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Over the past two decades, cell-penetrating peptides (CPPs) have emerged as key intracellular drug 
delivery vehicles. This review provides a systematic overview of advancements in CPP research, 
encompassing both experimental techniques and computational resources crucial for their discovery. 
Our primary focus is on CPPsite3, a meticulously curated repository that currently houses 6788 entries, 
representing 4285 unique CPPs. This updated version builds upon CPPsite and CPPsite2, both of which 
have been extensively utilized by the scientific community for designing CPPs and developing robust 
prediction methods. Furthermore, we explore the clinical applications of CPPs, specifically highlight-
ing those currently undergoing clinical use. This comprehensive review aims to be a vital resource for 
the drug delivery research community. 
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Introduction 
Many therapeutic compounds, especially 
large molecules like DNA, have difficulty 
with intracellular delivery due to mem-
brane barriers and lysosomal degradation 
after endocytosis, limiting their in vivo 
bioavailability despite promising in vitro 
results.(p1),(p2) Advancing the precision 
drug industry requires an effective delivery 
agent to cross the lipophilic membrane 
and transport it to the targeted action loca-
tion. Over the past 30 years, CPPs have pri-
1 Authors contributed equally.
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marily been used in basic and preclinical 
research as a transporting carrier. As 
depicted in Figure 1, CPPs are short pep-
tides, fewer than 30 amino acids, that are 
mainly positively charged and derived 
from both natural and non-natural sources 
that enter via different mechanisms. Their 
ability to enter cells and facilitate the pas-
sage of drugs or CPP–cargo complexes 
across the plasma membrane makes them 
potentially useful for disease diagnosis 
and treatment.(p3) They have been widely 
ose for text and data mining, AI training, and similar technologies. 
used as a transport vehicle for delivering 
various impermeable molecules with dif-
ferent properties, such as drugs, imaging 
agents, nanoparticles, oligonucleotides, 
proteins and other functional pep-
tides(p4),(p5),(p6),(p7) not only in animals 
but also in plants.(p8) These applications 
include conditions related to the central 
nervous system, diabetes, immunothera-
pies,(p9) otologic and ocular disorders, 
cancer,(p10) and inflammation.(p11) Since 
the initial discoveries of these
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cell-penetrating abilities in the late 1980s 
and early 1990s, the field has significantly 
advanced, moving from understanding 
basic uptake to sophisticated applications 
in targeted drug and gene delivery, with 
current efforts focusing on rational design, 
‘smart’ CPPs, artificial intelligence (AI)-
driven optimization, and increasing clini-
cal translation for enhanced delivery, 
reduced toxicity, and targeted therapies.

Experimental techniques for CPP 
characterization 
A number of experimental techniques that 
confirm a peptide’s cell-penetrating capa-
bilities are available for the identification 
of CPP attributes.(p12) They can be classi-
fied into three categories: in vitro tech-
niques, in vivo techniques and 
mechanistic assays. The first category 
includes methods like qualitative identifi-
cation such as confocal microscopy and 
other types of microscopic techniques for 
tracking the subcellular localization,(p13),(-
p14),(p15) and fluorescence labeling [e.g. flu-
orescein isothiocyanate (FITC), 
rhodamine] to track the pathway of CPP– 
cargo complexes and quantitative analysis 
such as flow cytometry,(p16),(p17) 

fluorescence-activated cell sorting (FACS) 
for quantifying any intracellular biochem-
ical entity,(p18) mass spectrometry, and 
HPLC for assessing purity and chemical 
validation,(p19),(p20) and matrix-assisted 
laser desorption/ionization-time of flight 
mass spectrometry (MALDI-TOF MS).(p21) 

The second category includes various ani-
mal models (e.g. mice, zebrafish) to evalu-
ate in vivo bioavailability, targeting 
efficiency, and toxicity; and biodistribu-
tion assays using radiolabeled CPPs to help 
assess organ/tissue-specific delivery.(p22),(-
p23) The third category includes mechanis-
TABLE 1 

List of available CPP databases. 

Database Year No. of entries Informa

CPPsite 2012 843 Includes
nature o
uptake 
and com

CPPsite 2.0 2016 1855 Includes
addition

CycPeptMPDB 2023 7334 Databas
POSEIDON 2024 2300 Provides

values a
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tic assays that indirectly determine CPP 
properties such as activity assays [e.g. luci-
ferase activity, Cre recombinase, chloroalk-
ane penetration assay (CAPA)], which are 
only indirect estimations of the amount 
of cargo internalized by CPPs(p24),(p25) and 
mutagenesis studies for analyzing the con-
tribution of specific residues to uptake effi-
ciency. Similarly, their mode of 
internalization into the cells involves vari-
ous endocytotic (clathrin-mediated, 
caveolin-mediated, macropinocytosis), 
non-endocytotic and direct translocation 
pathways, determined experimentally 
using various pathway inhibitors to inter-
pret the uptake route, explained in detail 
in several review papers.(p26),(p27) 

Computational resources for CPPs 
The experimental techniques for the iden-
tification of CPPs are the gold standard, 
which identify CPPs with high precision. 
These wet lab experiments are challenging 
due to their high cost, time-consuming 
nature, and labor-intensive requirements. 
These limitations have encouraged 
researchers to explore alternative discovery 
strategies, particularly computational 
methods for predicting CPPs within pro-
teins. In the era of AI, machine learning 
(ML) techniques have emerged as powerful 
tools for prediction and classification. 
Novel CPPs have been successfully identi-
fied by ML-driven predictions in recent 
investigations, and they are currently 
being sought for experimental evalua-
tion.(p28) However, training robust ML 
models necessitates comprehensive data-
sets of existing CPPs, as models are built 
upon established knowledge. Historically, 
the CPPs discovered through experimental 
means were scattered across numerous 
research papers, precluding their availabil-
tion type

 detailed information of CPPs like chirality, origin, 
f peptide, subcellular localization, uptake efficiency, 
mechanism, hydrophobicity, amino acid frequency, 
position 
 detailed information of CPPs as CPPsite, and 
al information about the structure of peptides 
e of cyclic peptide membrane permeability
 information about experimental quantitative uptake
nd physicochemical properties of peptides 
ity from a single, centralized source. This 
fragmentation presented a major hurdle 
for researchers aiming to compile datasets 
for ML model development. Thus, to cre-
ate a dataset for building ML-based mod-
els, one needs to compile these CPPs. 

To address this challenge, Gautam 
et al.(p29) made a seminal systematic 
attempt to compile CPPs from literature, 
databases, and other resources, culminat-
ing in the creation of CPPsite. This initial 
database provided detailed information 
on 843 experimentally validated CPPs 
and has since been widely adopted by the 
scientific community. Researchers exten-
sively utilized CPPsite data to derive data-
sets for predicting, designing, and 
scanning for CPPs within proteins. Recog-
nizing the need for up-to-date informa-
tion, CPPsite was subsequently updated 
in 2015 to CPPsite2,(p30) expanding its cov-
erage to include over 1850 CPPs, more 
than doubling from its initial version. 
Beyond CPPsite and CPPsite2, a few other 
databases contain related information 
based on different purposes like 
POSEIDON,(p31) which includes quantita-
tive uptake values of CPP; and 
CycPeptMPDB,(p32) which contains infor-
mation about the membrane permeability 
of cyclic peptides. Table 1 provides a sum-
mary of these available repositories and 
the specific types of information they 
contain. 

In the past, a number of prediction 
tools have been developed to predict CPP 
efficiently and accurately using various 
machine and deep-learning methods. 
Table 2 depicts the key computational 
tools that aid in CPP identification and 
characterization, varying in the algorithm 
utilized from support vector machines to 
ensemble learning and the recently rising
Web link 

https://crdd.osdd.net/raghava/cppsite1/ 

https://crdd.osdd.net/raghava/cppsite/ 

https://cycpeptmpdb.com 
 https://moreiralab.com/resources/poseidon/ 
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TABLE 2 

List of computational tools employed in the field of CPP prediction. 

Tools Year ML employed Key features Web server availability Refs 

https://crdd.osdd.net/ 
raghava/cellppd/ 

CellPPD 2013 SVM Predicts and designs CPPs (p33) 

https://bioware.ucd.ie/ 
cpppred 

CPPpred 2013 N-to-1 neural networks (N1-NNs) Predicts CPPs (p34) 

Predicts CPPs and employs feature 
selection 

C2Pred 2016 SVM https://lin-group.cn/ 
server/C2Pred 

(p35) 

https://server.malab.cn/ 
SkipCPP-Pred/Index.html 
(NW) 

SkipCPP-Pred 2017 RF Predicts CPPs using adaptive k-skip-n-gram (p36) 

CPPred-RF 2017 RF Predicts CPPs and uptake efficiency https://server.malab.cn/ 
CPPred-RF (NW) 

(p37) 

https://webs.iiitd.edu.in/ 
raghava/cellppdmod/ 

CellPPD-Mod 2018 RF Predict CPPs from the tertiary structure of 
natural and modified peptides 

(p38) 

MLCPP 2018 RF, SVM, ERT, and k-NN Two-layer prediction framework (predicts 
CPPs and uptake efficiency) 

https://www.thegleelab. 
org/MLCPP (NW) 

(p39) 

KELM-CPPpred 2018 Kernel ELM Predicts CPPs https://sairam.people. 
iitgn.ac.in/KELM-
CPPpred.html 

(p40) 

G-DipC 2020 XGBoost Distinguish the category of cargo carried 
by CPPs using the general dipeptide 
composition (G-DipC) 

NA (p41) 

Predicts CPPs using 19 probabilistic 
features 

CPPred-FL 2020 RF https://server.malab.cn/ 
CPPred-FL (NW) 

(p42) 

Predicts CPPs and uptake efficiency using 
RECM-composition, PseRECM and RECM– 
DWT 

StackCPPred 2020 Stacking-based ML (Base – XGBoost, 
LightGBM, SVM, k-NN and RF; and meta 
– SVM) 

NA (p43) 

TargetCPP 2020 Gradient boost decision tree Predicts CPPs using features CPSR, CTD, 
SAAC, and ITF 

NA (p44) 

ANN, SVM, and a Gaussian process 
classifier 

Predict synthetic and natural CPP 
structures 

BChemRF-CPPred 2021 https://comptools.linc. 
ufpa.br/BChemRF-
CPPred (NW) 

(p45) 

Discrimination of CPPs and their uptake 
efficiencies 

DeepCPPred 2022 Cascade deep-forest (CDF) classifier NA (p46) 

https://balalab-skku.org/ 
mlcpp2/ 

MLCPP 2.0 2022 119 baseline models (17 encodings 7 
ML classifiers) 

Two-layer prediction framework (Predicts 
CPPs and uptake efficiency) 

(p47) 

SiameseCPP 2023 Siamese neural network Predicts CPPs NA (p48) 
AiCPP 2023 Ensemble learning (LSTM) Predicts CPPs NA (p49) 
PractiCPP 2024 deep-learning framework Predicts CPPs using imbalanced data NA (p50) 

https://ry2acnp6ep.us-
east-1.awsapprunner. 
com/ 

pLM4CPPs 2025 Protein language models (PLMs) Predicts CPPs (p51) 

CPPCGM 2025 PLMs Identify and generate novel CPPs NA (p52) 

ANN, artificial neural network; CPSR, composite protein sequence representation; CTD, composition, transition and distribution; DWT, discrete wavelet transform; ELM, extreme learning machine; 
ERT, ensemble representation learning; ITF, intelligent talent finder; LSTM, long short-term memory; NA, not available; NW, not working; PseRECM, pseudo residue pairwise energy content matrix; 
RF, random forest; SAAC, split amino acid composition; SVM, support vector machine. 
models employing natural language pro-
cessing techniques. All of these tools heav-
ily depend on databases for creating 
datasets, and the majority of them have 
derived their training and validation data 
from CPPsite and CPPsite2, which contain 
information only up to 2015. Relying on 
outdated data can limit the reliability of 
these tools, and the growth of CPPs in 
the last 9 years has been tremendous, as 
shown in Figure 3. Therefore, the availabil-
ity of an up-to-date and comprehensive 
database is critical. Such a database would 
accelerate the discovery of novel CPPs, 
facilitate the development of more sophis-
ticated prediction models, support tar-
geted drug deliveries, and serve as a 
valuable educational resource to the scien-
tific community. 

CPPsite3: an updated repository of CPPs 
Despite being updated only in 2015, 
CPPsite2 is still actively used by the scien-
tific community. However, significant 
technical advancements and the growing 
importance of CPPs have concurrently 
led to the discovery of numerous addi-
tional experimentally validated CPPs. To 
overcome this challenge, the group 
updated CPPsite2 to incorporate updated 
information. The new version is called 
CPPsite3, and contains updated informa-
tion up to 2024. This resource offers inte-
grated tools for effective data browsing, 
searching, and analysis, enhancing its 
utility for researchers. The responsive 
web-server design ensures seamless com-
patibility across all devices, including 
smartphones and tablets, maximizing user 
convenience. In this review, we will 
provide an extensive overview of this 
database.
www.drugdiscoverytoday.com 3
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FIGURE 1 
A comprehensive theoretical framework of cell penetrating peptides outlining their origin, structural diversity, cellular uptake pathways, identification assays, 
and the nature of delivered cargos. Figure created with BioRender. 
Architecture and organization of 
CPPsite3 
The CPPsite3 database architecture uses an 
Apache HTTP server (version 2.4.63) to 
process web requests, and MySQL (version 
8.0.41) is the stable backend system for 
effective data management. The user-
friendly and adaptable front end is built 
with the latest web technologies that are 
open-source and platform-independent, 
such as HTML (version 5), CSS (boot-
strap@5.3.5), PHP (version 5.6.40), and 
JavaScript (version 12.22.9). This ensures 
smooth compatibility across a range of 
4 www.drugdiscoverytoday.com
devices, including desktops, mobile 
phones, and tablets, and a unified inter-
face enables user interaction by utilizing 
the capabilities of the PHP scripting lan-
guage. The overall framework of CPPsite3, 
as illustrated in Figure 2, is built upon this 
stable and widely adopted technology 
stack. 

Data curation approach 
To search CPPs from the literature, the 
search term ‘cell penetrating peptides’ 
was used to search PubMed from July 
2015 to April 2024 to extract relevant
research publications. Initially, 2361 
papers were obtained, which were filtered 
by removing review articles, prediction 
methodologies, and book chapters. 
Remaining research papers were thor-
oughly scanned and manually examined, 
and relevant CPP details were manually 
extracted. Only studies providing experi-
mental validation of CPPs and their ana-
logues were selected for curation. To 
further broaden the scope, the references 
in relevant review articles were also 
explored, and the relevant articles were 
included. This rigorous process culminated
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FIGURE 2 
Architectural framework of the CPPsite3 database. Figure created with BioRender. 
in identifying 1471 unique PubMed IDs, 
the data from which form the core of 
CPPsite3. The retrieved data included key 
components, including the nature, chiral-
ity, subcellular localization, end modifica-
tions, cell penetration effectiveness, and 
features of the in vitro or in vivo model sys-
tems (e.g. particularly cell lines or animal 
models). A thorough manual reading 
method was used to collect all of the data, 
which were then tabulated for ease of 
understanding and access for further stud-
ies. We included each instance of a similar 
CPP, even if it was evaluated differently in 
separate studies, to present all of the 
diverse findings that had been reported 
and to make sure the database was up to 
date and thorough. Consequently, 
CPPsite3 comprises a total of 6788 entries, 
integrating 1855 records from earlier ver-
sions with 4933 novel entries extracted 
from recent publications. This substantial 
update introduces 4143 novel CPP 
sequences, considerably enriching the 
database and enhancing its value for CPP 
researchers and the broader biomedical 
science community.

Data content of CPPsite3 
Table 3 provides a detailed overview of the 
primary data fields incorporated into the 
CPPsite3. Each entry within the database 
is directly linked to its corresponding 
PubMed ID (PMID), enabling users to 
easily access the original research publica-
tion from which the information was 
extracted. 

Statistics of CPPsite3 
The CPPsite3 contains 7688 entries, of 
which 1855 have been taken from 
CPPsite3, and the remaining 4933 entries 
are manually curated from 1471 research 
articles on PubMed from the year 2015 to 
2024. Figure 3 depicts the number of 
entries added from each year in the data-
base. The increase in entries from the pre-
vious versions was more than threefold. 
To be precise, the number of entries 
increased by approximately 3.14 times. In 
Figure 4a, the distribution of linear pep-
tides constitutes the majority (approxi-
mately 90.8%), suggesting their 
prevalence in research or natural systems, 
whereas cyclic (approximately 6.3%), sta-
pled (approximately 1.6%), hybrid (linear 
and cyclic, approximately 0.7%), and 
bicyclic (approximately 0.5%) peptides 
represent greater structural complexity 
and often enhanced stability, conforma-
tion, and ultimately, cellular uptake. These 
nonlinear architectures likely enhance 
resistance to proteolysis and can pre-
organize the peptide into a more favorable 
conformation for membrane 
interaction.(p53),(p54)
www.drugdiscoverytoday.com 5
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FIGURE 3 
Year-wise trend of database entries. Figure created with BioRender. 

TABLE 3 

Primary data fields in CPPsite 3.0 and their descriptions. 

S. No. Categories Description Example 

1 Name Provides the name of the peptide referenced in the literature. Penetratin 
2 Sequence Representing the peptide’s amino acid sequence determines 

both its chemical makeup and its biological action. 
RRRGADFASDLF 

3 Chirality Represents the chirality of the peptide, influencing its stability 
and cellular interactions 

D/L/mix 

4 Source Reveals the source to which it belongs Protein-derived, synthetic, chimeric 
5 Linearity Determining the linearity of the peptide enhances its membrane-

crossing efficiency and resistance to breakdown. 
Linear/cyclic/hybrid 

6 Nature It indicates the nature of the peptide, important in determining 
how it interacts with negatively charged cell membranes and 
influences its penetration behavior. 

Cationic/amphipathic/anionic/ 
hydrophilic, etc. 

7 Subcellular localization Provides information about where the peptide ends up inside 
the cell, which is key to its functional impact 

Nucleus/cytoplasm/mitochondria, etc. 

8 N-terminal modification Contains information about modification at the start of the 
peptide, which can boost stability or uptake. 

Acetylation, etc. 

Contains information about the modification of the end of the 
peptide. 

9 C-terminal modification Amidation, etc. 

Provides information about any chemical modification within the 
sequence of the peptide, added to improve performance or 
specificity 

10 Chemical modification PEGylation, non-natural amino acid 
insertion, etc. 

11 Uptake efficacy Represents the relative efficiency of peptides in cell penetration 
compared to other peptides in experimental settings 

Twofold/high/lower than, etc. 

12 Uptake mechanism Provides information about the mechanism of CPP uptake used 
by the peptide. 

Endocytosis/direct translocation, etc. 

13 Experimental type Provides context for the experimental conditions/model system 
under which CPP properties were tested 

In vivo/in vitro/ex vivo 

14 Cell line used Provides information on the specific cell line type used for 
validation of the peptide’s effect 

HeLa/Chinese hamster ovary, etc. 

15 Animal model Describes the animal model used to test CPP and validate its real-
world potential. 

BALB/c mice/zebrafish, etc. 

16 Cargo types Defines what the peptide can transport as a cargo in various 
model systems 

Nucleic acids/proteins/drugs, etc.

6 www.drugdiscoverytoday.com
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FIGURE 4 
Statistics of top five categories based on (a) linearity; (b) source, (c) ionic nature; and (d) chirality in CPPsite3 based on the number of entries. Figure created 
with BioRender. 
Similarly, from Figure 4b, most CPPs are 
synthetically sourced (61.1%), reflecting 
the importance of de novo design and opti-
mizing CPP sequences for specific applica-
tions. However, protein-derived peptides 
(28.6%) also form a substantial portion, 
indicating the continued relevance of nat-
urally occurring sequences and their bioac-
tivity. The presence of chimeric (7.9%), 
fusogenic (1.7%), and phage display-
derived (0.7%) CPPs showcases the diverse 
methodologies employed in CPP discovery 
and engineering. In terms of ionic nature, 
a significant majority of the CPPs in the 
database are cationic (approximately 
59.3%), as shown in Figure 4c. This obser-
vation suggests that they are linked to 
their interactions with negatively charged 
biological membranes, facilitating cell 
penetration and antimicrobial activity. 
The distribution of peptides based on chi-
rality in Figure 4d reveals a strong bias 
towards L-amino acid-based CPPs (76.7%), 
reflecting the natural abundance of L-
amino acids in biological systems. How-
ever, the presence of modified and D-
peptides (18.8% and 2.5%, respectively) 
points to efforts to explore alternative chi-
ralities and chemical modifications for 
enhanced stability, resistance to enzymatic 
degradation, and novel functions. More-
over, the database also holds a plethora 
of modification types internally or at the 
terminal of the peptides, most of which 
include biotinylation, amidation, and 
unnatural residue addition. The mode of 
uptake of the CPP includes the majorly 
endocytosis pathway (approximately 
1105 entries), including different types 
such as caveolin-mediated, clathrin-
mediated, and lipid rafts-mediated 
energy-dependent processes. Other uptake 
pathways used by CPPs to enter the cell 
include direct translocation, exocytosis, 
and receptor-mediated processes. In addi-
tion, it contains predicted tertiary struc-
tures of CPPs, which were predicted using 
PEPstrMOD.(p55) 

Web interface 
To facilitate data searching, browsing, and 
analysis with unparalleled simplicity and 
efficiency, a suite of robust tools and an 
intuitive, open-source, and adaptable 
online interface were developed for the 
benefit of the scientific community. The 
‘Enquire’, ‘Browse On’, ‘Composition’, 
and ‘Similarity’ modules are the four main 
components of CPPsite3 that provide 
effortless data searching. It is available for 
users from the URL https://webs.iiitd.edu. 
in/raghava/cppsite3/. 

(i) Enquire: The user may effectively 
search the database using five differ-
ent search options: keyword search,
www.drugdiscoverytoday.com 7
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complex search, segment search, 
peptide mapping, and secondary 
structure search. 

(ii) Browse On: It enables data browsing 
by (i) chemical modifications, which 
shows all kinds of alterations, such 
as N- and C-terminal changes and 
sequence modifications like the 
incorporation of non-natural resi-
dues; (ii) category, which groups 
CPPs according to the type, class, 
nature, and chirality of the peptide; 
and (iii) length, which returns 
entries within a user-selected length 
range. 

(iii) Composition: In addition to residue 
compositions, several physicochem-
ical characteristics of the peptides 
have been computed, including 
charge, hydrophobicity, amphi-
pathicity, and isoelectric point. 

(iv) Similarity: Two similarity tools have 
been incorporated: the Basic Local 
Alignment Search Tool (BLAST)(p56) 

and Smith–Waterman search algo-
rithms(p57) to enable accurate pep-
tide matching, in addition to a 
peptide alignment tool for compar-
ing query peptides with database 
peptides. 
FIGURE 5 
Comparison of data in three versions of the CPPsite

8 www.drugdiscoverytoday.com
Comparison with the previous version 
CPPsite1 and CPPsite2 were developed in 
2012 and 2015, respectively, comprising 
different information fields containing 
1855 peptide entries. Since 2015, there 
has been no update, and no other database 
has been developed. The growing interest 
in penetrating peptides to deliver thera-
peutic molecules for precise targets have 
become prominent, therefore to fill this 
gap we have created an updated version 
named CPPsite3, in which we have 
included 4933 peptide entries compared 
to 1855 in the previous version with their 
names, sequences, nature, uptake efficien-
cies, modifications and experimental con-
ditions. All the entries have been linked 
with their PubMed IDs to provide users 
with maximum accessibility to the source. 
Comparative statistics are shown in 
Figure 5. 

Concluding remarks on CPPsite3 
With the addition of more than 4000 new 
entries, CPPsite3 represents a significant 
expansion over its original release in 
2012 and the subsequent update in 2015. 
It remains the only publicly accessible 
database offering comprehensive informa-
tion on CPPs. Given the growing interest 
 database. Figure created with BioRender. 
in precision medicine and targeted intra-
cellular delivery of therapeutic agents, we 
believe this updated version will be highly 
valuable to the scientific community. 
However, due to limited available data, 
this release does not include certain key 
aspects of therapeutic peptides, such as 
toxicity, plasma half-life, and biodistribu-
tion. Another limitation is the exclusion 
of data from patents. We hope this data-
base will be updated at regular intervals 
and will incorporate the missing informa-
tion to provide a more complete and up-
to-date resource. 

Clinical applications of CPPs 
From preclinical models to early clinical 
research, CPPs have advanced impres-
sively, providing versatile methods for tar-
geted delivery of diagnostics and 
treatments across a range of diseases and 
immunotherapy.(p53),(p58),(p59) In oncol-
ogy, CPPs make it easier to precisely 
administer anticancer agents and imaging 
probes. For example, by activating the 
neuropilin 1-mediated CendR pathway, 
internalized arginylglycylaspartic acid cyc-
lic peptide (iRGD), a cyclic, tumor-
penetrating CPP, improves tumor accumu-
lation and the effectiveness of chemother-
Drug Discovery Today
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apeutics when co-administered. Its deriva-
tive certepide has already been designated 
as an FDA orphan drug and is undergoing 
Phase I/II trials in solid tumors 
(30647857).(p60) In macromolecular drug 
delivery, the chemotherapeutic prodrugs, 
DTS-108 (an SN38 conjugate) or CPP-
fused botulinum toxin, have entered clini-
cal trials, showing enhanced intracellular 
delivery and decreased systemic toxic-
ity.(p61) Through covalent or non-
covalent methods, CPPs have been linked 
with small interfering RNA (siRNA), anti-
sense oligonucleotides, plasmid DNA, and 
more recently, mRNA. In preclinical mod-
els, cationic peptide–siRNA conjugates tar-
geted HIV and hepatitis C in vitro and 
in vivo, whereas oligoarginine CPPs (e.g. 
R15) achieved 80% tumor growth sup-
pression via siHER 2 in ovarian cancer 
xenografts.(p62) In immunotherapy, CPPs 
help to enhance T-cell infiltration, antigen 
cross-presentation, and vaccine efficacy. 
CPP-modified peptides, for instance, are 
being assessed in therapeutic trials for 
glioblastoma, facilitating more effective 
dendritic cell absorption of antigens and 
enhancing humoral and cell-mediated 
immunity. Additionally, CPP-based sys-
tems have been evaluated for the delivery 
of siRNA, checkpoint inhibitors, and 
cytokines in autoimmune and inflamma-
tory diseases.(p63) In diagnostic imaging 
and disease monitoring, CPP conjugates 
containing imaging probes demonstrate 
enhanced detection sensitivity by accumu-
lating in tumors or inflammatory tis-
sues.(p64) Because of their small size and 
affinity, these agents exhibit great tumor 
selectivity and quick clearance from non-
diseased tissue. Lastly, in ocular therapeu-
tics, in early clinical settings, TAT-linked 
c-Jun N-terminal kinase (JNK) inhibitors 
(e.g. XG-102/AM-111/D-JNKI-1) have 
shown promise in treating inner eye 
inflammation and sudden hearing loss; 
similarly, other applications in ocular 
treatments using CPPs have been reported 
in a review.(p65) Overall, despite the fact 
that no CPP-based medications have 
received full FDA clearance, CPPs have 
tremendous therapeutic promise. A num-
ber of Phase I/II clinical trials are now 
underway to target cancer, neurological 
disorders, and vaccines, signaling a signifi-
cant shift from laboratory to patient. 
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