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ABSTRACT

Background: Allergy is the abrupt reaction of the immune system that may occur after the exposure to allergens
such as proteins, peptides, or chemicals. In the past, various methods have been generated for predicting
allergenicity of proteins and peptides. In contrast, there is no method that can predict allergenic potential of
chemicals. In this paper, we described a method ChAlPred developed for predicting chemical allergens as well as
for designing chemical analogs with desired allergenicity.

Method: In this study, we have used 403 allergenic and 1074 non-allergenic chemical compounds obtained from
IEDB database. The PaDEL software was used to compute the molecular descriptors of the chemical compounds
to develop different prediction models. All the models were trained and tested on the 80% training data and
evaluated on the 20% validation data using the 2D, 3D and FP descriptors.

Results: In this study, we have developed different prediction models using several machine learning approaches.
It was observed that the Random Forest based model developed using hybrid descriptors performed the best, and
achieved the maximum accuracy of 83.39% and AUC of 0.93 on validation dataset. The fingerprint analysis of
the dataset indicates that certain chemical fingerprints are more abundant in allergens that include Pub-
ChemFP129 and GraphFP1014. We have also predicted allergenicity potential of FDA-approved drugs using our
best model and identified the drugs causing allergic symptoms (e.g., Cefuroxime, Spironolactone, Tioconazole).
Our results agreed with allergenicity of these drugs reported in literature.

Conclusions: To aid the research community, we developed a smart-device compatible web server ChAlPred
(https://webs.iiitd.edu.in/raghava/chalpred/) that allows to predict and design the chemicals with allergenic

properties.

1. Introduction

Allergy is an inappropriate reaction of the immune response when it
misidentifies a harmless foreign substance as a threat [1-4]. These
foreign substances are known as allergens, which could trigger several
allergic reactions and lead to various allergic diseases. Different types of
aeroallergens (e.g., pollens, spores, dust mites), food allergens (e.g.,
eggs, peanuts, tree nuts, genetically modified foods), and chemical al-
lergens in personal care products (e.g., fragrances in the skin and hair
care products, dyes, creams) [1,5,6] can lead to allergic symptoms such
as allergic asthma, rhinitis, skin reactions and anaphylaxis [1,7].
Anaphylactic shock involves a series of allergic reactions from mild
symptoms like itchy skin, rashes, facial swelling, irritation of the eyes
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leading to watery eyes and nose to severe symptoms like shortness of
breath, lack of consciousness, weak pulse, nausea, vomiting, which can
even lead to death if untreated [8,9]. Certain studies show that allergic
diseases are much more prevalent in developed countries than in
developing countries [10-13]. In the last few years, the increment in the
occurrence of allergic diseases have increased the expenses of the
treatment and also negatively influenced the status of life of a huge
population [14].

There is a wide variety of molecules that can pose a threat as aller-
gens. It includes chemical molecules [15], macromolecules such as
proteins/peptides [4,16], lipids [17], carbohydrates [18], nucleic acid
(mRNA vaccines) [19] and some engineered nanoparticles [20]. These
molecules can stimulate some allergic reactions like asthma [17], food
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Fig. 1. The mechanism of the allergy caused by chemical allergens.

allergies [18], anaphylaxis [19] and chronic kidney diseases [20]. In the
past, several methods have been proposed to predict protein allergens
from genetically engineered foods, vaccines and therapeutics. All the
available methods are based on protein/peptide allergens, such as the
recently developed method AlgPred 2.0 [1,21]. Many other methods
such as AllerTool [3], AllerHunter [22], AllerTOP [23], AllerTOPv2 [2],
PREAL [24], AllergenFP [25], AllerCatPro [5] are heavily used by the
scientific community. These methods are especially used in clinical
researcher for designing proteins with desired allergenicity. In contrast,
there is no method for predicting allergenic potential of the chemicals.
Despite the fact, day-to-day life, the human body is exposed to innu-
merable chemical substances, such as makeup, soaps, perfumes, lotions,
hair dyes, preservatives in food, metals in the jewellery [26]. Many of
these chemical products are known to provoke allergic reactions,
causing skin sensitization in some people, which results in skin or con-
tact dermatitis, and some may cause the sensitization of the respiratory
tract leading to occupational asthma, which could be lethal [7,8].

Thus it is important to understand the allergenicity of chemicals in
order to develop prediction methods. Broadly, allergic reaction caused
by small chemical compounds is developed in two phases; sensitization
and elicitation. The first phase is initiated when a sensitized individual is
exposed to a chemical allergen in sufficient amount, and via a proper
route, then it will lead to immunological priming. In the context of al-
lergy, immunological priming is called as sensitization or induction,
which means that the mast cells and basophils are loaded with IgE an-
tibodies against the chemical allergen [1,27,28]. In the second phase,
the re-exposure to the same chemical compound at the same or different
site will provoke an accelerated and more aggressive secondary immune
response. This secondary immune response is called as elicitation, which
results in an allergic reaction. The already sensitized mast cells and
basophils result in releasing cytoplasmic granules, and inflammatory
molecules, such as, leukotriene, prostaglandins, histamine etc., leading
to a mild allergic reaction to sudden death from anaphylactic shock [1,
27,28]. The mechanism of allergy caused by chemical allergens is
depicted in Fig. 1.

In this study, first time systematic attempt has been made to develop
in silico models for predicting allergic potential of chemicals. We ob-
tained experimentally validated chemical-based allergens and non-

allergens from well-established database IEDB. These chemicals were
analyzed to understand chemical groups or fingerprints (FP) responsible
for causing allergenicity. In order to derive the rules and to understand
the relationship between allergenicity and structure of chemicals, we
compute wide range of descriptors using PaDEL software [29]. These
descriptors can be divided broadly in three categories; 2D descriptors,
3D descriptors and fingerprints. Finally, we developed machine learning
based models for predicting allergenicity of chemicals using different
types of descriptors. Our best models have been integrated into the
webserver; it allows user to predict allergenicity of chemicals as well as
to generate analogs of desired allergenicity https://webs.iiitd.edu.in/
raghava/chalpred/.

2. Methods
2.1. Dataset collection and descriptors generation

In this study, we have collected allergenic and non-allergenic
chemical compounds from the Immune Epitope Database (IEDB) [30]
and the structure for the same compounds were downloaded from
Chemical Entities of Biological Interest (ChEBI) database [31]. We ob-
tained a total of 519 chemical compounds with allergenic properties
from IEDB. On the other hand, we have taken 2211 non-allergenic
chemical compounds with a filter of non-peptidic; No IgE; No hista-
mine; No hypersensitivity; No allergy; No Cancer from the IEDB data-
base. The chemical compounds with allergenic properties were
considered as a positive dataset (allergens), and compounds with
non-allergenic properties were taken as a negative dataset (non--
allergens). Further, compound Ids were used to download the 2D and 3D
structure files for 519 allergen and 2211 non-allergen chemical com-
pounds. However, out of 2730 compounds, only 403 positive and 1074
negative compound structures were available in ChEBI. The final dataset
contained 403 positive and 1074 negative chemical compounds. This
dataset was divided into 80:20 ratio, where 80% of the data was used for
training and 20% data validation. Our training dataset comprises of 320
allergens and 859 non-allergens, whereas our validation dataset com-
prises of 83 allergens and 215 non-allergens.
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2.2. Generation of descriptors

The chemical descriptors/features of allergen and non-allergen
chemical compounds were computed using PaDEL software [29]. It
can compute number of molecular descriptors, such as 2D, 3D and
different types of fingerprints for a single chemical compound. It has
computed 729 2D descriptors, 431 3D descriptors, and 16092 binary
fingerprint-based descriptors for 403 allergen and 1074 non-allergen
chemical compounds. These 2D, 3D, and FP descriptor files were
further used to develop different machine learning models.

2.3. Dataset preprocessing

The values of 2D, 3D and FP descriptors are in different range, thus
we have performed preprocessing in order to normalize the values. In
this study, we used a well-established standard scaler method. The
normalization and preprocessing were performed using a standard
scaler package of scikit learn, i.e., sklearn.preprocessing.StandardScaler,
which is based on a z-score normalization algorithm [32].

2.4. Selection of descriptors

It has been shown in past studies, that all the descriptors are not
significant [33-35]. Hence, it is important to find out the most relevant
features from the vast number of descriptors. There are many feature
selection techniques available; however, in this study, we have used the
variance threshold-based method, correlation-based method and
SVC-L1-based feature selection technique to select the significant fea-
tures. Firstly, we have removed the low variance features from all
descriptor files using the VarianceThreshold feature selection method
from the sklearn package [32]. It is used to filter-out low variance 2D,
3D and FP descriptors from the positive and negative data. Initially,
there were 729 2D, 431 3D, and 16092 FP descriptors. After removing
low variance features, we were left with 286 2D, 362 3D, and 1957 FP
descriptors.

Secondly, we have used the correlation-based feature selection
method for the removal of highly correlated features. We have devel-
oped a python script to compute the pairwise correlation of all de-
scriptors of each dataset. Then we have removed those features that had
a correlation of greater than or equal to 0.6 (>0.6). In this way,
remaining were those features which have a correlation less than 0.6
(<0.6) with each other. As a result, we were left with 34 descriptors out
of 286 descriptors for 2D, 8 descriptors out of 362 descriptors for 3D,
and 210 descriptors out of 1957 FP descriptors. In order to get a highly
significant feature set, we further tried to reduce the feature vector size
using the most popular feature selection method, i.e., SVC-L1. It
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implements the support vector classifier (SVC) with linear kernel,
penalized with L1 regularization. It selects the non-zero coefficients and
then implements the L1 penalty to choose the relevant features from the
large feature vector to reduce dimensions [36,37]. Based on this tech-
nique, we get the most important feature set, i.e., 14 descriptors out of
34 descriptors for 2D, 6 out of 8 descriptors for 3D and 22 FP descriptors
out of 957 descriptors. The information regarding the selected de-
scriptors is tabulated in Supplementary Table 1.

2.5. Machine learning models

In this study, different machine learning techniques have been used
for the classification of allergen and non-allergen chemical compounds.
Logistic Regression (LR) [38], k-nearest neighbors (KNNs) [39], Deci-
sion Tree (DT) [40], Gaussian Naive Bayes (GNB) [41], XGBoost (XGB)
[42], Support Vector Classifier (SVC) [43], and Random Forest (RF) [44]
were implemented to develop the classification models.

2.6. Cross-validation and evaluation parameters

Several studies in the past have used 80:20 ratio for the division of
the complete dataset [21,37]. In the present study, to evaluate the
developed machine learning models, we have applied 5-fold
cross-validation on 80% of the training data for the internal training,
testing and model evaluation [45,46]. In 5-fold CV, the training data is
divided into 5-sets, where four sets were used for the training and fifth
set was utilized for the testing purposes. The same process is repeated
five times, so that each set of positive and negative data is used for
training and testing purposes. The performance of machine learning
models was evaluated using the standard evaluation parameters.
Threshold dependent and independent parameters both were used to
measure the performance. Sensitivity (Sens), Specificity (Spec), Accu-
racy (Acc), Matthews correlation coefficient (MCC) are
threshold-dependent parameters, whereas the area under receiver
operating characteristic curve (AUC) is a threshold-independent
parameter. These performance evaluation parameters are well-defined
in the literature and have been extensively used in assessing the per-
formance of the model [21,47,48].

. Ti
Sensitivity (Sens) =TP L FN x 100 (€D)
TN
Specificity (S, =————x 100 2
pecificity (Spec) IN < FP X 2)
TP + TN
Accuracy (Acc) = * 100 3

“TPLIN+FN + FP "
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The performance of ML-based models developed using 14 (2D) descriptors and 6 (3D) descriptors.

2D Descriptors

ML Training Validation
Sens Spec Acc AUC McCC Sens Spec Acc AUC McCC
XGB 81.68 82.11 81.99 0.90 0.60 80.25 76.64 77.63 0.89 0.52
KNN 81.37 81.99 81.82 0.90 0.59 81.48 79.91 80.34 0.88 0.57
RF 81.99 81.29 81.48 0.90 0.59 83.95 81.31 82.03 0.90 0.61
LR 80.12 81.05 80.80 0.88 0.57 81.48 77.57 78.64 0.88 0.54
DT 79.50 79.65 79.61 0.85 0.55 67.90 76.64 74.24 0.80 0.42
GNB 78.57 78.36 78.42 0.86 0.53 81.48 77.57 78.64 0.87 0.54
svc 78.26 77.78 77.91 0.87 0.52 85.19 78.04 80.00 0.88 0.58

3D Descriptors

RF 79.14 78.69 78.81 0.88 0.54 75.33 81.19 79.66 0.85 0.53
KNN 77.61 77.87 77.80 0.85 0.51 68.83 80.73 77.63 0.83 0.47
XGB 76.69 76.11 76.27 0.86 0.49 77.92 79.36 78.98 0.86 0.53
svC 73.31 72.25 72.54 0.81 0.42 62.34 73.85 70.85 0.77 0.33
LR 68.41 71.31 70.51 0.73 0.36 70.13 72.48 71.86 0.76 0.38
GNB 68.41 70.61 70.00 0.75 0.36 64.94 73.39 71.19 0.75 0.35
DT 69.33 68.38 68.64 0.76 0.34 71.43 60.55 63.39 0.72 0.28

DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LR, Logistic Regression; RF, Random Forest; SVC, Support Vector Classifier; XGB, XGBoost;
Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUC, Area under receiver operating characteristic curve; MCC, Matthews correlation coefficient.

_ (TP x TN) — (FP x FN)

mcc
/(TP + FP)(TP + FN)(TN + FP)(IN + FN)

€]

where FP, FN, TP, and TN are false positive, false negative, true positive,
and true negative respectively.

3. Results
3.1. Fingerprints based analysis

In order to understand, importance of each fingerprint in classifica-
tion of allergens and non-allergens, we have computed the prediction
ability of each fingerprint. We used our in-house scripts, to check
discrimination ability of fingerprint based descriptors calculated by
PaDEL. We ranked the fingerprints according to their probabilities for
correctly classifying the chemical as allergen and non-allergen. Based on
ranking, we identified the most important 20 fingerprints. Ten finger-
prints are highly present in allergens and were called positive finger-
prints, whereas other 10 which are highly present in non-allergens were
called as negative fingerprints. Fig. 2 depicts the frequency of top 10
positive and 10 negative fingerprints in allergens and non-allergens.
These 10 positive fingerprints are highly abundant in allergens but
negligible in non-allergens. Similarly, 10 negative fingerprints are
highly abundant in non-allergens but negligible in allergens. The com-
plete information regarding these top fingerprints is provided in Sup-
plementary Table 2.

3.2. Prediction models using 2D/3D/FP descriptors

Several models have been developed for predicting chemical aller-
gens using different kinds of chemical descriptors like 2D, 3D and FP
descriptors. Several machine learning approaches have been used for
developing prediction models, it includes RF, KNN, XGB, SVC, LR, GNB,
and DT. The models developed by using these machine learning tech-
niques were optimized by tuning different parameters on training
dataset using five-fold cross validation. Firstly, we have developed the
machine learning models using 14 descriptors selected from 2D de-
scriptors. XGB algorithm perform better than other ML models and
achieved maximum accuracy (81.99% and 77.63%), AUC (0.90 and
0.89) on the training and validation datasets, respectively. Similarly
models were developed using 6 features selected from 3D descriptors.
RF-based model outperformed the other methods and achieved an ac-
curacy of 78.81% and AUC 0.88 on training dataset as well as accuracy
of 79.66% and AUC 0.85 on the validation dataset (Table 1). In order to
develop models using fingerprint, we selected 22 out of total 16092
fingerprints. Our RF-based model on 22 fingerprints achieved maximum
AUC 0.92 and 0.92 on the training and validation datasets, respectively
(Table 2).

3.3. Prediction models using hybrid features

In addition to the prediction models developed using single
descriptor, we have also developed the ML-based hybrid model by
combining all three types of descriptors, i.e., 2D, 3D and FP. The hybrid
model developed using 42 features containing 2D (14 features), 3D (6
features) and FP (22 features). The RF-based model had achieved
maximum AUC 0.94 and 0.93 on the training and validation datasets,

Table 2
The performance of ML-based models developed using 22 (FP) descriptors.
ML Training Validation
Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC
RF 85.06 85.11 85.10 0.92 0.66 86.67 85.52 85.81 0.92 0.67
XGB 85.37 85.11 85.18 0.92 0.66 85.33 85.52 85.47 0.90 0.66
LR 83.84 83.82 83.83 0.91 0.64 81.33 81.45 81.42 0.86 0.58
SvC 83.54 83.00 83.15 0.91 0.62 82.67 80.54 81.08 0.86 0.58
KNN 82.93 83.12 83.07 0.90 0.62 85.33 80.54 81.76 0.87 0.60
GNB 79.57 79.37 79.42 0.88 0.55 70.67 81.45 78.72 0.83 0.49
DT 79.88 78.90 79.17 0.86 0.54 77.33 76.92 77.03 0.83 0.49

DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LR, Logistic Regression; RF, Random Forest; SVC, Support Vector Classifier; XGB, XGBoost;
Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUC, Area under receiver operating characteristic curve; MCC, Matthews correlation coefficient.
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The performance of ML-based hybrid models developed after combining all descriptors.

42 Hybrid Descriptors (2D+3D + FP)

ML Training Validation
Sens Spec Acc AUC McCC Sens Spec Acc AUC McCC
RF 85.63 86.00 85.90 0.94 0.68 87.95 82.55 84.07 0.93 0.66
SVC 84.06 84.01 84.03 0.91 0.64 93.98 78.77 83.05 0.92 0.66
KNN 84.06 83.66 83.77 0.92 0.63 80.72 81.60 81.36 0.92 0.58
XGB 83.75 83.78 83.77 0.92 0.63 85.54 79.72 81.36 0.92 0.60
LR 83.75 83.08 83.26 0.91 0.62 85.54 82.08 83.05 0.89 0.63
GNB 84.06 79.70 80.88 0.89 0.59 73.49 83.02 80.34 0.87 0.54
DT 79.06 78.76 78.85 0.87 0.53 81.93 80.66 81.02 0.88 0.58

36 Hybrid Descriptors (2D + FP)

RF 87.5 87.28 87.34 0.94 0.71 84.34 83.02 83.39 0.93 0.63
XGB 85 84.95 84.96 0.93 0.66 81.93 81.13 81.36 0.91 0.59
LR 84.06 84.48 84.37 0.91 0.64 84.34 83.96 84.07 0.90 0.64
KNN 83.44 84.13 83.94 0.93 0.63 81.93 82.08 82.03 0.91 0.60
svC 84.06 83.08 83.35 0.90 0.63 86.75 81.60 83.05 0.91 0.63
GNB 84.06 79.00 80.37 0.88 0.58 77.11 83.96 82.03 0.88 0.58
DT 80 79.00 79.27 0.86 0.54 86.75 76.89 79.66 0.88 0.58

DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LR, Logistic Regression; RF, Random Forest; SVC, Support Vector Classifier; XGB, XGBoost;
Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUC, Area under receiver operating characteristic curve; MCC, Matthews correlation coefficient.

Table 4
FDA-approved drug molecules predicted by our server (ChAlPred) causing
allergic symptoms.

Drug FDA-Approved Prediction Allergic Symptoms
Bank ID Drugs

DB01112 Cefuroxime Allergen Anaphylactic Reaction [51]

DB00421 Spironolactone Allergen Skin allergy, drug rash with
eosinophilia and systemic
symptoms (DRESS) induced by
spironolactone [52]

DB00859 Penicillamine Allergen Skin allergy [53]

DB05013 Ingenol mebutate  Allergen Skin allergy [54]

DB01007 Tioconazole Allergen Contact hypersensitivity [55]

DB06209 Prasugrel Allergen Hypersensitivity Skin Reaction
[56]

DB01330 Cefotetan Allergen Cefotetan-induced anaphylaxis
[57]

DB01331 Cefoxitin Allergen Allergic reactions [58]

DB04854 Febuxostat Allergen Hypersensitivity Reactions (HSRs)
[59]

DB09212 Loxoprofen Allergen Type I allergic reaction,
eosinophilic coronary periarteritis
[60]

DB00973 Ezetimibe Allergen Angioedema allergic reaction [61]

DB00390 Digoxin Allergen Cutaneous hypersensitivity [62]

DB00493 Cefotaxime Allergen Immediate Hypersensitivity
Reactions [63]

DB01150 Cefprozil Allergen Immediate Hypersensitivity
Reactions [63]

DB00833 Cefaclor Allergen Immediate Hypersensitivity
Reactions [63]

DB00689 Cephaloglycin Allergen Immediate Hypersensitivity
Reactions [63]

DB00438 Ceftazidime Allergen Immediate Hypersensitivity
Reactions [63]

DB00267 Cefmenoxime Allergen Immediate Hypersensitivity
Reactions [63]

DB00703 Methazolamide Allergen Skin allergy [64]

DB13154 Parachlorophenol  Allergen Allergic contact dermatitis [65]

respectively with balanced sensitivity and specificity. Further, we
exclude 3D descriptors, and developed the prediction models using only
36 features (2D and FP). As depicted in Table 3, the RF-based model has
obtained an AUC of 0.94 on the training dataset and 0.93 on the vali-
dation dataset. It indicates that 36 features are sufficient to achieve
highest performance, which is the best model.

3.4. Webserver interface

We have developed a user-friendly web server named ChAlPred for
the prediction of chemicals as allergens and non-allergens. In this server,
we have provided the three modules: (i) predict, (ii) draw and (iii)
analog design module. The Predict module allows the user to submit the
chemical compounds in different formats, such as SMILE, SDF and MOL
formats, to predict whether the chemical could be allergenic or non-
allergenic. The Draw module allows the user to draw or modify a
molecule in an interactive way using Ketcher [49] and submit the
molecule to the machine learning models to predict whether the modi-
fied compounds will be allergenic or not. The Analog design module can
be used to generate analogs based upon a combination of a given scaf-
fold, building blocks and linkers. The server subsequently predicts the
generated analogs as allergenic or non-allergenic. The web server has
been designed using a responsive HTML template and browser
compatibility for different OS systems.

3.5. Case study: potential allergenic FDA-approved drugs

In order to identify the FDA-approved drugs that can cause allergic
reactions to the person, we have downloaded a total of 2675 FDA drug
molecules from the DrugBank Database [50]. Out of 2675, we have only
considered 1102 drugs which are approved. From 1102 drug molecules,
the 2D structures were available only for 842 drugs. Finally, we have the
structures of 842 FDA-approved drug molecules, which were used to
identify that which drug molecules could be allergenic and
non-allergenic. For this, we have used the “Predict” module of the
“ChAlPred” web server using the default parameters. The model has
predicted 114 drug molecules to be allergenic. Several studies done in
the past have also supported our findings that some of these drugs can
cause allergy in the patient when administered. We have identified 20
drug molecules which are used to cure some diseases but also tend to
cause allergic symptoms. Table 4 depicts the information of the drug
molecules which cause some allergic reactions.

4. Discussion and conclusion

One of the major challenges in the field of drug discovery is side
effect or adverse reaction of drugs. In the past, number of drugs have
been already withdrawn from market due to their adverse effects. A
wide range of toxicities are responsible for side-effect of drugs, it may be
cytotoxicity, immuno-toxicity, hemo-toxicity, liver toxicity or allerge-
nicity [66]. Identification of toxicity is costly, time consuming and
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Fig. 3. Chemical structure representation of the fingerprints (A) KRFP890, KRFP3160 (B) SubFP281, found abundant in non-allergic compounds.

tedious task. Thus, there is a need to predict these toxicities using in
silico methods. Numerous tools have been developed to estimate the
toxicity of the chemicals using different methodologies, such as The
Toxicity Estimation Software Tool (TEST). It uses Quantitative
Structure-Activity Relationships (QSARs) to estimate the toxicity of
chemicals [67]. VegaQSAR [68], Toxtree [69], and PreADMET [70] are
the other tools based on the QSAR model for toxicity prediction of the
chemical molecules. Machine learning-based tools such as ToxiM,
developed by Sharma et al., predict the toxicity and toxicity-related
properties of small chemical molecules using machine learning ap-
proaches [26], ProTox-II [71].

In contrast, no tool has been developed for predicting allergenicity of
chemicals. In this current work, we have collected chemical compounds
with their well-defined molecular descriptors utilising publicly available

databases such as IEDB and ChEBI. The data yielded several descriptors
which was reduced using various feature selection methods. We sorted
the most important feature set, i.e., 14 descriptors for 2D, 6 descriptors
for 3D and 22 FP descriptors. Based on these selected features (14 2D
and 22 FP), we have successfully employed several machine learning
approach and found that Random Forest attained a highest AUC of 0.94
and 0.93 in the training as well as validation dataset. In addition, fin-
gerprints based analysis suggests that two positive fingerprints, i.e.,
PubChemFP129 (Extended Smallest Set of Smallest Rings (ESSSR) ring
set > 1 any ring size 4) and GraphFP1014 are highly present in aller-
genic chemical compounds, and three negative fingerprints, i.e.,
Klekota-Roth  fingerprints  (KRFP890  ([!#1]1[NH]C(=0)[CH3],
KRFP3160 (C1CCOCC1)) and Substructure fingerprint (SubFP281 [0X2;
$([r5]1@C@C@C(0)@C1),$([r6]1@C@C@C(0O)@C(0O)@C1)]) are
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abundant in non-allergenic chemical compounds as shown in Fig. 3(A)
and (B).

FDA-approved drugs analysis have shown that few drugs which are
used for treatment of certain diseases, are also causing allergy as the side
effect. Literature evidences have shown that administration of FDA-
approved drugs such as, Cefuroxime [51], Spironolactone [52], Peni-
cillamine [53] can cause allergic reactions like, skin allergies, anaphy-
lactic reactions, hypersensitivity. For instance, A case report has shown
that 60 year old patient was experiencing anaphylactic reaction after
given an antibiotic cefuroxime [72]. Another report by Kinsara has
shown that Spironolactone, a potassium sparing diuretic was given to a
patient which was diagnosed with idiopathic cardiomyopathy, and he
developed a macular rashes on both the arms [73]. A clinical study by
Zhu et al., reported that the patients with Wilson disease were given
p-penicillamine (DPA) medication at first, but later they developed
neurological symptoms as well as allergies [53].

We can see that these medications can cause a variety of allergic
reactions in patients, some of which can be fatal. To prevent these
problems, there is dire need for predicting the allergenicity of chemical
compounds before using them for treatment purposes. Eventually, we
built a freely available webserver namely ChAlPred, for predicting
allergenic and non-allergenic chemical compounds using machine
learning techniques based on their 2D, 3D and FP molecular descriptors.
We hope that this study will be helpful in the future for designing the
drug molecules with no allergenic properties.
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