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Over the past two decades, cell-penetrating peptides (CPPs) have emerged as key intracellular drug
delivery vehicles. This review provides a systematic overview of advancements in CPP research,
encompassing both experimental techniques and computational resources crucial for their discovery.
Our primary focus is on CPPsite3, a meticulously curated repository that currently houses 6788 entries,
representing 4285 unique CPPs. This updated version builds upon CPPsite and CPPsite2, both of which
have been extensively utilized by the scientific community for designing CPPs and developing robust
prediction methods. Furthermore, we explore the clinical applications of CPPs, specifically highlight-
ing those currently undergoing clinical use. This comprehensive review aims to be a vital resource for
the drug delivery research community.
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Introduction

Many therapeutic compounds, especially
large molecules like DNA, have difficulty
with intracellular delivery due to mem-
brane barriers and lysosomal degradation
after endocytosis, limiting their in vivo
bioavailability despite promising in vitro
results.?"??  Advancing the precision
drug industry requires an effective delivery
agent to cross the lipophilic membrane
and transport it to the targeted action loca-
tion. Over the past 30 years, CPPs have pri-

' Authors contributed equally.

marily been used in basic and preclinical
research as a transporting carrier. As
depicted in Figure 1, CPPs are short pep-
tides, fewer than 30 amino acids, that are
mainly positively charged and derived
from both natural and non-natural sources
that enter via different mechanisms. Their
ability to enter cells and facilitate the pas-
sage of drugs or CPP-cargo complexes
across the plasma membrane makes them
potentially useful for disease diagnosis
and treatment.”® They have been widely

used as a transport vehicle for delivering
various impermeable molecules with dif-
ferent properties, such as drugs, imaging
agents, nanoparticles, oligonucleotides,
proteins and other functional pep-
tides P P90 (7 not only in animals
but also in plants.”® These applications
include conditions related to the central
nervous system, diabetes, immunothera-
pies,?” otologic and ocular disorders,
cancer,”'” and inflammation.”'? Since
the initial  discoveries of  these

1359-6446/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.
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cell-penetrating abilities in the late 1980s
and early 1990s, the field has significantly
advanced, moving from understanding
basic uptake to sophisticated applications
in targeted drug and gene delivery, with
current efforts focusing on rational design,
‘smart’ CPPs, artificial intelligence (AI)-
driven optimization, and increasing clini-
cal translation for enhanced delivery,
reduced toxicity, and targeted therapies.

Experimental techniques for CPP
characterization

A number of experimental techniques that
confirm a peptide’s cell-penetrating capa-
bilities are available for the identification
of CPP attributes.”'® They can be classi-
fied into three categories: in vitro tech-
niques, in  vivo techniques and
mechanistic assays. The first category
includes methods like qualitative identifi-
cation such as confocal microscopy and
other types of microscopic techniques for
tracking the subcellular localization,'%"*
PID.(P15) and fluorescence labeling [e.g. flu-
orescein isothiocyanate (FITC),
rhodamine] to track the pathway of CPP-
cargo complexes and quantitative analysis
such as flow  cytometry, P! P17
fluorescence-activated cell sorting (FACS)
for quantifying any intracellular biochem-
ical entity,”'® mass spectrometry, and
HPLC for assessing purity and chemical
validation, P!?»®?9  and matrix-assisted
laser desorption/ionization-time of flight
mass spectrometry (MALDI-TOF MS).*ZV
The second category includes various ani-
mal models (e.g. mice, zebrafish) to evalu-
ate in vivo bioavailability, targeting
efficiency, and toxicity; and biodistribu-
tion assays using radiolabeled CPPs to help
assess organ/tissue-specific delivery.®*?¢

P23) The third category includes mechanis-

TABLE 1

tic assays that indirectly determine CPP
properties such as activity assays [e.g. luci-
ferase activity, Cre recombinase, chloroalk-
ane penetration assay (CAPA)], which are
only indirect estimations of the amount
of cargo internalized by CPPs*?*-(P2>) and
mutagenesis studies for analyzing the con-
tribution of specific residues to uptake effi-
ciency. Similarly, their mode of
internalization into the cells involves vari-
ous endocytotic (clathrin-mediated,
caveolin-mediated, macropinocytosis),
non-endocytotic and direct translocation
pathways, determined experimentally
using various pathway inhibitors to inter-
pret the uptake route, explained in detail
in several review papers.Z®-(P27)

Computational resources for CPPs

The experimental techniques for the iden-
tification of CPPs are the gold standard,
which identify CPPs with high precision.
These wet lab experiments are challenging
due to their high cost, time-consuming
nature, and labor-intensive requirements.
These limitations have encouraged
researchers to explore alternative discovery
strategies,  particularly = computational
methods for predicting CPPs within pro-
teins. In the era of Al, machine learning
(ML) techniques have emerged as powerful
tools for prediction and classification.
Novel CPPs have been successfully identi-
fied by ML-driven predictions in recent
investigations, and they are currently
being sought for experimental evalua-
tion.P?® However, training robust ML
models necessitates comprehensive data-
sets of existing CPPs, as models are built
upon established knowledge. Historically,
the CPPs discovered through experimental
means were scattered across numerous
research papers, precluding their availabil-

ity from a single, centralized source. This
fragmentation presented a major hurdle
for researchers aiming to compile datasets
for ML model development. Thus, to cre-
ate a dataset for building ML-based mod-
els, one needs to compile these CPPs.

To address this challenge, Gautam
et al.?® made a seminal systematic
attempt to compile CPPs from literature,
databases, and other resources, culminat-
ing in the creation of CPPsite. This initial
database provided detailed information
on 843 experimentally validated CPPs
and has since been widely adopted by the
scientific community. Researchers exten-
sively utilized CPPsite data to derive data-
sets for predicting, designing, and
scanning for CPPs within proteins. Recog-
nizing the need for up-to-date informa-
tion, CPPsite was subsequently updated
in 2015 to CPPsite2, **” expanding its cov-
erage to include over 1850 CPPs, more
than doubling from its initial version.
Beyond CPPsite and CPPsite2, a few other
databases contain related information
based on different purposes like
POSEIDON, "*" which includes quantita-
tive uptake values of CPP; and
CycPeptMPDB, "*? which contains infor-
mation about the membrane permeability
of cyclic peptides. Table 1 provides a sum-
mary of these available repositories and
the specific types of information they
contain.

In the past, a number of prediction
tools have been developed to predict CPP
efficiently and accurately using various
machine and deep-learning methods.
Table 2 depicts the key computational
tools that aid in CPP identification and
characterization, varying in the algorithm
utilized from support vector machines to
ensemble learning and the recently rising

List of available CPP databases.

Database Year No. of entries Information type Web link

CPPsite 2012 843 Includes detailed information of CPPs like chirality, origin, https://crdd.osdd.net/raghava/cppsite1/
nature of peptide, subcellular localization, uptake efficiency,
uptake mechanism, hydrophobicity, amino acid frequency,
and composition

CPPsite 2.0 2016 1855 Includes detailed information of CPPs as CPPsite, and https://crdd.osdd.net/raghava/cppsite/
additional information about the structure of peptides

CycPeptMPDB 2023 7334 Database of cyclic peptide membrane permeability https://cycpeptmpdb.com

POSEIDON 2024 2300 Provides information about experimental quantitative uptake https://moreiralab.com/resources/poseidon/

values and physicochemical properties of peptides
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TABLE 2

List of computational tools employed in the field of CPP prediction.

Tools Year ML employed Key features Web server availability Refs
CellPPD 2013 SVM Predicts and designs CPPs https://crdd.osdd.net/ (p33)
raghava/cellppd/
CPPpred 2013 N-to-1 neural networks (N1-NNs) Predicts CPPs https://bioware.ucd.ie/ (p34)
cpppred
C2Pred 2016 SVM Predicts CPPs and employs feature https://lin-group.cn/ (p35)
selection server/C2Pred
SkipCPP-Pred 2017 RF Predicts CPPs using adaptive k-skip-n-gram  https://server.malab.cn/  (p36)
SkipCPP-Pred/Index.html
(NW)
CPPred-RF 2017 RF Predicts CPPs and uptake efficiency https://server.malab.cn/  (p37)
CPPred-RF (NW)
CellPPD-Mod 2018 RF Predict CPPs from the tertiary structure of  https://webs.iiitd.edu.in/  (p38)
natural and modified peptides raghava/cellppdmod/
MLCPP 2018 RF, SVM, ERT, and k-NN Two-layer prediction framework (predicts https://www.thegleelab.  (p39)
CPPs and uptake efficiency) org/MLCPP (NW)
KELM-CPPpred 2018 Kernel ELM Predicts CPPs https://sairam.people. (p40)
iitgn.ac.in/KELM-
CPPpred.html
G-DipC 2020 XGBoost Distinguish the category of cargo carried NA (p41)
by CPPs using the general dipeptide
composition (G-DipC)
CPPred-FL 2020 RF Predicts CPPs using 19 probabilistic https://server.malab.cn/  (p42)
features CPPred-FL (NW)
StackCPPred 2020 Stacking-based ML (Base — XGBoost, Predicts CPPs and uptake efficiency using  NA (p43)
LightGBM, SVM, k-NN and RF; and meta RECM-composition, PseRECM and RECM-
- SVM) DWT
TargetCPP 2020 Gradient boost decision tree Predicts CPPs using features CPSR, CTD, NA (p44)
SAAC, and ITF
BChemRF-CPPred 2021 ANN, SVM, and a Gaussian process Predict synthetic and natural CPP https://comptools.linc. (p45)
classifier structures ufpa.br/BChemRF-
CPPred (NW)
DeepCPPred 2022 Cascade deep-forest (CDF) classifier Discrimination of CPPs and their uptake NA (p46)
efficiencies
MLCPP 2.0 2022 119 baseline models (17 encodings x 7 Two-layer prediction framework (Predicts https://balalab-skku.org/  (p47)
ML classifiers) CPPs and uptake efficiency) mlcpp2/
SiameseCPP 2023 Siamese neural network Predicts CPPs NA (p48)
AiCPP 2023 Ensemble learning (LSTM) Predicts CPPs NA (p49)
PractiCPP 2024 deep-learning framework Predicts CPPs using imbalanced data NA (p50)
pLMA4CPPs 2025 Protein language models (PLMs) Predicts CPPs https://ry2acnp6ep.us- (p571)
east-1.awsapprunner.
com/
CPPCGM 2025 PLMs Identify and generate novel CPPs NA (p52)

ANN, artificial neural network; CPSR, composite protein sequence representation; CTD, composition, transition and distribution; DWT, discrete wavelet transform; ELM, extreme learning machine;
ERT, ensemble representation learning; ITF, intelligent talent finder; LSTM, long short-term memory; NA, not available; NW, not working; PseRECM, pseudo residue pairwise energy content matrix;
RF, random forest; SAAC, split amino acid composition; SVM, support vector machine.

models employing natural language pro-
cessing techniques. All of these tools heav-
ily depend on databases for creating
datasets, and the majority of them have
derived their training and validation data
from CPPsite and CPPsite2, which contain
information only up to 2015. Relying on
outdated data can limit the reliability of
these tools, and the growth of CPPs in
the last 9 years has been tremendous, as
shown in Figure 3. Therefore, the availabil-
ity of an up-to-date and comprehensive
database is critical. Such a database would
accelerate the discovery of novel CPPs,

facilitate the development of more sophis-
ticated prediction models, support tar-
geted drug deliveries, and serve as a
valuable educational resource to the scien-
tific community.

CPPsite3: an updated repository of CPPs
Despite being updated only in 2015,
CPPsite2 is still actively used by the scien-
tific community. However, significant
technical advancements and the growing
importance of CPPs have concurrently
led to the discovery of numerous addi-
tional experimentally validated CPPs. To

overcome this challenge, the group
updated CPPsite2 to incorporate updated
information. The new version is called
CPPsite3, and contains updated informa-
tion up to 2024. This resource offers inte-
grated tools for effective data browsing,
searching, and analysis, enhancing its
utility for researchers. The responsive
web-server design ensures seamless com-
patibility across all devices, including
smartphones and tablets, maximizing user
In this review, we will
provide an extensive overview of this
database.

convenience.
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FIGURE 1

A comprehensive theoretical framework of cell penetrating peptides outlining their origin, structural diversity, cellular uptake pathways, identification assays,
and the nature of delivered cargos. Figure created with BioRender.

Architecture and organization of
CPPsite3

The CPPsite3 database architecture uses an
Apache HTTP server (version 2.4.63) to
process web requests, and MySQL (version
8.0.41) is the stable backend system for
effective data management. The user-
friendly and adaptable front end is built
with the latest web technologies that are
open-source and platform-independent,
such as HTML (version 5), CSS (boot-
strap@5.3.5), PHP (version 5.6.40), and
JavaScript (version 12.22.9). This ensures
smooth compatibility across a range of

devices, including desktops, mobile
phones, and tablets, and a unified inter-
face enables user interaction by utilizing
the capabilities of the PHP scripting lan-
guage. The overall framework of CPPsite3,
as illustrated in Figure 2, is built upon this
stable and widely adopted technology
stack.

Data curation approach

To search CPPs from the literature, the
search term ‘cell penetrating peptides’
was used to search PubMed from July
2015 to April 2024 to extract relevant

research publications. Initially, 2361
papers were obtained, which were filtered
by removing review articles, prediction
methodologies, and book chapters.
Remaining research papers were thor-
oughly scanned and manually examined,
and relevant CPP details were manually
extracted. Only studies providing experi-
mental validation of CPPs and their ana-
logues were selected for curation. To
further broaden the scope, the references
in relevant review articles were also
explored, and the relevant articles were
included. This rigorous process culminated

4 www.drugdiscoverytoday.com
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FIGURE 2

Architectural framework of the CPPsite3 database. Figure created with BioRender.

in identifying 1471 unique PubMed IDs,
the data from which form the core of
CPPsite3. The retrieved data included key
components, including the nature, chiral-
ity, subcellular localization, end modifica-
tions, cell penetration effectiveness, and
features of the in vitro or in vivo model sys-
tems (e.g. particularly cell lines or animal
models). A thorough manual reading
method was used to collect all of the data,
which were then tabulated for ease of
understanding and access for further stud-
ies. We included each instance of a similar
CPP, even if it was evaluated differently in
separate studies, to present all of the
diverse findings that had been reported
and to make sure the database was up to
date and thorough. Consequently,
CPPsite3 comprises a total of 6788 entries,
integrating 1855 records from earlier ver-
sions with 4933 novel entries extracted
from recent publications. This substantial

update introduces 4143 novel CPP
sequences, considerably enriching the
database and enhancing its value for CPP
researchers and the broader biomedical
science community.

Data content of CPPsite3

Table 3 provides a detailed overview of the
primary data fields incorporated into the
CPPsite3. Each entry within the database
is directly linked to its corresponding
PubMed ID (PMID), enabling users to
easily access the original research publica-
tion from which the information was
extracted.

Statistics of CPPsite3

The CPPsite3 contains 7688 entries, of
which 1855 have been taken from
CPPsite3, and the remaining 4933 entries
are manually curated from 1471 research
articles on PubMed from the year 2015 to

2024. Figure 3 depicts the number of
entries added from each year in the data-
base. The increase in entries from the pre-
vious versions was more than threefold.
To be precise, the number of entries
increased by approximately 3.14 times. In
Figure 4a, the distribution of linear pep-
tides constitutes the majority (approxi-
mately 90.8%), suggesting their
prevalence in research or natural systems,
whereas cyclic (approximately 6.3%), sta-
pled (approximately 1.6%), hybrid (linear
and cyclic, approximately 0.7%), and
bicyclic (approximately 0.5%) peptides
represent greater structural complexity
and often enhanced stability, conforma-
tion, and ultimately, cellular uptake. These
nonlinear architectures likely enhance
resistance to proteolysis and can pre-
organize the peptide into a more favorable
conformation for membrane
interaction. 53(P5®
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FIGURE 3
Year-wise trend of database entries. Figure created with BioRender.
TABLE 3
Primary data fields in CPPsite 3.0 and their descriptions.
S. No. Categories Description Example
1 Name Provides the name of the peptide referenced in the literature. Penetratin
2 Sequence Representing the peptide’s amino acid sequence determines RRRGADFASDLF
both its chemical makeup and its biological action.
3 Chirality Represents the chirality of the peptide, influencing its stability  p/;/mix
and cellular interactions
4 Source Reveals the source to which it belongs Protein-derived, synthetic, chimeric
5 Linearity Determining the linearity of the peptide enhances its membrane-  Linear/cyclic/hybrid
crossing efficiency and resistance to breakdown.
6 Nature It indicates the nature of the peptide, important in determining Cationic/amphipathic/anionic/
how it interacts with negatively charged cell membranes and hydrophilic, etc.
influences its penetration behavior.
7 Subcellular localization Provides information about where the peptide ends up inside Nucleus/cytoplasm/mitochondria, etc.
the cell, which is key to its functional impact
8 N-terminal modification Contains information about modification at the start of the Acetylation, etc.
peptide, which can boost stability or uptake.
9 C-terminal modification Contains information about the modification of the end of the  Amidation, etc.
peptide.
10 Chemical modification Provides information about any chemical modification within the PEGylation, non-natural amino acid
sequence of the peptide, added to improve performance or insertion, etc.
specificity
1 Uptake efficacy Represents the relative efficiency of peptides in cell penetration Twofold/high/lower than, etc.
compared to other peptides in experimental settings
12 Uptake mechanism Provides information about the mechanism of CPP uptake used Endocytosis/direct translocation, etc.
by the peptide.
13 Experimental type Provides context for the experimental conditions/model system  In vivo/in vitro/ex vivo
under which CPP properties were tested
14 Cell line used Provides information on the specific cell line type used for Hela/Chinese hamster ovary, etc.
validation of the peptide’s effect
15 Animal model Describes the animal model used to test CPP and validate its real- BALB/c mice/zebrafish, etc.
world potential.
16 Cargo types Defines what the peptide can transport as a cargo in various Nucleic acids/proteins/drugs, etc.

model systems
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FIGURE 4

Statistics of top five categories based on (a) linearity; (b) source, (c) ionic nature; and (d) chirality in CPPsite3 based on the number of entries. Figure created

with BioRender.

Similarly, from Figure 4b, most CPPs are
synthetically sourced (61.1%), reflecting
the importance of de novo design and opti-
mizing CPP sequences for specific applica-
tions. However, protein-derived peptides
(28.6%) also form a substantial portion,
indicating the continued relevance of nat-
urally occurring sequences and their bioac-
tivity. The presence of chimeric (7.9%),
fusogenic (1.7%), and phage display-
derived (0.7%) CPPs showcases the diverse
methodologies employed in CPP discovery
and engineering. In terms of ionic nature,
a significant majority of the CPPs in the
database are cationic (approximately
59.3%), as shown in Figure 4c. This obser-
vation suggests that they are linked to
their interactions with negatively charged
biological membranes, facilitating cell
penetration and antimicrobial activity.
The distribution of peptides based on chi-
rality in Figure 4d reveals a strong bias

towards L-amino acid-based CPPs (76.7%),
reflecting the natural abundance of -
amino acids in biological systems. How-
ever, the presence of modified and b-
peptides (18.8% and 2.5%, respectively)
points to efforts to explore alternative chi-
ralities and chemical modifications for
enhanced stability, resistance to enzymatic
degradation, and novel functions. More-
over, the database also holds a plethora
of modification types internally or at the
terminal of the peptides, most of which
include biotinylation, amidation, and
unnatural residue addition. The mode of
uptake of the CPP includes the majorly
endocytosis  pathway  (approximately
1105 entries), including different types
such as caveolin-mediated, clathrin-
mediated, and lipid rafts-mediated
energy-dependent processes. Other uptake
pathways used by CPPs to enter the cell
include direct translocation, exocytosis,

and receptor-mediated processes. In addi-
tion, it contains predicted tertiary struc-
tures of CPPs, which were predicted using
PEPstrMOD. ?*%

Web interface

To facilitate data searching, browsing, and
analysis with unparalleled simplicity and
efficiency, a suite of robust tools and an
intuitive, open-source, and adaptable
online interface were developed for the
benefit of the scientific community. The
‘Enquire’, ‘Browse Omn’, ‘Composition’,
and ‘Similarity’ modules are the four main
components of CPPsite3 that provide
effortless data searching. It is available for
users from the URL https://webs.iiitd.edu.
in/raghava/cppsite3/.

(i) Enquire: The user may effectively
search the database using five differ-
ent search options: keyword search,
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complex search,
peptide mapping, and secondary
structure search.

(ii) Browse On: It enables data browsing
by (i) chemical modifications, which
shows all kinds of alterations, such
as N- and C-terminal changes and
sequence modifications like the
incorporation of non-natural resi-
dues; (ii) category, which groups
CPPs according to the type, class,
nature, and chirality of the peptide;
and (iii) length, which returns
entries within a user-selected length
range.

(iii) Composition: In addition to residue
compositions, several physicochem-
ical characteristics of the peptides
have been computed, including
charge, hydrophobicity, amphi-
pathicity, and isoelectric point.

(iv) Similarity: Two similarity tools have
been incorporated: the Basic Local
Alignment Search Tool (BLAST)®>®
and Smith-Waterman search algo-
rithms”>”) to enable accurate pep-
tide matching, in addition to a
peptide alignment tool for compar-
ing query peptides with database

segment search,

Comparison with the previous version
CPPsitel and CPPsite2 were developed in
2012 and 2015, respectively, comprising
different information fields containing
1855 peptide entries. Since 2015, there
has been no update, and no other database
has been developed. The growing interest
in penetrating peptides to deliver thera-
peutic molecules for precise targets have
become prominent, therefore to fill this
gap we have created an updated version
named CPPsite3, in which we have
included 4933 peptide entries compared
to 1855 in the previous version with their
names, sequences, nature, uptake efficien-
cies, modifications and experimental con-
ditions. All the entries have been linked
with their PubMed IDs to provide users
with maximum accessibility to the source.
Comparative statistics are shown in
Figure 5.

Concluding remarks on CPPsite3

With the addition of more than 4000 new
entries, CPPsite3 represents a significant
expansion over its original release in
2012 and the subsequent update in 2015.
It remains the only publicly accessible
database offering comprehensive informa-

in precision medicine and targeted intra-
cellular delivery of therapeutic agents, we
believe this updated version will be highly
valuable to the scientific community.
However, due to limited available data,
this release does not include certain key
aspects of therapeutic peptides, such as
toxicity, plasma half-life, and biodistribu-
tion. Another limitation is the exclusion
of data from patents. We hope this data-
base will be updated at regular intervals
and will incorporate the missing informa-
tion to provide a more complete and up-
to-date resource.

Clinical applications of CPPs

From preclinical models to early clinical
research, CPPs have advanced impres-
sively, providing versatile methods for tar-
geted delivery of diagnostics and
treatments across a range of diseases and
immunotherapy.?>* 58059 [n  oncol-
ogy, CPPs make it easier to precisely
administer anticancer agents and imaging
probes. For example, by activating the
neuropilin 1-mediated CendR pathway,
internalized arginylglycylaspartic acid cyc-
lic peptide (iRGD), a cyclic, tumor-
penetrating CPP, improves tumor accumu-

peptides. tion on CPPs. Given the growing interest lation and the effectiveness of chemother-
' 3\
4 3
CPPsite 1.0
¢ Total No. of entries : 843
¢ No. of unique CPP sequences : 741
Year : 2012 | @
)
=)
T —
CPPsite 2.0
¢ Total No. of entries : 1855 (1012 new <
entries & 843 from older version)
¢ No. of unique CPP sequences : 1699
o Year : 2015 |
5
&
e,
CPPsite 3.0
' ¢ Total No. of entries : 6788 (4933 new
entries & 1855 from older version)
¢ No. of unique CPP sequences :4143
Year : 2024
& J
Drug Discovery Today
FIGURE 5

Comparison of data in three versions of the CPPsite database. Figure created with BioRender.
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apeutics when co-administered. Its deriva-
tive certepide has already been designated
as an FDA orphan drug and is undergoing
Phase I/I trials in solid tumors
(30647857).°°9 In macromolecular drug
delivery, the chemotherapeutic prodrugs,
DTS-108 (an SN38 conjugate) or CPP-
fused botulinum toxin, have entered clini-
cal trials, showing enhanced intracellular
delivery and decreased systemic toxic-
ity.?°Y)  Through covalent or non-
covalent methods, CPPs have been linked
with small interfering RNA (siRNA), anti-
sense oligonucleotides, plasmid DNA, and
more recently, mRNA. In preclinical mod-
els, cationic peptide—siRNA conjugates tar-
geted HIV and hepatitis C in vitro and
in vivo, whereas oligoarginine CPPs (e.g.
R15) achieved ~80% tumor growth sup-
pression via siHER 2 in ovarian cancer
xenografts.”*? In immunotherapy, CPPs
help to enhance T-cell infiltration, antigen
cross-presentation, and vaccine efficacy.
CPP-modified peptides, for instance, are
being assessed in therapeutic trials for
glioblastoma, facilitating more effective
dendritic cell absorption of antigens and
enhancing humoral and cell-mediated
immunity. Additionally, CPP-based sys-
tems have been evaluated for the delivery
of siRNA, checkpoint inhibitors, and
cytokines in autoimmune and inflamma-
tory diseases.”®” In diagnostic imaging
and disease monitoring, CPP conjugates
containing imaging probes demonstrate
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