3, 18 and 19 were

highly tolerable i.e. efficacy is least affected.

(PDF)

Figure S2 Snapshot of desiRm input field where mRNA
can be submitted to get siRNAs.
(JPG)

Figure S3 Snapshot of desiRm output result with fully
complementary siRNAs. Each row contains sequence of

siRNA, target position, target sequence and accessibility with

predicted efficacy. To improve the efficacy of 197th siRNA targeting

on 164th position (highlighted), click this sequence.

(JPG)

Figure S4 Snapshot of desiRm output result with single-
mutated siRNAs. Each row contains mutated siRNA, position

of mutation, type of mutation, target sequence and accessibility,

with predicted efficacy. First sequence (WT) is original, mutation

at 1st position in siRNA increase their efficacy to 0.710. Further

improvement could be achieved by click on siRNA.

(JPG)

Figure S5 Complete CDS of Homo sapiens prion protein
(PRNP) gene (wild type). The nucleotides in bold and red color

indicate the position of nucleotide variation in mutant genes reported.

Mutant PRNP-P102L has mutation at position 377(CRU); mutant

PRNP-P105L has mutation at position 386(CRU); mutant PRNP-

D178N has mutation at position 564(GRA). Highlighted regions are

targeted by siRNAs in both wild type and mutants by Ohnishi et al.

(PDF)

Table S1 Performance of SVM-based model for siRNA
efficacy prediction developed using hybrid of features.
(DOCX)

Table S2 Assessment of desiRm on experimentally
verified mismatched siRNAs of siPrnp105(T10).
siPrnp105(T10) and its various mutant siRNAs were targeted

against prion protein genes (PRNP) and its mutant allele (PRNP-

P105L). Mutated base in siRNA is denoted by small letter while

mismatch base between siRNA and target are denoted by bold

letter. Data of actual efficacy of siRNAs were taken from

experimental work reported by Ohnishi et al. Predicted efficacy

denotes efficacy of desiRm. All sequences are in 59 to 39 direction.

Correlation coefficient between actual and predicted efficacy is

R = 0.586.

(DOCX)

Table S3 Assessment of desiRm on experimentally
verified mismatched siRNAs of siPrnp102(T10).
siPrnp102(T10) and its various mutant siRNAs were targeted

against prion protein genes (PRNP) and its mutant allele (PRNP-

P102L). Mutated base in siRNA is denoted by small letter while

mismatch base between siRNA and target are denoted by bold

letter. Data of actual efficacy of siRNAs were taken from

experimental work reported by Ohnishi et al. Predicted efficacy

denotes efficacy of desiRm. All sequences are in 59 to 39 direction.

Correlation coefficient between actual and predicted efficacy is

R = 0.607.

(DOCX)

Table S4 Assessment of desiRm on experimentally
verified mismatched siRNAs of siPrnp178(A9). siPrnp178

(A9) and its various mutant siRNAs were targeted against prion

protein genes (PRNP) and its mutant allele (PRNP-D178N).
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Mutated base in siRNA is denoted by small letter while mismatch

base between siRNA and target are denoted by bold letter. Data of

actual efficacy of siRNAs were taken from experimental work

reported by Ohnishi et al. Predicted efficacy denotes efficacy of

desiRm. All sequences are in 59 to 39 direction. Correlation

coefficient between actual and predicted efficacy is R = 0.666.

(DOCX)
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