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Abstract

The identification of B-cell epitopes (BCEs) in antigens is a crucial step in

developing recombinant vaccines or immunotherapies for various diseases.

Over the past four decades, numerous in silico methods have been developed

for predicting BCEs. However, existing reviews have only covered specific

aspects, such as the progress in predicting conformational or linear BCEs.

Therefore, in this paper, we have undertaken a systematic approach to provide

a comprehensive review covering all aspects associated with the identification

of BCEs. First, we have covered the experimental techniques developed over

the years for identifying linear and conformational epitopes, including the lim-

itations and challenges associated with these techniques. Second, we have

briefly described the historical perspectives and resources that maintain experi-

mentally validated information on BCEs. Third, we have extensively reviewed

the computational methods developed for predicting conformational BCEs

from the structure of the antigen, as well as the methods for predicting confor-

mational epitopes from the sequence. Fourth, we have systematically reviewed

the in silico methods developed in the last four decades for predicting linear or

continuous BCEs. Finally, we have discussed the overall challenge of identify-

ing continuous or conformational BCEs. In this review, we only listed major

computational resources; a complete list with the URL is available from the

BCinfo website (https://webs.iiitd.edu.in/raghava/bcinfo/).

KEYWORD S

B-cell epitope prediction, class-specific epitopes, conformational B-cell epitope, databases,
deep learning, linear B-cell epitope, machine learning

1 | INTRODUCTION

Organisms have evolved complex defense systems that
rely on a series of protective mechanisms to recognize
and eliminate foreign substances. The immune system
consists of two components, namely the non-specific
innate immunity and the antigen-specific adaptive
immunity, which work synergistically but differ in
their mechanisms of action. Innate immunity acts as
the initial defense mechanism and relies on pattern

recognition receptors expressed on various immune and
non-immune cells to detect pathogen-associated molec-
ular patterns. This recognition triggers a response that
activates the adaptive immune system. In turn, adaptive
immunity generates responses that are based on the spe-
cific recognition of antigens by receptors expressed on
the surfaces of B-lymphocytes (resulting in the humoral
immune response) and T-lymphocytes (resulting in
the cell-mediated immune response) (Chaplin, 2010;
Tomar & De, 2014).
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B-cells are a key component of the adaptive immune
system and play a critical role in providing long-term pro-
tection against pathogens, achieved by producing plasma
cells and memory cells. Plasma cells have specific receptors
called antibodies, an essential component of the antigen–
antibody (Ag–Ab) interaction in the humoral immune
response. Although antigens are typically larger, antibodies
or B-cell receptors specifically recognize and bind to certain
regions of antigens called antigenic determinants or epi-
topes (Jespersen et al., 2019). Antibodies recognize these
regions through interactions with their binding site, or
paratope, and play a vital role in eliciting immune
responses (Jespersen et al., 2019). Therefore, accurately
characterizing and identifying B-cell epitopes (BCEs) is cru-
cial for developing epitope-based vaccines (Russi
et al., 2018), disease prevention, and immunological diag-
nostic tools (Schellekens et al., 2000). It is worth noting
that therapeutic antibodies, which have demonstrated high
efficacy, selectivity, and safety, have been extensively stud-
ied and reported in the literature (Kam et al., 2012;
Manavalan et al., 2018; Potocnakova et al., 2016; Schneider
et al., 2014; Siman-Tov et al., 2013).

BCEs are clusters of amino acids that are surface acces-
sible and belong to two primary classes based on their spa-
tial structure: continuous (linear or sequential) and
discontinuous (nonlinear or conformational) (Atassi &
Smith, 1978; Jespersen et al., 2019; Potocnakova
et al., 2016). The sequence determines antibody binding to
sequential epitopes, and it does not depend on the tertiary
structure of the antigen. Therefore, sequential epitopes are
small segments of a protein called antigenic regions. In
contrast, antibody binding to conformational epitopes
relies on the antigen's three-dimensional (3D) structure
(Benjamin et al., 1984; Gershoni et al., 2007; Kulkarni-
Kale et al., 2005). Approximately 90% of total BCEs are dis-
continuous, which means that the residues in the
sequence are far from each other and come close together
in the vicinity by protein folding, forming a functional
antigenic determinant region (Kringelum et al., 2013).
Hence, without having accurate high-resolution structural
information on the Ag–Ab complex, identifying discontin-
uous epitopes is challenging (Haste Andersen et al., 2006;
Najar et al., 2017). Studies have also suggested that several
groups of continuous epitopes lie adjacent to discontinu-
ous epitopes, which blurs the line between continuous and
discontinuous epitopes (Galanis et al., 2021; Van
Regenmortel, 2006). The accurate determination of confor-
mational BCEs is highly dependent on the 3D structure of
the antigen (Jespersen et al., 2019; Raoufi et al., 2020;
Sharon et al., 2014). In the era of next-generation sequenc-
ing, where numerous pathogens have been sequenced due
to advancements in sequencing technology. There is a
need to identify BCEs (antibody interacting residues) in an

antigen at the genome scale for various immunological
applications (Galanis et al., 2021). Experimental tech-
niques such as nuclear magnetic resonance (NMR), west-
ern blotting, X-ray crystallography, and many more
remain the gold standard for identifying epitopes but are
time-consuming and costly (Abbott et al., 2014; Arnold
et al., 2018; Ashford et al., 2021; Frank, 2002; Jespersen
et al., 2019; Potocnakova et al., 2016). In contrast, compu-
tational approaches are easy to develop and efficient in
terms of cost and time. They can be easily implemented at
the genome scale, which is not possible with experimental
techniques. To rapidly identify potential epitopes, new
computational methods must be developed to enhance
precision by selecting specific regions for effective epitopes
with high probability (Ansari & Raghava, 2010; Kozlova
et al., 2018; Manavalan et al., 2018; J. Zhang et al., 2014).

There have been limited studies reviewing prediction
tools that cover all categories of BCEs. In 2013, Ansari
and Raghava presented all the available in silico tools for
BCE prediction. Subsequently, Potocnakova et al. (2016)
reviewed the experimental mapping methods for BCEs as
well as the existing databases, resources, and online
available in silico tools. A review performed by Sanchez-
Trincado et al. (2017) highlighted the antigenic recogni-
tion of both B and T cells and listed the most relevant
prediction tools for the same. Additionally, there are
reviews that focus solely on prediction tools for either lin-
ear BCEs, such as the study by Wang and Pai (2014) or
conformational BCEs, as explored by P. Sun et al. (2013).

Over the past few decades, numerous computational
methods for predicting conformational or linear
BCEs have been published in the scientific literature.
The combinational approach of bioinformatics and epi-
tope mapping technologies has contributed significantly
to immunotherapy and subunit vaccines (De Groot
et al., 2001; Lo et al., 2021; Rueckert & Guzm�an, 2012).
Therefore, this review offers researchers a comprehensive
understanding of the current techniques utilized for map-
ping BCEs. It will also provide an overview of the latest
and up-to-date epitope databases, highlight recently
developed prediction methods, and explore the publicly
available tools in this research field (Potocnakova
et al., 2016).

2 | THE EXPERIMENTAL
APPROACH FOR BCE
IDENTIFICATION

Identifying regions on the antigen surface that are specifi-
cally recognized by the complementarity of antibodies is
known as epitope mapping, and this can be done by
using numerous experimental methods. In this review,
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we divide these experimental techniques into the follow-
ing categories: (i) structural methods, (ii) biological activ-
ities, (iii) peptide-based methods, and (iv) miscellaneous
methods (see Figure 1). The approximation count of
B-cell discovered using these experimental methods is
graphically represented in Figure 2 (Vita et al., 2019).

2.1 | Structure-based methods

In this approach, the structure of the antibody–antigen
(Ab–Ag) complex is determined using an experimental
technique. Various sophisticated software is employed to
identify the antibody interacting residues on the antigen,
and these residues or regions are assigned as conforma-
tional BCEs. Over the years, several techniques have been
developed for determining the tertiary structure of pro-
teins, especially the structure of Ab–Ag complexes. The
following are major techniques: X-ray crystallography,
electron microscopy (EM), NMR, mass spectrophotometer
(MS), and Hydrogen-deuterium exchange (HDX). X-ray
crystallography was one of the initial techniques used for

epitope mapping. It involves the use of highly purified
co-crystals of an Ag–Ab complex. The structure of the
epitope is inferred by interpreting the 3D coordinates of
the complex and identifying specific amino acids

FIGURE 1 Pictorial representation of experimental methods for mapping BCEs. BCE, B-cell epitope.

FIGURE 2 A graphical description of B-cell epitopes unveiled

through experimentation.
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involved in the interaction. While this is the most effec-
tive technique for determining the tertiary structure of
proteins, it is not always feasible to solve all complex
structures (Caliandro et al., 2013).

EM is another option for determining the structure of
Ab–Ag complexes. Initially, using EM for epitope map-
ping was challenging due to its low resolution. However,
this limitation was overcome in 2013 with the introduc-
tion of alternate cryo-EM. This technique is less complex
and does not require purified Ag–Ab complex compo-
nents or crystals. Several studies have utilized this tech-
nique to map BCEs in HIV, HPV, and poliovirus for
vaccine production (Bannwarth et al., 2015; J. H. Lee,
Leaman, et al., 2015; H. Lee, Brendle, et al., 2015). NMR
is a technique used to provide the 3D structure of the
Ag–Ab complex by measuring the distance and angle
between amino acids. It involves subjecting the complex
to a magnetic field and electromagnetic radiations, which
provide information about the dynamics of the complex
in solution. Unlike X-ray crystallography, NMR does not
require crystals. However, NMR has significant limita-
tions, such as its applicability being restricted to small
continuous proteins and peptides (below 30 kDa), and
the purity and concentration of the complex should be
high (Ahmad et al., 2016). Additionally, because of the
requirement of a high level of expertization and technical
hurdles, this method is not commonly used (Abbott
et al., 2014).

Another crucial technique in epitope mapping within
this category is Mass spectrometry (MS). MS has intro-
duced new strategies to elucidate the higher-order struc-
ture of antibodies, enabling the identification of specific
residues that constitute the binding epitope and paratope,
particularly in the case of discontinuous epitopes (Opuni
et al., 2018). It can be employed using the limited proteol-
ysis method, where the antigen is fragmented using dif-
ferent proteases. MS detects the generated fragments to
reveal the fragments bound to the antibody. Another
approach that can be employed is the epitope excision
method, where antigens are exposed to beads coated with
antibodies, followed by proteolytic digestion and washing
to remove non-epitope fragments. Finally, the bound
fragments are identified using LC–MS or MALDI/MS
techniques (Suckau et al., 1990; Temporini et al., 2014).
One major limitation of MS in epitope mapping is its res-
olution, as it can identify longer peptide sequences, typi-
cally ranging from 30 to 60 residues (Baerga-Ortiz
et al., 2002).

Similarly, HDX is an emerging field in epitope map-
ping that focuses on identifying the interaction sites
between antigens and antibodies. In this method, the
amide hydrogen atoms within the protein backbone are
substituted with deuterium ions present in a deuterium

oxide solution. This substitution allows deuterium to
serve as a tool for studying protein structure, dynamics,
and interactions over a specific period of time. By analyz-
ing variations in deuterium incorporation, valuable infor-
mation can be obtained regarding the protein's
characteristics. HDX, when combined with mass spec-
trometry (HD-MS), overcomes the shortcomings of stan-
dard MS methods and offers several advantages for
epitope mapping. These advantages include low sample
consumption, high throughput, rapid analysis, high sen-
sitivity, and no theoretical upper molecular weight limit.
Despite its benefits, HDX technology has several limita-
tions. It cannot identify changes in single amino acid resi-
due exchanges, and it may lead to allosteric effects
caused by antibody binding, resulting in conformational
changes in the antigen region. These changes can intro-
duce differences in HDX, which can potentially bias the
epitope recognition process when relying on HDX-MS
(H. Sun et al., 2021).

2.2 | Biological activity

Epitope mapping techniques that rely on the biological
activity of the Ag–Ab interaction include several
methods, such as inhibition of antibody activity, neutrali-
zation, agglutination, opsonization reactions, and binding
ability of the antibodies toward specific antigens or their
fragments. These biological reactions play a crucial role
in identifying epitopes. Inhibition of antibody activity
involves studying the effect of specific enzymes on anti-
body function, which can help pinpoint the regions or
epitopes targeted by the antibodies. Binding methods
used in functional epitope mapping include immunologi-
cal assays where antigenic peptides are immobilized on a
solid support, and the binding of antibodies is detected
by ELISA, Western blot, and ELISPOT (Potocnakova
et al., 2016). These approaches offer the advantage of not
requiring expensive equipment and can quantify the
immune response toward a specific epitope. Surface plas-
mon resonance technology is a sensitive method for
detecting protein interaction binding kinetics, affinity,
and specificity. However, it does not provide detailed
information about the epitopes involved in the interac-
tion (Fivash et al., 1998; Patching, 2014).

2.3 | Peptide-based methods

In this method to map the BCEs, an approach of overlap-
ping peptides is employed to identify the B-cell putative
epitopes or mimotopes (peptides mimicking an epitope
on the corresponding antigen). This is done by screening
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random peptide libraries for antibody binding (Moreau
et al., 2006; Ponomarenko & Marc, 2008). The peptide
libraries are either chemically synthesized or generated
by display methods corresponding to overlapping or ran-
domized regions of a certain protein. Techniques includ-
ing PEPSCAN, SPOTS, or peptide microarray are used to
produce synthetic peptides. Peptide microarrays offer an
advantage over others by enabling the screening of a
large number of peptides with minimal reagent require-
ment (Santona et al., 2002; Zander et al., 2007).

An alternate approach involves using phages to gen-
erate biological peptide libraries to produce and display
the peptides coupled with peptide-encoding nucleic acid
sequence. Affinity selection through biopanning allows
testing the binding capacity of displayed peptides to the
monoclonal antibody of interest, providing insights into
the amino acids crucial for antibody binding
(Potocnakova et al., 2016). Biologically displayed peptides
possess a high number (up to 10; Potocnakova
et al., 2016) and length variation of displayed peptides.
An advantage common to all peptide methods is that
they do not require the antigen itself, which can be
important for purifying “unique” antigens (Morris, 2007).
They require less specialized equipment and expertise
and also are well-suited for situations where the epitope
is a linear peptide sequence but may not identify complex
conformational epitopes involving high-order structures
(Hensen et al., 2014; Nilvebrant & Rockberg, 2018).

2.4 | Miscellaneous methods

Antigen modification through mutagenesis is a rapid
method for epitope mapping. It involves replacing indi-
vidual amino acid residues that constitute a functional
epitope, leading to a loss of antibody binding. Mutations
can be introduced randomly or through site-directed
mutagenesis. In site-directed mutagenesis, specific chem-
ical reagents are used to introduce mutations into tar-
geted antigen sequences. The binding ability of the
mutated antigen to the corresponding antibody is then
tested. Side chains play a crucial role in Ag–Ab com-
plexes, and alanine scanning mutagenesis is a technique
that sequentially substitutes each non-alanine residue
with alanine to determine the contribution of each resi-
due's side chain to antibody binding (Lo Conte
et al., 1999). When combined with the phage display
technique, site-directed mutagenesis has shown success-
ful results in epitope mapping. This combination enables
the identification and characterization of epitopes with
high specificity (Gershoni et al., 2007; Wind et al., 2001).

Overall, biological activity-based methods offer valu-
able insights into the impact of specific residues of amino

acid on the binding strength of the Ag–Ab complex. They
are faster and more cost-effective than structural methods
(Potocnakova et al., 2016). However, these methods have
limitations regarding identifying all important epitopes.
Figure 3 in the referenced article depicts the limitations
of some epitope mapping methods (Coales et al., 2009;
Malito et al., 2013; Mayer & Meyer, 2001; Obungu
et al., 2009; Pandit et al., 2012; Rux & Burnett, 2000;
P. Sun et al., 2011; Q. Zhang et al., 2011).

3 | BCEs: A HISTORICAL
FRAMEWORK AND DATABASE
OVERVIEW

3.1 | History of BCEs identification

The identification of epitopes has a long and rich history
in research and discovery, spanning several decades. It is
because epitopes are crucial in developing synthetic pep-
tides that can elicit antibodies capable of neutralizing the
infectivity of pathogens containing the antigenic determi-
nant region (Ponomarenko & Van Regenmortel, 2009;
P. Sun et al., 2013; Van Regenmortel, 2006). The work of
Hoops and Woods in the 1980s and 1990s, which
involved predicting linear epitopes using propensity
scales to calculate hydrophilicity residues with simple
algorithms, was pioneering and garnered significant
attention from the scientific community in the field of
BCE prediction. Subsequently, several techniques have
been proposed for predicting linear epitopes, employing
direct prediction methods that rely on the physicochemi-
cal characteristics of individual amino acid residues com-
monly observed in known epitopes. These characteristics
include attributes such as β-turn propensity, charge, flexi-
bility, antigenicity, amino acid frequency, surface accessi-
bility, and secondary structure (El-Manzalawy
et al., 2008; Garnier et al., 1978; Haste Andersen
et al., 2006; Hopp & Woods, 1981; Karplus &
Schulz, 1985; Parker et al., 1986; Pellequer et al., 1993;
Welling et al., 1985; Yang & Yu, 2009).

Traditionally, propensity scales have been used for
predicting BCEs. These methods consider the physico-
chemical properties of residues which can be easily com-
puted even by a calculator and are easy to implement
and understand, which makes them a popular method.
Several studies have demonstrated that these methods
have limited precision power (Blythe & Flower, 2005;
Giacò et al., 2012; Kulkarni-Kale et al., 2005; Pellequer
et al., 1991; Pellequer & Westhof, 1993; Söllner &
Mayer, 2006). To overcome the limitations of traditional
methods, machine learning (ML)-based techniques have
been proposed. These ML models are trained using
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feature vectors extracted from various sources, including
propensity scales, protein sequences, and 3D structures
(Ponomarenko & Bourne, 2007). Figure 4 illustrates some
general methods publicly available for BCE prediction.

In general, most of the epitopes are conformational
epitopes; only around 10% of epitopes are continuous or
linear, even though linear epitopes are one tenth of the
total epitopes. Several methods have been developed to
predict the discontinuous epitopes, but they are few in
number compared to linear BCE prediction methods.
Predicting linear BCEs from the antigenic sequence is rel-
atively straightforward since an epitope represents a spe-
cific segment or region within a protein. In addition,
designing subunit vaccines based on linear epitopes is
practically accessible (Sanchez-Trincado et al., 2017).

In contrast, only a few tools exist for predicting con-
formational BCEs, which rely on information from pro-
tein structures and the spatial arrangement of amino
acids to make predictions. In 1984, Westhof et al. made
initial experimental attempts for epitope prediction
based on protein 3D structures (Westhof et al., 1984).
Subsequently, Jones and Thornton developed a method
for predicting discontinuous epitopes using structural
properties in 1997 (Amit et al., 1986; Jones &
Thornton, 1997). Several protein–protein docking algo-
rithms have been utilized for epitope prediction based
on predefined complimentary 3D structures of epitope

and paratope (Halperin et al., 2002). In 2005, Kulkarni-
Kale developed the first conformational epitope predic-
tion tool, CEP, which predicted sequential BCEs using
structural information (Kolaskar & Kulkarni-Kale, 1999;
Kulkarni-Kale et al., 2005). However, despite significant
advancements in defining protein structures, numerous
tools have been developed for predicting continuous or
discontinuous BCEs, while the overall performance of
these tools is far from precision. This could be due to
difficulties in extracting valuable features from antigen
3D structures or inadequate non-redundant data sets.
Thus, the scientific community requires more extensive
algorithms and data sets that can define features and
computational tools for predicting BCEs with high
precision.

3.2 | Repositories BCEs

In this review, we present a concise summary of well-
known databases dedicated to BCEs, serving as valuable
resources for researchers seeking access to data to
develop computational tools. The availability of experi-
mental data plays a crucial role in enhancing the accu-
racy of BCE prediction. With advancements in biological
techniques, a vast amount of BCE-related information is
continuously being released and made accessible through

FIGURE 3 Limitations of some commonly used B-cell epitope mapping methods.

6 of 19 KUMAR ET AL.

 1469896x, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.4785 by L

ibrary &
 Inform

ation C
entre Indraprastha Institute O

f, W
iley O

nline L
ibrary on [19/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



online platforms or scientific publications. Figure 5 dis-
plays some of the prominent databases for BCEs.

Bcipep emerged as one of the early databases
designed specifically for managing continuous BCEs
(Saha et al., 2005). It is a comprehensive database that
encompasses a broad spectrum of pathogens, containing
1797 immunogenic, 763 immunodominant, and 471 null-
immunogenic epitopes. In order to facilitate users, Bcipep
provides several web-based applications that include key-
word search, epitope mapping, and BLAST search. In
contrast, the HIV molecular immunology database
focuses exclusively on the HIV virus, containing nearly
11,361 HIV associate B-/T-cell epitopes (Liu &
Zhang, 2014). Another old database is AntiJen 2.0, devel-
oped for maintaining a wide range of information
required for immunotherapy or subunit vaccines. It pro-
vides comprehensive information on MHC binders,
TCR–MHC complexes, and BCE molecules (Toseland
et al., 2005). IEDB is One of the most commonly used
and authoritative databases in the field of immunology,
established in 2004 (Peters et al., 2005; Vita et al., 2019).
Protein Data Bank (PDB) is one of the essential resources
in structural biology that maintain the structure of pro-
teins and their complexes (Berman et al., 2000). The com-
plex structure of antibodies and antigens is used to
identify antigenic residues/regions in an antigen and dis-
continuous BCEs. Another important database for

discontinuous epitopes based on the structure is CED, a
conformational epitope database containing 293 manually
curated entries (Huang & Honda, 2006). Epitome is a
database of all known antigenic epitopes inferring from
the Ag–Ab complexes and the antibodies that interact
with them (Schlessinger et al., 2006). Some other avail-
able databases used by the researchers in this field
include SEDB, SDAP, and FLAVIdB (Ivanciuc
et al., 2003; Olsen et al., 2011; Sharma et al., 2012).

4 | CONFORMATIONAL BCE
PREDICTORS

Approximately 90% of the BCEs are discontinuous in
nature which makes it challenging to imitate them for
the development of antibody therapeutics, epitope-based
vaccines, and immunological tools (Ferdous et al., 2019).
Conformational BCE tools can be classified into two
types: conformational sequence-based prediction tools
and conformational structure-based tools.

4.1 | Structure-based predictors

To advance the performance of conformational BCEs pre-
diction in an antigen from its structure, several studies

FIGURE 4 Depiction of some available B-cell prediction methods.
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have proposed methods in the past, including CEP, Dis-
cotope, Pepito, and Epitopia (Haste Andersen et al., 2006;
Kulkarni-Kale et al., 2005; Rubinstein et al., 2009;
Sweredoski & Baldi, 2008). These techniques utilized the
3D structural information of an antigen, as well as
the properties of amino acids, surface accessibility, resi-
due clustering, and spatial information. A better under-
standing of the 3D structure of antigen help to identify
antigenic residues in proteins with high accuracy
(Ferdous et al., 2019). J. Sun et al. (2009) used the concept
of “unit patch of residue triangle” and proposed a method
SEPPA to characterize the local spatial context in protein
surfaces. SEPPA 2.0 (Qi et al., 2014) consolidates the
AAindex (amino acid index) characteristics via artificial
neural networks (ANNs) algorithm. However, SEPPA 3.0
additionally included glycosylation triangles and a
glycosylation-related AAindex, which was similarly con-
solidated using ANN (Solihah et al., 2020). Table 1 pro-
vides a summary of further structure-based prediction
methods.

4.2 | Sequence-based predictors

The prediction of linear BCEs relies solely on the primary
sequence of an antigen, without requiring the availability

of 3D structures. While structure-based predictors may
predict conformational BCEs with high accuracy, their
limitation was the requirement of the tertiary structure of
the antigen. Identification of the tertiary structure of an
antigen is expensive, tedious, and time-consuming.
Ansari and Raghava proposed a method, CBTOPE
(Ansari & Raghava, 2010), to overcome these limitations,
which predicts constitutive conformational BCEs from
the antigen's primary sequence (Ansari & Raghava, 2010;
P. Sun et al., 2013). In this method, they introduced the
concept of composition profile of patterns (CPP) and con-
structed the model using binary profile (BPP) and physio-
chemical profile of the patterns (PPP). Subsequently,
several other methods have been developed including
CBEP (J. Zhang et al., 2014), BepiPred-2.0 (Jespersen
et al., 2017), and SEPIa (Dalkas & Rooman, 2017). A list
of methods developed by different groups using a wide
range of features is shown in Table 2.

5 | LINEAR BCEs PREDICTION
METHODS

Early methods of predicting BCEs involved the use of
propensity scales, which were determined experimentally
(Hopp & Woods, 1981). In 1984, researchers established a

FIGURE 5 Available databases of B-cell epitope prediction.

8 of 19 KUMAR ET AL.

 1469896x, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.4785 by L

ibrary &
 Inform

ation C
entre Indraprastha Institute O

f, W
iley O

nline L
ibrary on [19/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



T
A
B
L
E

1
L
is
t
of

m
et
h
od

s
de
ve
lo
pe
d
fo
r
th
e
pr
ed
ic
ti
on

of
di
sc
on

ti
n
uo

us
or

co
n
fo
rm

at
io
n
al

ep
it
op

es
in

an
an

ti
ge
n
.

N
am

e
Y
ea

r
D
es
cr
ip
ti
on

P
er
fo
rm

an
ce

m
ea

su
re

D
at
a
se
t

A
cc

A
U
C

M
C
C

Sp
ec

Se
n
s

C
E
P
(K

ul
ka

rn
i-
K
al
e

et
al
.,
20
05
)

20
05

Id
en

ti
fy

bo
th

se
qu

en
ti
al

an
d
co
n
fo
rm

at
io
n
al

B
-c
el
l

ep
it
op

es
in

an
an

ti
ge
n
fr
om

it
s
3-
D
st
ru
ct
ur
e.

75
%

-
-

-
-

C
E
P
da

ta
se
t

D
is
co
T
op

e
(H

as
te

A
n
de
rs
en

et
al
.,
20
06
)

20
06

Sp
ec
if
ic
al
ly

de
ve
lo
pe
d
fo
r
pr
ed
ic
ti
n
g
di
sc
on

ti
n
uo

us
B
-c
el
le

pi
to
pe
s
w
it
h
sp
ec
if
ic
it
y.

-
-

-
95
%

15
.5
%

SA
C
S
da

ta
ba
se

E
lli
Pr
o
(P
on

om
ar
en

ko
et

al
.,

20
08
)

20
08

Pr
ed
ic
ti
on

an
d
vi
su
al
iz
at
io
n
of

an
ti
bo

dy
ep
it
op

es
in

a
gi
ve
n
pr
ot
ei
n
se
qu

en
ce

or
st
ru
ct
ur
e.

0.
84

0.
73
2

-
-

0.
60
1

P
on

om
ar
en

ko
da

ta
se
t

PE
PI
T
O
(S
w
er
ed
os
ki

&
B
al
di
, 2

00
8)

20
08

A
m
et
h
od

ba
se
d
on

am
in
o-
ac
id

pr
op

en
si
ty

sc
or
es

an
d

h
al
f-
sp
h
er
e
ex
po

su
re

va
lu
es

at
m
ul
ti
pl
e
di
st
an

ce
s.

-
75
.4

-
-

-
D
is
co
to
pe
,E

pi
to
m
e

SE
PP

A
(J
.S

un
et

al
.,
20
09
)

20
09

A
un

it
pa

tc
h
of

re
si
du

e
tr
ia
n
gl
e
at

pr
ot
ei
n
su
rf
ac
e
is

us
ed

fo
r
pr
ed
ic
ti
n
g
sp
at
ia
le

pi
to
pe

in
a
pr
ot
ei
n
.

-
0.
74
2

-
0.
70
7

0.
58

SE
P
P
A
's
da

ta
se
t,
E
pi
to
m
e,

D
is
co
to
pe

E
PC

E
S
(L
ia
n
g
et

al
.,
20
20
)

20
20

Pr
ed
ic
ti
on

of
B
-c
el
le

pi
to
pe
s
at

pr
ot
ei
n
su
rf
ac
e
us
in
g

di
ff
er
en

t
ty
pe
s
of

co
n
fo
rm

at
io
n
in
fo
rm

at
io
n
.

-
0.
63
2.

-
69
.5
0%

47
.8
0%

E
P
C
E
S
D
at
a
se
t
1,

E
P
C
E
S
D
at
a

se
t
2,

E
P
C
E
S
D
at
a
se
t
3

E
PS

V
R
(L
ia
n
g
et

al
.,
20
10
)

20
10

A
n
SV

M
-b
as
ed

m
od

el
de
ve
lo
pe
d
us
in
g
si
x
sc
or
in
g

te
rm

s
fo
r
pr
ed
ic
ti
n
g
an

ti
ge
n
ic
ep
it
op

es
.

-
0.
59
7

-
-

-
P
on

om
ar
en

ko
da

ta
se
t,
E
P
C
E
S

da
ta

se
t,
be
n
ch

m
ar
k2

,a
C
E
D

E
PM

et
a
(L
ia
n
g
et

al
.,
20
10
)

20
10

A
m
et
a
se
rv
er

th
at

ut
il
iz
es

fi
ve

pr
ed
ic
ti
on

se
rv
er
s
fo
r

pr
ed
ic
ti
n
g
B
-c
el
le

pi
to
pe
s.

-
0.
63
8

-
-

-
E
P
SV

R
da

ta
se
t

D
is
co
T
op

e
2.
0
(K

ri
n
ge
lu
m

et
al
.,

20
12
)

20
12

A
n
im

pr
ov
ed

ve
rs
io
n
of

D
is
co
T
op

e,
fo
r
pr
ed
ic
ti
n
g

di
sc
on

ti
n
uo

us
ep
it
op

es
w
it
h
h
ig
h
pr
ec
is
io
n
.

-
0.
71
2–

0.
72
7

-
-

-
D
is
co
T
op

e
da

ta
se
t,

D
is
co
T
op

e2
.0
da

ta
se
t

SE
PP

A
2.
0
(Q

ie
t
al
.,
20
14
)

20
14

It
is
an

im
pr
ov
ed

ve
rs
io
n
of

SE
PP

A
an

d
in
te
gr
at
es

re
la
ti
ve

A
SA

of
un

it
pa

tc
h
an

d
am

in
o
ac
id

in
de
x.

-
0.
82
3,
b

0.
74
5c

-
0.
86
5,
b

0.
75
4c

0.
79
9,
b

0.
73
4b

SE
P
P
A
2.
0,

pr
ed
ic
to
r,
E
P
M
et
a,

D
is
co
T
op

e2
.0

Se
pp

a
3.
0
(Z
h
ou

et
al
.,
20
19
)

20
19

It
is
an

im
pr
ov
ed

ve
rs
io
n
of

SE
PP

A
2.
0
an

d
al
lo
w
s

pr
ed
ic
ti
n
g
ep
it
op

e
in

gl
yc
op

ro
te
in

an
ti
ge
n
s.

0.
66
5

0.
74
9

-
-

-
SE

P
P
A
3.
0'
s
da

ta
se
t

C
lu
Sm

ot
e
(S
ol
ih
ah

et
al
.,
20
20
)

20
20

It
is
a
co
m
bi
n
at
io
n
of

a
cl
us
te
r-
ba
se
d
un

de
r
sa
m
pl
in
g

an
d
sy
n
th
et
ic
m
in
or
it
y
ov
er
sa
m
pl
in
g
te
ch

n
iq
ue

.
-

0.
76
6

-
-

-
R
u
bi
n
st
ei
n
's
da

ta
se
t,

D
is
co
T
op

e2
.0
da

ta
se
t,
SE

P
P
A

3.
0
da

ta
se
t

SE
M
A
(S
h
as
h
ko

va
et

al
.,

20
22
)

20
22

A
de
ep

le
ar
n
in
g-
ba
se
d
m
et
h
od

fo
r
pr
ed
ic
ti
n
g

co
n
fo
rm

at
io
n
al

ep
it
op

es
us
in
g
se
qu

en
ce

an
d

st
ru
ct
ur
e.

-
0.
76

-
-

-
SE

M
A
da

ta
se
t

E
pi
to
pe
3D

(d
a
Si
lv
a
et

al
.,

20
21
)

20
21

A
m
ac
h
in
e
le
ar
n
in
g
m
et
h
od

th
at

us
es

co
n
ce
pt

of
gr
ap

h
-b
as
ed

si
gn

at
ur
es

to
m
od

el
ep
it
op

e
re
gi
on

s
-

-
0.
55

-
-

-

A
bb

re
vi
at
io
n
:C

E
D
,C

on
fo
rm

at
io
n
al

E
pi
to
pe

D
at
ab
as
e.

a P
ro
te
in
-P
ro
te
in

D
oc
ki
n
g
B
en

ch
m
ar
k
2.
0.

b
Su

bc
el
lu
la
r
lo
ca
liz

at
io
n
/S
pe
ci
es
:S

ec
re
to
ry
/m

us
.

c S
ub

ce
llu

la
r
lo
ca
liz

at
io
n
/S
pe
ci
es
:U

n
sp
ec
if
ie
d/
un

sp
ec
if
ie
d.

KUMAR ET AL. 9 of 19

 1469896x, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.4785 by L

ibrary &
 Inform

ation C
entre Indraprastha Institute O

f, W
iley O

nline L
ibrary on [19/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



correlation between crystallographic temperature factors
and several known continuous epitopes of proteins such
as tobacco mosaic virus protein, myoglobin, and lyso-
zyme. They also found a relationship between antigenic-
ity, solvent accessibility, and flexibility of antigenic
regions in proteins. Thornton and colleagues proposed a
technique for identifying continuous epitopes in the pro-
tein regions that protrude from the proteins' globular sur-
face. They discovered that regions with high protrusion
index values corresponded to the experimentally deter-
mined continuous epitopes in myoglobin, lysozyme, and
myohaemerythrin. This information can be beneficial in
predicting BCEs (Ponomarenko et al., 2008).

5.1 | The era of propensity scales-based
methods

The classical approach of predicting linear BCEs is based
on a propensity scale of physicochemical properties. In
1981, Hoops and Wood proposed the first propensity
scales-based linear BCE prediction method, which utilized
the Levitt hydrophilicity scale. Afterward, several other

propensity scales methods were introduced, such as those
using exposed surface area (Janin & Wodak, 1978), second-
ary structure (Levitt et al., 1978), polarity (Ponnuswamy
et al., 1980), flexibility (Karplus et al., 1985), accessibility
(Emini et al., 1985), hydrophilicity (Parker et al., 1986),
antigenic scale (Kolaskar et al., 1990), and turns (Pellequer
et al., 1991). To further improve the accuracy of epitope
prediction, methods tried combinations of different proper-
ties (e.g., hydrophilicity, flexibility, and polarity); the fol-
lowing are major methods under this category PEOPLE,
PREDITOP, BEPITOPE, and BcePred (Table 3). In 2006, a
method was developed by integrating the propensity scale
with the hidden Markov model (Larsen et al., 2006; El-
Manzalawy et al., 2010).

5.2 | ML-based methods

It has been shown in number of studies that propensity
scale-based methods have their own limitations
(Blythe & Flower, 2005). Even methods developed based
on propensity scales of all physicochemical properties
have poor performance. To overcome this limitation,

TABLE 2 List of available conformational sequence-based predictors.

Name Year Description

Performance measure

Data setAcc AUC MCC Sens Spec

Epitopia
(Rubinstein
et al., 2009)

2009 A machine learning-based
method for predicting
antigenic regions in an antigen
sequence or structure.

0.59 ElliPro data set

CBTOPE
(Ansari &
Raghava, 2010)

2010 An SVM-based method for
predicting conformational
B-cell epitopes and antigenic
residues in a protein sequence.

86.59% - 0.73 83.13 90.06 CBTOPE data set,
Ponomarenko
data set

CBEP (Zhang
et al., 2014)

2014 An ensemble method that
utilizes spatial clustering for
predicting discontinuous
epitopes in protein from its
sequence

- 0.721,a

0.703b
- - - Rubinstein's data

set,a Liang's data
setb

BepiPred-2.0
(Jespersen
et al., 2017)

2017 A random forest-based model
trained on antibody–antigen
complex structure for
predicting epitope from
sequence.

- 0.62 - - - BepiPred2.0 data set

SEPIa (Dalkas &
Rooman, 2017)

2017 Combination of naïve Bayesian
and random forest classifier for
predicting conformational
epitopes from protein
sequence.

- 0.65 - - - SEPIa data set

aData type: Bound dataset.
bData type: Unbound dataset.
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TABLE 4 Machine learning-based linear B-cell epitopes prediction methods.

Name Year Description

Performance measure

Data setAcc AUC MCC Spec Sens

ABCpred (Saha
& Raghava,
2006)

2006 First time artificial neural
network has been used
for predicting

continuous B‐cell
epitopes.

65.93% ‐ 0.3187 64.71 67.14 Bcipep database

Söllner (Sollner
& Mayer,
2006)

2006 Machine learning‐based
model using propensity
scales for predicting
epitopes.

‐ ‐ ‐ 0.58 0.88 Bcipep database, FIMM
database

FBCPred (El‐
Manzalawy,
2008)

2008 Prediction of B‐cell
epitope of variable
length using SVM and
compositional features.

73.37 0.812 ‐ 72.67 74.08 Bcipep database

BCPREDS
(El‐
Manzalawy,

2008)

2008 SVM‐based method using
customized kernel
string for predicting B‐
cell epitopes.

67.9 0.758 ‐ 63.2 72.61 Bcipep database,
ABCPred data set

COBEpro
(Sweredoski
& Baldi,
2008)

2009 Two‐stage prediction
based on propensity of
antigenic region and
residues.

78.00% 0.829 ‐ 95.1 60.9 Bcipep database,
Pellequer, HIV, Chen
data set, BCPRED data
set

BayesB (Wee
et al., 2010)

2010 SVM‐based prediction of
linear B‐cell epitopes
using Bayes‐based
feature extraction.

74.50% 0.84 ‐ 68% 81% BCPRED data set, Chen
data set

LEPS (Wang
et al., 2011)

2011 Physicochemical
propensities‐based
SVM model for
predicting linear

epitopes.

72.52% ‐ 10.36% 84.22% ‐ Bcipep and Chen data
set, AntiJen data set,
HIV data set, PC data
set, AHP data set

BEOracle#/

BROracle
(Wang et al.,
2011)##

2011 An SVM‐based method

developed using
tripeptide similarity
and propensity score.

96.88%#

75.26%##

0.83#

0.81##
‐ ‐ ‐ Bcipep database AntiJen

data set, Protein Atlas
database, BEOracle
data set

SVMTriP (Yao
et al., 2012)

2012 An SVM‐based method
developed using
tripeptide similarity

and propensity score.

‐ 0.702 ‐ ‐ 80.10% SVMTriP data set

BEST (Gao
et al., 2012)

2012 A sliding window method
developed using SVM.

74.5% 0.81 0.53 0.929 0.561 Chen data set, BciPep
database, BCPRED
data set, BEST data
set, Epitopia (SEQ194)
data set

LBTope (Singh

et al., 2013

2013 A method trained on

experimentally
validated B‐cell
epitopes and non‐B‐cell
epitopes.

81.24,a

64.86,b

78.82,c

66.7,d

82.33e

0.88,a

0.69,b

0.84,c

0.73,d

0.91e

0.61,a 0.3,b

0.57,c

0.33,d

0.64e

81.67,a

63.97,b

77.5,c

67.24,d

81.01e

80.5,a

65.75,b

80.9,c

66.0,d

84.62e

LBTope data set

EPMLR (Lian
et al., 2014)

2014 A sequence‐based method
for predicting epitopes.

‐ 0.728 81.80% BEOracle data set,
SVMTriP data set,

LFNRb data set

LBEEP
(Saravanan
& Gautham,
2015)

2015 A machine learning‐based
model developed using
dipeptide deviation
from expected mean.

69.12 0.754 0.386 73 65.49 ABCpred data set, Chen
data set, Bcpred data
set, SVMTrip data set,
LBTope data set,
EPMLR data set
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researchers used ML techniques for developing predic-
tion models. In 2006, Saha and Raghava proposed a neu-
ral network-based method ABCPred, for the prediction of
linear BCEs. Similarly, Söllner and Mayer (2006) devel-
oped a method by combining the decision tree and near-
est neighbor with the molecular operating environment
(Wang & Pai, 2014). Several tools are reported in the liter-
ature that use ML approaches for BCE prediction (listed
in Table 4). The LBtope method developed by Singh et
al. (2013) uses experimentally validated non‐BCEs for the
first time to predict the continuous BCEs using support

vector machine (SVM) and K‐nearest neighbor algo-
rithms. Afterward, many deep learning‐based methods
have been developed.

5.3 | Miscellaneous methods

The ability to determine whether a particular sequence is
a linear epitope has increased over the past few years;
however, these techniques are unable to distinguish
between IgG, IgE, or IgA epitopes. There are just a few

TABLE 4 (Continued)

Name Year Description

Performance measure

Data setAcc AUC MCC Spec Sens

DMN‐LBE
(Lian et al.,
2015)

2015 A sequence‐based
predictor developed
using deep maxout

network with dropout
training techniques.

68.33% 0.743 0.37 67.94 68.72 LFNRb data set

DRREP (Lian
et al., 2015)

2017 A deep learning‐based
predictor for B‐cell
epitopes.

86.00% 0.862 ‐ 0.75 ‐ SARS data set, Pellequer,
HIV data set, AntiJen,
SEQ194 data set

iBCE‐EL
(Manavalan

et al., 2018)

2018 B‐cell epitope prediction
using ensemble

method, combining
extremely randomized
tree and gradient
boosting classifiers.

0.732 0.789 0.463 0.724 0.742 iBCE‐EL data set

DLBEpitope
(Liu et al.,

2020)

2020 A deep learning‐based
predictor that combines

existing methods.

‐ 0.957 ‐ ‐ ‐ DLBEpitope data set,
LF,a ABCpred16

BCEPS (Ras‐
Carmona et
al., 2021)

2021 An attempt has been
made to predict B‐cell
epitopes that can
induce cross‐reactive
antibodies with native

antigens.

75.38% 0.51 0.78 0.73 BCEPS data set,
abYbank/AbDb

LBCEPred
(Alghamdi et
al., 2022)

2022 A random forest model
developed using
statistical moment‐
based descriptors to
predict the B‐cell
epitopes.

0.868 0.934 ‐ ‐ ‐ ‐

Epidope
(Collatz et
al., 2020)

2021 A deep neural network to
detect linear B‐cell
epitope regions on
individual protein
sequences.

‐ 0.67 ‐ ‐ ‐ ‐

BepiPred‐3.0
(Clifford et
al., 2022)

2022 It is an improved version

of series BepiPred,
developed using protein
language models.

0.688 0.762 0.309 ‐ ‐ BepiPred‐3.0 data set

aLF: Lbtope_Fixed data set.
bLFNR: Lbtope_Fixed_non_redundant.
cLV: Lbtope_Variable.
dLVNR: Lbtope_Variable_non_redundant.
eLC: Lbtope_Confirm.
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methods, including AlgPred, AlgPred2, and BCIgEpred,
that can predict the subtype of an epitope (Saha &
Raghava, 2006; Sharma et al., 2021; Saravanam &
Gautham, 2018). For the aim of predicting BCEs that
potentially induce a specific class of antibody, Gupta
et al. (2013) developed the IgPred approach (Gupta
et al., 2013; Tung et al., 2021). Since there is currently no
comprehensive approach for predicting class-specific
BCEs, with the exception of a few methods developed for
IgE-producing allergenic epitopes, IgPred was the first
tool created to predict specific BCEs (Gupta et al., 2013).
EpiPred, a method proposed in 2014 by Krawczyk et al.,
2014 that uses a docking-like approach to match up anti-
body and antigen structures in order to find epitope
areas/regions on the antigen. Similarly, more approaches
of these types have been listed in Table 5.

6 | DISCUSSION AND
CHALLENGES

Ag–Ab interactions play a vital role in immune
responses, particularly in the elimination of invading

pathogens. Existing methods have shown that more than
90% of BCEs are conformational, while only 10% are lin-
ear BCEs (Sanchez-Trincado et al., 2017). Although vari-
ous tools and methods are available for BCE prediction,
their utility in designing vaccine candidates is currently
limited. However, understanding BCEs can assist in the
diagnosis and treatment of autoimmune diseases. It can
also aid in the development of targeted therapies to sup-
press immune responses triggered by self-antigens. In
this study, we provide a comprehensive overview of
experimental methods, available databases/repositories
of BCEs, and in silico prediction tools.

Additionally, we discuss new approaches in
antibody-based epitope prediction. While several exper-
imental approaches exist, they can be expensive in
terms of cost, time, and effort required. Furthermore,
the accuracy of computational tools heavily relies on
the quality of data collected from publicly available
repositories. This has led to an increase in redundant
sequences and ambiguity in databases such as IEDB,
where multiple sequences are assigned as both BCEs
and non-BCEs, as highlighted in a study by Singh et al.,
2013b. This ambiguity poses a challenge in identifying

TABLE 5 Other available methods.

Name Year Description

Performance measure

Data setAcc AUC MCC Spec Sens

IgPred (Gupta
et al., 2013)

2013 First method developed for
predicting class-specific
epitopes, like IgE, IgA, and
IgG epitopes.

70.4a,
82.7b,
72.07c

0.76a,
0.88b,
0.78c

0.41a,
0.66b,
0.44c

- - IgPred data set

EPIPRED
(Krawczyk
et al., 2014)

2014 Docking-based approach for
predicting epitope in an
antigen based on its
binding with antibodies.

- - - - - SAbDAb, EPIPRED
data set

Lyra (Klausen
et al., 2015)

2015 An automated method for
building of B- and T-cell
receptor structural models
from their amino acid
sequence.

- - - - - IMGT/3Dstructure-
DB

PEASE (Sela-
Culang et al.,
2014)

2015 A method predict B-cell
epitope for a given
antibody sequence.

- - - - - PEASE data set

NIgPred (Tung
et al., 2021)

2021 It allows to predict IgA-, IgG-
, and IgE-specific epitopes.

87.2,a

81.9,b

85.7c

- 74.5,a

64.0,b

71.5c

- - NIgPred data set,
ADFS, Allerbase

AbCPE (Kadam
et al., 2021)

2021 A method for predicting
epitopes for specific class of
antibodies that include
IgA, IgG, IgE, and IgM.

- - - - - AbCPE data set,
SARS-CoV-2 data
set

Abbreviations: ADFS, Allergen Database for Food Safety; SAbDAb, structural antibody database.
aIgG.
bIgE.
cIgA.
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correct BCEs despite being generated through experi-
mental methods. In recent years, significant progress
has been made in the development of in silico tools for
epitope prediction. These tools claim to outperform
other methods; however, developing a method that per-
forms consistently well on all types of data sets remains
a challenge. The introduction of new ML and DL
methods, such as AlphaFold, (Jumper et al., 2021) has
revolutionized protein structure prediction by achieving
atomic-level precision. This breakthrough has inspired
researchers to design or develop accurate BCE predic-
tion methods by leveraging predicted protein structures
and pre-trained language models. It is generally easier
to predict linear BCEs compared to conformational
BCEs, as the latter relies on patterns within the sur-
rounding biological environment and requires knowl-
edge of the structure of the Ag–Ab complex, which is
experimentally challenging. Although discontinuous
epitopes have been identified, their utility as vaccine
candidates is limited due to the loss of pattern or struc-
ture in a synthetic environment. They are primarily
used as biomarkers in epitope mapping. The advance-
ment of next-generation sequencing techniques, provid-
ing accurate and complete pathogenic genome
sequences, has contributed to the development of
advanced methods for epitope prediction. Immunoin-
formatic methods for epitope prediction and subse-
quent development of peptide-based vaccines have
reduced costs, time, and increased accuracy compared
to traditional laboratory tests (Raoufi et al., 2020). How-
ever, the precise determination of epitope characteris-
tics that allow biorecognition of the Ag–Ab complex is
still challenging (Potocnakova et al., 2016).
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