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A B S T R A C T   

Background: Allergy is the abrupt reaction of the immune system that may occur after the exposure to allergens 
such as proteins, peptides, or chemicals. In the past, various methods have been generated for predicting 
allergenicity of proteins and peptides. In contrast, there is no method that can predict allergenic potential of 
chemicals. In this paper, we described a method ChAlPred developed for predicting chemical allergens as well as 
for designing chemical analogs with desired allergenicity. 
Method: In this study, we have used 403 allergenic and 1074 non-allergenic chemical compounds obtained from 
IEDB database. The PaDEL software was used to compute the molecular descriptors of the chemical compounds 
to develop different prediction models. All the models were trained and tested on the 80% training data and 
evaluated on the 20% validation data using the 2D, 3D and FP descriptors. 
Results: In this study, we have developed different prediction models using several machine learning approaches. 
It was observed that the Random Forest based model developed using hybrid descriptors performed the best, and 
achieved the maximum accuracy of 83.39% and AUC of 0.93 on validation dataset. The fingerprint analysis of 
the dataset indicates that certain chemical fingerprints are more abundant in allergens that include Pub
ChemFP129 and GraphFP1014. We have also predicted allergenicity potential of FDA-approved drugs using our 
best model and identified the drugs causing allergic symptoms (e.g., Cefuroxime, Spironolactone, Tioconazole). 
Our results agreed with allergenicity of these drugs reported in literature. 
Conclusions: To aid the research community, we developed a smart-device compatible web server ChAlPred 
(https://webs.iiitd.edu.in/raghava/chalpred/) that allows to predict and design the chemicals with allergenic 
properties.   

1. Introduction 

Allergy is an inappropriate reaction of the immune response when it 
misidentifies a harmless foreign substance as a threat [1–4]. These 
foreign substances are known as allergens, which could trigger several 
allergic reactions and lead to various allergic diseases. Different types of 
aeroallergens (e.g., pollens, spores, dust mites), food allergens (e.g., 
eggs, peanuts, tree nuts, genetically modified foods), and chemical al
lergens in personal care products (e.g., fragrances in the skin and hair 
care products, dyes, creams) [1,5,6] can lead to allergic symptoms such 
as allergic asthma, rhinitis, skin reactions and anaphylaxis [1,7]. 
Anaphylactic shock involves a series of allergic reactions from mild 
symptoms like itchy skin, rashes, facial swelling, irritation of the eyes 

leading to watery eyes and nose to severe symptoms like shortness of 
breath, lack of consciousness, weak pulse, nausea, vomiting, which can 
even lead to death if untreated [8,9]. Certain studies show that allergic 
diseases are much more prevalent in developed countries than in 
developing countries [10–13]. In the last few years, the increment in the 
occurrence of allergic diseases have increased the expenses of the 
treatment and also negatively influenced the status of life of a huge 
population [14]. 

There is a wide variety of molecules that can pose a threat as aller
gens. It includes chemical molecules [15], macromolecules such as 
proteins/peptides [4,16], lipids [17], carbohydrates [18], nucleic acid 
(mRNA vaccines) [19] and some engineered nanoparticles [20]. These 
molecules can stimulate some allergic reactions like asthma [17], food 
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allergies [18], anaphylaxis [19] and chronic kidney diseases [20]. In the 
past, several methods have been proposed to predict protein allergens 
from genetically engineered foods, vaccines and therapeutics. All the 
available methods are based on protein/peptide allergens, such as the 
recently developed method AlgPred 2.0 [1,21]. Many other methods 
such as AllerTool [3], AllerHunter [22], AllerTOP [23], AllerTOPv2 [2], 
PREAL [24], AllergenFP [25], AllerCatPro [5] are heavily used by the 
scientific community. These methods are especially used in clinical 
researcher for designing proteins with desired allergenicity. In contrast, 
there is no method for predicting allergenic potential of the chemicals. 
Despite the fact, day-to-day life, the human body is exposed to innu
merable chemical substances, such as makeup, soaps, perfumes, lotions, 
hair dyes, preservatives in food, metals in the jewellery [26]. Many of 
these chemical products are known to provoke allergic reactions, 
causing skin sensitization in some people, which results in skin or con
tact dermatitis, and some may cause the sensitization of the respiratory 
tract leading to occupational asthma, which could be lethal [7,8]. 

Thus it is important to understand the allergenicity of chemicals in 
order to develop prediction methods. Broadly, allergic reaction caused 
by small chemical compounds is developed in two phases; sensitization 
and elicitation. The first phase is initiated when a sensitized individual is 
exposed to a chemical allergen in sufficient amount, and via a proper 
route, then it will lead to immunological priming. In the context of al
lergy, immunological priming is called as sensitization or induction, 
which means that the mast cells and basophils are loaded with IgE an
tibodies against the chemical allergen [1,27,28]. In the second phase, 
the re-exposure to the same chemical compound at the same or different 
site will provoke an accelerated and more aggressive secondary immune 
response. This secondary immune response is called as elicitation, which 
results in an allergic reaction. The already sensitized mast cells and 
basophils result in releasing cytoplasmic granules, and inflammatory 
molecules, such as, leukotriene, prostaglandins, histamine etc., leading 
to a mild allergic reaction to sudden death from anaphylactic shock [1, 
27,28]. The mechanism of allergy caused by chemical allergens is 
depicted in Fig. 1. 

In this study, first time systematic attempt has been made to develop 
in silico models for predicting allergic potential of chemicals. We ob
tained experimentally validated chemical-based allergens and non- 

allergens from well-established database IEDB. These chemicals were 
analyzed to understand chemical groups or fingerprints (FP) responsible 
for causing allergenicity. In order to derive the rules and to understand 
the relationship between allergenicity and structure of chemicals, we 
compute wide range of descriptors using PaDEL software [29]. These 
descriptors can be divided broadly in three categories; 2D descriptors, 
3D descriptors and fingerprints. Finally, we developed machine learning 
based models for predicting allergenicity of chemicals using different 
types of descriptors. Our best models have been integrated into the 
webserver; it allows user to predict allergenicity of chemicals as well as 
to generate analogs of desired allergenicity https://webs.iiitd.edu.in/ 
raghava/chalpred/. 

2. Methods 

2.1. Dataset collection and descriptors generation 

In this study, we have collected allergenic and non-allergenic 
chemical compounds from the Immune Epitope Database (IEDB) [30] 
and the structure for the same compounds were downloaded from 
Chemical Entities of Biological Interest (ChEBI) database [31]. We ob
tained a total of 519 chemical compounds with allergenic properties 
from IEDB. On the other hand, we have taken 2211 non-allergenic 
chemical compounds with a filter of non-peptidic; No IgE; No hista
mine; No hypersensitivity; No allergy; No Cancer from the IEDB data
base. The chemical compounds with allergenic properties were 
considered as a positive dataset (allergens), and compounds with 
non-allergenic properties were taken as a negative dataset (non-
allergens). Further, compound Ids were used to download the 2D and 3D 
structure files for 519 allergen and 2211 non-allergen chemical com
pounds. However, out of 2730 compounds, only 403 positive and 1074 
negative compound structures were available in ChEBI. The final dataset 
contained 403 positive and 1074 negative chemical compounds. This 
dataset was divided into 80:20 ratio, where 80% of the data was used for 
training and 20% data validation. Our training dataset comprises of 320 
allergens and 859 non-allergens, whereas our validation dataset com
prises of 83 allergens and 215 non-allergens. 

Fig. 1. The mechanism of the allergy caused by chemical allergens.  
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2.2. Generation of descriptors 

The chemical descriptors/features of allergen and non-allergen 
chemical compounds were computed using PaDEL software [29]. It 
can compute number of molecular descriptors, such as 2D, 3D and 
different types of fingerprints for a single chemical compound. It has 
computed 729 2D descriptors, 431 3D descriptors, and 16092 binary 
fingerprint-based descriptors for 403 allergen and 1074 non-allergen 
chemical compounds. These 2D, 3D, and FP descriptor files were 
further used to develop different machine learning models. 

2.3. Dataset preprocessing 

The values of 2D, 3D and FP descriptors are in different range, thus 
we have performed preprocessing in order to normalize the values. In 
this study, we used a well-established standard scaler method. The 
normalization and preprocessing were performed using a standard 
scaler package of scikit learn, i.e., sklearn.preprocessing.StandardScaler, 
which is based on a z-score normalization algorithm [32]. 

2.4. Selection of descriptors 

It has been shown in past studies, that all the descriptors are not 
significant [33–35]. Hence, it is important to find out the most relevant 
features from the vast number of descriptors. There are many feature 
selection techniques available; however, in this study, we have used the 
variance threshold-based method, correlation-based method and 
SVC-L1-based feature selection technique to select the significant fea
tures. Firstly, we have removed the low variance features from all 
descriptor files using the VarianceThreshold feature selection method 
from the sklearn package [32]. It is used to filter-out low variance 2D, 
3D and FP descriptors from the positive and negative data. Initially, 
there were 729 2D, 431 3D, and 16092 FP descriptors. After removing 
low variance features, we were left with 286 2D, 362 3D, and 1957 FP 
descriptors. 

Secondly, we have used the correlation-based feature selection 
method for the removal of highly correlated features. We have devel
oped a python script to compute the pairwise correlation of all de
scriptors of each dataset. Then we have removed those features that had 
a correlation of greater than or equal to 0.6 (≥0.6). In this way, 
remaining were those features which have a correlation less than 0.6 
(<0.6) with each other. As a result, we were left with 34 descriptors out 
of 286 descriptors for 2D, 8 descriptors out of 362 descriptors for 3D, 
and 210 descriptors out of 1957 FP descriptors. In order to get a highly 
significant feature set, we further tried to reduce the feature vector size 
using the most popular feature selection method, i.e., SVC-L1. It 

implements the support vector classifier (SVC) with linear kernel, 
penalized with L1 regularization. It selects the non-zero coefficients and 
then implements the L1 penalty to choose the relevant features from the 
large feature vector to reduce dimensions [36,37]. Based on this tech
nique, we get the most important feature set, i.e., 14 descriptors out of 
34 descriptors for 2D, 6 out of 8 descriptors for 3D and 22 FP descriptors 
out of 957 descriptors. The information regarding the selected de
scriptors is tabulated in Supplementary Table 1. 

2.5. Machine learning models 

In this study, different machine learning techniques have been used 
for the classification of allergen and non-allergen chemical compounds. 
Logistic Regression (LR) [38], k-nearest neighbors (KNNs) [39], Deci
sion Tree (DT) [40], Gaussian Naive Bayes (GNB) [41], XGBoost (XGB) 
[42], Support Vector Classifier (SVC) [43], and Random Forest (RF) [44] 
were implemented to develop the classification models. 

2.6. Cross-validation and evaluation parameters 

Several studies in the past have used 80:20 ratio for the division of 
the complete dataset [21,37]. In the present study, to evaluate the 
developed machine learning models, we have applied 5-fold 
cross-validation on 80% of the training data for the internal training, 
testing and model evaluation [45,46]. In 5-fold CV, the training data is 
divided into 5-sets, where four sets were used for the training and fifth 
set was utilized for the testing purposes. The same process is repeated 
five times, so that each set of positive and negative data is used for 
training and testing purposes. The performance of machine learning 
models was evaluated using the standard evaluation parameters. 
Threshold dependent and independent parameters both were used to 
measure the performance. Sensitivity (Sens), Specificity (Spec), Accu
racy (Acc), Matthews correlation coefficient (MCC) are 
threshold-dependent parameters, whereas the area under receiver 
operating characteristic curve (AUC) is a threshold-independent 
parameter. These performance evaluation parameters are well-defined 
in the literature and have been extensively used in assessing the per
formance of the model [21,47,48]. 

Sensitivity (Sens)=
TP

TP + FN
× 100 (1)  

Specificity (Spec)=
TN

TN + FP
× 100 (2)  

Accuracy (Acc)=
TP + TN

TP + TN + FN + FP
× 100 (3) 

Fig. 2. Shows frequency of top 10 positive and 10 negative fingerprints in allergens and non-allergens.  
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MCC =
(TP × TN) − (FP × FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (4)  

where FP, FN, TP, and TN are false positive, false negative, true positive, 
and true negative respectively. 

3. Results 

3.1. Fingerprints based analysis 

In order to understand, importance of each fingerprint in classifica
tion of allergens and non-allergens, we have computed the prediction 
ability of each fingerprint. We used our in-house scripts, to check 
discrimination ability of fingerprint based descriptors calculated by 
PaDEL. We ranked the fingerprints according to their probabilities for 
correctly classifying the chemical as allergen and non-allergen. Based on 
ranking, we identified the most important 20 fingerprints. Ten finger
prints are highly present in allergens and were called positive finger
prints, whereas other 10 which are highly present in non-allergens were 
called as negative fingerprints. Fig. 2 depicts the frequency of top 10 
positive and 10 negative fingerprints in allergens and non-allergens. 
These 10 positive fingerprints are highly abundant in allergens but 
negligible in non-allergens. Similarly, 10 negative fingerprints are 
highly abundant in non-allergens but negligible in allergens. The com
plete information regarding these top fingerprints is provided in Sup
plementary Table 2. 

3.2. Prediction models using 2D/3D/FP descriptors 

Several models have been developed for predicting chemical aller
gens using different kinds of chemical descriptors like 2D, 3D and FP 
descriptors. Several machine learning approaches have been used for 
developing prediction models, it includes RF, KNN, XGB, SVC, LR, GNB, 
and DT. The models developed by using these machine learning tech
niques were optimized by tuning different parameters on training 
dataset using five-fold cross validation. Firstly, we have developed the 
machine learning models using 14 descriptors selected from 2D de
scriptors. XGB algorithm perform better than other ML models and 
achieved maximum accuracy (81.99% and 77.63%), AUC (0.90 and 
0.89) on the training and validation datasets, respectively. Similarly 
models were developed using 6 features selected from 3D descriptors. 
RF-based model outperformed the other methods and achieved an ac
curacy of 78.81% and AUC 0.88 on training dataset as well as accuracy 
of 79.66% and AUC 0.85 on the validation dataset (Table 1). In order to 
develop models using fingerprint, we selected 22 out of total 16092 
fingerprints. Our RF-based model on 22 fingerprints achieved maximum 
AUC 0.92 and 0.92 on the training and validation datasets, respectively 
(Table 2). 

3.3. Prediction models using hybrid features 

In addition to the prediction models developed using single 
descriptor, we have also developed the ML-based hybrid model by 
combining all three types of descriptors, i.e., 2D, 3D and FP. The hybrid 
model developed using 42 features containing 2D (14 features), 3D (6 
features) and FP (22 features). The RF-based model had achieved 
maximum AUC 0.94 and 0.93 on the training and validation datasets, 

Table 1 
The performance of ML-based models developed using 14 (2D) descriptors and 6 (3D) descriptors.  

2D Descriptors 

ML Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

XGB 81.68 82.11 81.99 0.90 0.60 80.25 76.64 77.63 0.89 0.52 
KNN 81.37 81.99 81.82 0.90 0.59 81.48 79.91 80.34 0.88 0.57 
RF 81.99 81.29 81.48 0.90 0.59 83.95 81.31 82.03 0.90 0.61 
LR 80.12 81.05 80.80 0.88 0.57 81.48 77.57 78.64 0.88 0.54 
DT 79.50 79.65 79.61 0.85 0.55 67.90 76.64 74.24 0.80 0.42 

GNB 78.57 78.36 78.42 0.86 0.53 81.48 77.57 78.64 0.87 0.54 
SVC 78.26 77.78 77.91 0.87 0.52 85.19 78.04 80.00 0.88 0.58 

3D Descriptors 
RF 79.14 78.69 78.81 0.88 0.54 75.33 81.19 79.66 0.85 0.53 

KNN 77.61 77.87 77.80 0.85 0.51 68.83 80.73 77.63 0.83 0.47 
XGB 76.69 76.11 76.27 0.86 0.49 77.92 79.36 78.98 0.86 0.53 
SVC 73.31 72.25 72.54 0.81 0.42 62.34 73.85 70.85 0.77 0.33 
LR 68.41 71.31 70.51 0.73 0.36 70.13 72.48 71.86 0.76 0.38 

GNB 68.41 70.61 70.00 0.75 0.36 64.94 73.39 71.19 0.75 0.35 
DT 69.33 68.38 68.64 0.76 0.34 71.43 60.55 63.39 0.72 0.28 

DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LR, Logistic Regression; RF, Random Forest; SVC, Support Vector Classifier; XGB, XGBoost; 
Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUC, Area under receiver operating characteristic curve; MCC, Matthews correlation coefficient. 

Table 2 
The performance of ML-based models developed using 22 (FP) descriptors.  

ML Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 85.06 85.11 85.10 0.92 0.66 86.67 85.52 85.81 0.92 0.67 
XGB 85.37 85.11 85.18 0.92 0.66 85.33 85.52 85.47 0.90 0.66 
LR 83.84 83.82 83.83 0.91 0.64 81.33 81.45 81.42 0.86 0.58 

SVC 83.54 83.00 83.15 0.91 0.62 82.67 80.54 81.08 0.86 0.58 
KNN 82.93 83.12 83.07 0.90 0.62 85.33 80.54 81.76 0.87 0.60 
GNB 79.57 79.37 79.42 0.88 0.55 70.67 81.45 78.72 0.83 0.49 
DT 79.88 78.90 79.17 0.86 0.54 77.33 76.92 77.03 0.83 0.49 

DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LR, Logistic Regression; RF, Random Forest; SVC, Support Vector Classifier; XGB, XGBoost; 
Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUC, Area under receiver operating characteristic curve; MCC, Matthews correlation coefficient. 
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respectively with balanced sensitivity and specificity. Further, we 
exclude 3D descriptors, and developed the prediction models using only 
36 features (2D and FP). As depicted in Table 3, the RF-based model has 
obtained an AUC of 0.94 on the training dataset and 0.93 on the vali
dation dataset. It indicates that 36 features are sufficient to achieve 
highest performance, which is the best model. 

3.4. Webserver interface 

We have developed a user-friendly web server named ChAlPred for 
the prediction of chemicals as allergens and non-allergens. In this server, 
we have provided the three modules: (i) predict, (ii) draw and (iii) 
analog design module. The Predict module allows the user to submit the 
chemical compounds in different formats, such as SMILE, SDF and MOL 
formats, to predict whether the chemical could be allergenic or non- 
allergenic. The Draw module allows the user to draw or modify a 
molecule in an interactive way using Ketcher [49] and submit the 
molecule to the machine learning models to predict whether the modi
fied compounds will be allergenic or not. The Analog design module can 
be used to generate analogs based upon a combination of a given scaf
fold, building blocks and linkers. The server subsequently predicts the 
generated analogs as allergenic or non-allergenic. The web server has 
been designed using a responsive HTML template and browser 
compatibility for different OS systems. 

3.5. Case study: potential allergenic FDA-approved drugs 

In order to identify the FDA-approved drugs that can cause allergic 
reactions to the person, we have downloaded a total of 2675 FDA drug 
molecules from the DrugBank Database [50]. Out of 2675, we have only 
considered 1102 drugs which are approved. From 1102 drug molecules, 
the 2D structures were available only for 842 drugs. Finally, we have the 
structures of 842 FDA-approved drug molecules, which were used to 
identify that which drug molecules could be allergenic and 
non-allergenic. For this, we have used the “Predict” module of the 
“ChAlPred” web server using the default parameters. The model has 
predicted 114 drug molecules to be allergenic. Several studies done in 
the past have also supported our findings that some of these drugs can 
cause allergy in the patient when administered. We have identified 20 
drug molecules which are used to cure some diseases but also tend to 
cause allergic symptoms. Table 4 depicts the information of the drug 
molecules which cause some allergic reactions. 

4. Discussion and conclusion 

One of the major challenges in the field of drug discovery is side 
effect or adverse reaction of drugs. In the past, number of drugs have 
been already withdrawn from market due to their adverse effects. A 
wide range of toxicities are responsible for side-effect of drugs, it may be 
cytotoxicity, immuno-toxicity, hemo-toxicity, liver toxicity or allerge
nicity [66]. Identification of toxicity is costly, time consuming and 

Table 3 
The performance of ML-based hybrid models developed after combining all descriptors.  

42 Hybrid Descriptors (2D+3D + FP) 

ML Training Validation 

Sens Spec Acc AUC MCC Sens Spec Acc AUC MCC 

RF 85.63 86.00 85.90 0.94 0.68 87.95 82.55 84.07 0.93 0.66 
SVC 84.06 84.01 84.03 0.91 0.64 93.98 78.77 83.05 0.92 0.66 
KNN 84.06 83.66 83.77 0.92 0.63 80.72 81.60 81.36 0.92 0.58 
XGB 83.75 83.78 83.77 0.92 0.63 85.54 79.72 81.36 0.92 0.60 
LR 83.75 83.08 83.26 0.91 0.62 85.54 82.08 83.05 0.89 0.63 

GNB 84.06 79.70 80.88 0.89 0.59 73.49 83.02 80.34 0.87 0.54 
DT 79.06 78.76 78.85 0.87 0.53 81.93 80.66 81.02 0.88 0.58 

36 Hybrid Descriptors (2D þ FP) 
RF 87.5 87.28 87.34 0.94 0.71 84.34 83.02 83.39 0.93 0.63 

XGB 85 84.95 84.96 0.93 0.66 81.93 81.13 81.36 0.91 0.59 
LR 84.06 84.48 84.37 0.91 0.64 84.34 83.96 84.07 0.90 0.64 

KNN 83.44 84.13 83.94 0.93 0.63 81.93 82.08 82.03 0.91 0.60 
SVC 84.06 83.08 83.35 0.90 0.63 86.75 81.60 83.05 0.91 0.63 
GNB 84.06 79.00 80.37 0.88 0.58 77.11 83.96 82.03 0.88 0.58 
DT 80 79.00 79.27 0.86 0.54 86.75 76.89 79.66 0.88 0.58 

DT, Decision Tree; GNB, Gaussian Naive Bayes; KNN, k-nearest neighbors; LR, Logistic Regression; RF, Random Forest; SVC, Support Vector Classifier; XGB, XGBoost; 
Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; AUC, Area under receiver operating characteristic curve; MCC, Matthews correlation coefficient. 

Table 4 
FDA-approved drug molecules predicted by our server (ChAlPred) causing 
allergic symptoms.  

Drug 
Bank ID 

FDA-Approved 
Drugs 

Prediction Allergic Symptoms 

DB01112 Cefuroxime Allergen Anaphylactic Reaction [51] 
DB00421 Spironolactone Allergen Skin allergy, drug rash with 

eosinophilia and systemic 
symptoms (DRESS) induced by 
spironolactone [52] 

DB00859 Penicillamine Allergen Skin allergy [53] 
DB05013 Ingenol mebutate Allergen Skin allergy [54] 
DB01007 Tioconazole Allergen Contact hypersensitivity [55] 
DB06209 Prasugrel Allergen Hypersensitivity Skin Reaction 

[56] 
DB01330 Cefotetan Allergen Cefotetan-induced anaphylaxis 

[57] 
DB01331 Cefoxitin Allergen Allergic reactions [58] 
DB04854 Febuxostat Allergen Hypersensitivity Reactions (HSRs) 

[59] 
DB09212 Loxoprofen Allergen Type I allergic reaction, 

eosinophilic coronary periarteritis 
[60] 

DB00973 Ezetimibe Allergen Angioedema allergic reaction [61] 
DB00390 Digoxin Allergen Cutaneous hypersensitivity [62] 
DB00493 Cefotaxime Allergen Immediate Hypersensitivity 

Reactions [63] 
DB01150 Cefprozil Allergen Immediate Hypersensitivity 

Reactions [63] 
DB00833 Cefaclor Allergen Immediate Hypersensitivity 

Reactions [63] 
DB00689 Cephaloglycin Allergen Immediate Hypersensitivity 

Reactions [63] 
DB00438 Ceftazidime Allergen Immediate Hypersensitivity 

Reactions [63] 
DB00267 Cefmenoxime Allergen Immediate Hypersensitivity 

Reactions [63] 
DB00703 Methazolamide Allergen Skin allergy [64] 
DB13154 Parachlorophenol Allergen Allergic contact dermatitis [65]  
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tedious task. Thus, there is a need to predict these toxicities using in 
silico methods. Numerous tools have been developed to estimate the 
toxicity of the chemicals using different methodologies, such as The 
Toxicity Estimation Software Tool (TEST). It uses Quantitative 
Structure-Activity Relationships (QSARs) to estimate the toxicity of 
chemicals [67]. VegaQSAR [68], Toxtree [69], and PreADMET [70] are 
the other tools based on the QSAR model for toxicity prediction of the 
chemical molecules. Machine learning-based tools such as ToxiM, 
developed by Sharma et al., predict the toxicity and toxicity-related 
properties of small chemical molecules using machine learning ap
proaches [26], ProTox-II [71]. 

In contrast, no tool has been developed for predicting allergenicity of 
chemicals. In this current work, we have collected chemical compounds 
with their well-defined molecular descriptors utilising publicly available 

databases such as IEDB and ChEBI. The data yielded several descriptors 
which was reduced using various feature selection methods. We sorted 
the most important feature set, i.e., 14 descriptors for 2D, 6 descriptors 
for 3D and 22 FP descriptors. Based on these selected features (14 2D 
and 22 FP), we have successfully employed several machine learning 
approach and found that Random Forest attained a highest AUC of 0.94 
and 0.93 in the training as well as validation dataset. In addition, fin
gerprints based analysis suggests that two positive fingerprints, i.e., 
PubChemFP129 (Extended Smallest Set of Smallest Rings (ESSSR) ring 
set ≥ 1 any ring size 4) and GraphFP1014 are highly present in aller
genic chemical compounds, and three negative fingerprints, i.e., 
Klekota-Roth fingerprints (KRFP890 ([!#1][NH]C(=O)[CH3], 
KRFP3160 (C1CCOCC1)) and Substructure fingerprint (SubFP281 [OX2; 
$([r5]1@C@C@C(O)@C1),$([r6]1@C@C@C(O)@C(O)@C1)]) are 

Fig. 3. Chemical structure representation of the fingerprints (A) KRFP890, KRFP3160 (B) SubFP281, found abundant in non-allergic compounds.  
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abundant in non-allergenic chemical compounds as shown in Fig. 3(A) 
and (B). 

FDA-approved drugs analysis have shown that few drugs which are 
used for treatment of certain diseases, are also causing allergy as the side 
effect. Literature evidences have shown that administration of FDA- 
approved drugs such as, Cefuroxime [51], Spironolactone [52], Peni
cillamine [53] can cause allergic reactions like, skin allergies, anaphy
lactic reactions, hypersensitivity. For instance, A case report has shown 
that 60 year old patient was experiencing anaphylactic reaction after 
given an antibiotic cefuroxime [72]. Another report by Kinsara has 
shown that Spironolactone, a potassium sparing diuretic was given to a 
patient which was diagnosed with idiopathic cardiomyopathy, and he 
developed a macular rashes on both the arms [73]. A clinical study by 
Zhu et al., reported that the patients with Wilson disease were given 
D-penicillamine (DPA) medication at first, but later they developed 
neurological symptoms as well as allergies [53]. 

We can see that these medications can cause a variety of allergic 
reactions in patients, some of which can be fatal. To prevent these 
problems, there is dire need for predicting the allergenicity of chemical 
compounds before using them for treatment purposes. Eventually, we 
built a freely available webserver namely ChAlPred, for predicting 
allergenic and non-allergenic chemical compounds using machine 
learning techniques based on their 2D, 3D and FP molecular descriptors. 
We hope that this study will be helpful in the future for designing the 
drug molecules with no allergenic properties. 

Funding 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

Authors contribution 

Conception and design: Neelam Sharma, Gajendra P. S. Raghava. 
Development of methodology: Neelam Sharma, Sumeet Patiyal, 

Anjali Dhall, Gajendra P. S. Raghava. 
Acquisition of data: Neelam Sharma. 
Analysis and interpretation of data and results: Neelam Sharma, 

Sumeet Patiyal, Anjali Dhall, Gajendra P. S. Raghava. 
Webserver Implementation: Neelam Sharma, Sumeet Patiyal. 
Writing, reviewing, and revision of the manuscript: Neelam 

Sharma, Anjali Dhall, Naorem Leimarembi Devi, Gajendra P. S. 
Raghava. 

Data availability 

All the datasets generated for this study are available at the 
“ChAlPred” webserver, https://webs.iiitd.edu.in/raghava/chalpred/da 
taset.php. 

Biorxiv link 

DOI: https://doi.org/10.1101/2021.05.21.445101 https://www. 
biorxiv.org/content/10.1101/2021.05.21.445101v1.full.pdf. 

Declaration of competing interest 

The authors declare no competing financial and non-financial 
interests. 

Acknowledgement 

The authors are thankful to Department of Science and Technology 
(DST-INSPIRE), Department of Biotechnology (DBT) for fellowships, 
financial support, and IIIT-Delhi for providing the infrastructure and 
facilities. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2021.104746. 

References 

[1] N. Sharma, S. Patiyal, A. Dhall, A. Pande, C. Arora, G.P.S. Raghava, AlgPred 2.0: an 
Improved Method for Predicting Allergenic Proteins and Mapping of IgE Epitopes, 
Brief Bioinform., 2020, p. bbaa294. 

[2] I. Dimitrov, I. Bangov, D.R. Flower, I. Doytchinova, v. AllerTOP, 2–a server for in 
silico prediction of allergens, J. Mol. Model. 20 (2014) 2278. 

[3] Z.H. Zhang, J.L. Koh, G.L. Zhang, K.H. Choo, M.T. Tammi, J.C. Tong, AllerTool: a 
web server for predicting allergenicity and allergic cross-reactivity in proteins, 
Bioinformatics 23 (2007) 504–506. 

[4] H.X. Dang, C.B. Lawrence, Allerdictor: fast allergen prediction using text 
classification techniques, Bioinformatics 30 (2014) 1120–1128. 

[5] S. Maurer-Stroh, N.L. Krutz, P.S. Kern, V. Gunalan, M.N. Nguyen, V. Limviphuvadh, 
F. Eisenhaber, G.F. Gerberick, AllerCatPro-prediction of protein allergenicity 
potential from the protein sequence, Bioinformatics 35 (2019) 3020–3027. 

[6] K.K. Isaacs, M.R. Goldsmith, P. Egeghy, K. Phillips, R. Brooks, T. Hong, J. 
F. Wambaugh, Characterization and prediction of chemical functions and weight 
fractions in consumer products, Toxicol Rep 3 (2016) 723–732. 

[7] I. Kimber, D.A. Basketter, G.F. Gerberick, C.A. Ryan, R.J. Dearman, Chemical 
allergy: translating biology into hazard characterization, Toxicol. Sci. 120 (Suppl 
1) (2011) S238–S268. 

[8] U.S. Food & Drug Administration, Allergens in cosmetics, Available at, 
https://www.fda.gov/cosmetics/cosmetic-ingredients/allergens-cosmetics, 2020. 
(Accessed 13 May 2021). December 11. 

[9] T.W. Mak, M. Saunders, B.D. Jett, Immune hypersensitivity, in: Primer to the 
Immune Response. Academic Cell., 2014, pp. 487–516. 

[10] Molecular mechanism behind why allergies are more common in developed 
countries discovered: British Society for Immunology, Available at, https://www. 
immunology.org/news/molecular-mechanism-allergies-discovered, 2017. 
(Accessed 13 May 2021). accessed. 

[11] D.A. Santos, Why the World Is Becoming More Allergic to Food, 2018. BBC News 
King’s College London: BBC. Available at, https://www.bbc.com/news/health 
-46302780. (Accessed 13 May 2021). accessed. 

[12] W. Loh, M.L.K. Tang, The epidemiology of food allergy in the global context, Int. J. 
Environ. Res. Publ. Health 15 (2018). 

[13] E. Hossny, M. Ebisawa, Y. El-Gamal, S. Arasi, L. Dahdah, R. El-Owaidy, C. 
A. Galvan, B.W. Lee, M. Levin, S. Martinez, R. Pawankar, M.L.K. Tang, E.H. Tham, 
A. Fiocchi, Challenges of managing food allergy in the developing world, World 
Allergy Org. J. 12 (2019) 100089. 

[14] G. Obermeyer, F. Ferreira, Can we predict or avoid the allergenic potential of 
genetically modified organisms? Int. Arch. Allergy Immunol. 137 (2005) 151–152. 

[15] I. Kimber, D.A. Basketter, R.J. Dearman, Chemical allergens–what are the issues? 
Toxicology 268 (2010) 139–142. 

[16] R.E. Goodman, S.L. Hefle, S.L. Taylor, R. van Ree, Assessing genetically modified 
crops to minimize the risk of increased food allergy: a review, Int. Arch. Allergy 
Immunol. 137 (2005) 153–166. 

[17] M.G. Del Moral, E. Martinez-Naves, The role of lipids in development of allergic 
responses, Immune Netw. 17 (2017) 133–143. 

[18] S.P. Commins, T.A. Platts-Mills, Allergenicity of carbohydrates and their role in 
anaphylactic events, Curr. Allergy Asthma Rep. 10 (2010) 29–33. 

[19] R. Rubin, Allergic reactions to mRNA vaccines, J. Am. Med. Assoc. 325 (2021) 
2038. 

[20] N.B. Alsaleh, J.M. Brown, Engineered nanomaterials and type I allergic 
hypersensitivity reactions, Front. Immunol. 11 (2020) 222. 

[21] S. Saha, G.P. Raghava, AlgPred: prediction of allergenic proteins and mapping of 
IgE epitopes, Nucleic Acids Res. 34 (2006) W202–W209. 

[22] H.C. Muh, J.C. Tong, M.T. Tammi, AllerHunter: a SVM-pairwise system for 
assessment of allergenicity and allergic cross-reactivity in proteins, PloS One 4 
(2009), e5861. 

[23] I. Dimitrov, D.R. Flower, I. Doytchinova, AllerTOP–a server for in silico prediction 
of allergens, BMC Bioinf. 14 (Suppl 6) (2013) S4. 

[24] J. Wang, D. Zhang, J. Li, PREAL: prediction of allergenic protein by maximum 
Relevance Minimum Redundancy (mRMR) feature selection, BMC Syst. Biol. 7 
(Suppl 5) (2013) S9. 

[25] I. Dimitrov, L. Naneva, I. Doytchinova, I. Bangov, AllergenFP: allergenicity 
prediction by descriptor fingerprints, Bioinformatics 30 (2014) 846–851. 

[26] A.K. Sharma, G.N. Srivastava, A. Roy, V.K. Sharma, ToxiM: a toxicity prediction 
tool for small molecules developed using machine learning and chemoinformatics 
approaches, Front. Pharmacol. 8 (2017) 880. 

[27] M. Saito, R. Arakaki, A. Yamada, T. Tsunematsu, Y. Kudo, N. Ishimaru, Molecular 
mechanisms of nickel allergy, Int. J. Mol. Sci. 17 (2016). 

[28] I. Kimber, R.J. Dearman, D.A. Basketter, D.R. Boverhof, Chemical respiratory 
allergy: reverse engineering an adverse outcome pathway, Toxicology 318 (2014) 
32–39. 

[29] C.W. Yap, PaDEL-descriptor: an open source software to calculate molecular 
descriptors and fingerprints, J. Comput. Chem. 32 (2011) 1466–1474. 

[30] R. Vita, S. Mahajan, J.A. Overton, S.K. Dhanda, S. Martini, J.R. Cantrell, D. 
K. Wheeler, A. Sette, B. Peters, The immune Epitope database (IEDB): 2018 update, 
Nucleic Acids Res. 47 (2019) D339–D343. 

N. Sharma et al.                                                                                                                                                                                                                                

https://webs.iiitd.edu.in/raghava/chalpred/dataset.php
https://webs.iiitd.edu.in/raghava/chalpred/dataset.php
https://doi.org/10.1101/2021.05.21.445101
https://www.biorxiv.org/content/10.1101/2021.05.21.445101v1.full.pdf
https://www.biorxiv.org/content/10.1101/2021.05.21.445101v1.full.pdf
https://doi.org/10.1016/j.compbiomed.2021.104746
https://doi.org/10.1016/j.compbiomed.2021.104746
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref1
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref1
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref1
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref2
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref2
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref3
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref3
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref3
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref4
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref4
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref5
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref5
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref5
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref6
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref6
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref6
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref7
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref7
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref7
https://www.fda.gov/cosmetics/cosmetic-ingredients/allergens-cosmetics
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref9
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref9
https://www.immunology.org/news/molecular-mechanism-allergies-discovered
https://www.immunology.org/news/molecular-mechanism-allergies-discovered
https://www.bbc.com/news/health-46302780
https://www.bbc.com/news/health-46302780
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref12
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref12
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref13
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref13
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref13
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref13
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref14
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref14
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref15
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref15
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref16
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref16
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref16
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref17
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref17
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref18
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref18
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref19
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref19
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref20
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref20
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref21
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref21
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref22
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref22
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref22
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref23
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref23
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref24
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref24
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref24
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref25
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref25
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref26
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref26
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref26
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref27
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref27
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref28
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref28
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref28
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref29
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref29
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref30
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref30
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref30


Computers in Biology and Medicine 136 (2021) 104746

8

[31] J. Hastings, G. Owen, A. Dekker, M. Ennis, N. Kale, V. Muthukrishnan, S. Turner, 
N. Swainston, P. Mendes, C. Steinbeck, ChEBI in 2016: improved services and an 
expanding collection of metabolites, Nucleic Acids Res. 44 (2016) D1214–D1219. 

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 
M. Blondel, W.R. Prettenhofer, V. Dubourg, Scikit-learn: machine learning in 
Python, J. Mach. Learn. Res. 12 (2011) 2825–2830. 

[33] H. Singh, S. Singh, D. Singla, S.M. Agarwal, G.P. Raghava, QSAR based model for 
discriminating EGFR inhibitors and non-inhibitors using Random forest, Biol. 
Direct 10 (2015) 10. 

[34] S.K. Dhanda, D. Singla, A.K. Mondal, G.P. Raghava, DrugMint: a webserver for 
predicting and designing of drug-like molecules, Biol. Direct 8 (2013) 28. 

[35] A. Dhall, S. Patiyal, N. Sharma, N. LDevi, Gajendra P.S. Raghava, Computer-aided 
Prediction of Inhibitors against STAT3 for Managing COVID-19 Associate Cytokine 
Storm, PREPRINT (Version 1) Available at Research Square, 2021. 

[36] J. Tang, S. Alelyani, H. Liu, Feature selection for classification: a review, Data 
Classif Algorithms Appl 37 (2014) 1871–1874. 

[37] A. Dhall, S. Patiyal, N. Sharma, S.S. Usmani, G.P.S. Raghava, Computer-aided 
prediction and design of IL-6 inducing peptides: IL-6 plays a crucial role in COVID- 
19, Briefings Bioinf. 22 (2021) 936–945. 

[38] J. Tolles, W.J. Meurer, Logistic regression: relating patient characteristics to 
outcomes, J. Am. Med. Assoc. 316 (2016) 533–534. 

[39] A. Mucherino, P.J. Papajorgji, P.M. Pardalos, K-nearest neighbor classification, in: 
Data Mining in Agriculture, vol. 34, Springer Optimization and Its Applications, 
2009, pp. 83–106. 

[40] G.I. Webb, J. Fürnkranz, J. Fürnkranz, et al., Decision tree, Encycl. Mach. Learn. 63 
(2011) 263–267. 

[41] H. Zhang, Exploring conditions for the optimality of naïve bayes, Int. J. Pattern 
Recogn. Artif. Intell. 19 (No. 02) (2005) 183–198. 

[42] T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in: Proceedings of 
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and 
Data Mining, 2016, pp. 785–794. 

[43] C. Zhang, Xiaojian Shao, Dewei Li, Knowledge-based support vector classification 
based on C-SVC, Procedia Comput. Sci. 17 (2013) 1083–1090. 

[44] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 
(2006) 3–42. 

[45] A. Dhall, S. Patiyal, H. Kaur, S. Bhalla, C. Arora, G.P.S. Raghava, Computing skin 
cutaneous melanoma outcome from the HLA-alleles and clinical characteristics, 
Front. Genet. 11 (2020) 221. 

[46] P. Agrawal, D. Bhagat, M. Mahalwal, N. Sharma, G.P.S. Raghava, AntiCP 2.0: an 
Updated Model for Predicting Anticancer Peptides, Brief Bioinform, 2020 bbaa153. 

[47] S. Patiyal, P. Agrawal, V. Kumar, A. Dhall, R. Kumar, G. Mishra, G.P.S. Raghava, 
NAGbinder: an approach for identifying N-acetylglucosamine interacting residues 
of a protein from its primary sequence, Protein Sci. 29 (2020) 201–210. 

[48] V. Kumar, P. Agrawal, R. Kumar, S. Bhalla, S.S. Usmani, G.C. Varshney, G.P. 
S. Raghava, Prediction of cell-penetrating potential of modified peptides 
containing natural and chemically modified residues, Front. Microbiol. 9 (2018) 
725. 

[49] Life Sciences Open Source, Ketcher 2.0 (accessed at 13 May, 2021), https://lifescie 
nce.opensource.epam.com/ketcher/index.html#ketcher-2-0. 

[50] D.S. Wishart, Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed, 
D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, 
N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wilson, 
DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids 
Res. 46 (2018) D1074–D1082. 

[51] P. Del Villar-Guerra, B. Moreno Vicente-Arche, S. Castrillo Bustamante, C. Santana 
Rodriguez, Anaphylactic reaction due to cefuroxime axetil: a rare cause of 
anaphylaxis, Int. J. Immunopathol. Pharmacol. 29 (2016) 731–733. 

[52] P.D. Ghislain, A.D. Bodarwe, O. Vanderdonckt, D. Tennstedt, L. Marot, J. 
M. Lachapelle, Drug-induced eosinophilia and multisystemic failure with positive 
patch-test reaction to spironolactone: DRESS syndrome, Acta Derm. Venereol. 84 
(2004) 65–68. 

[53] X.Q. Zhu, L.Y. Li, W.M. Yang, Y. Wang, Combined dimercaptosuccinic acid and 
zinc treatment in neurological Wilson’s disease patients with penicillamine- 
induced allergy or early neurological deterioration, Biosci. Rep. 40 (2020). 

[54] U.S. Food & Drug Administration, FDA Drug Safety Communication: FDA warns of 
severe adverse events with application of Picato (ingenol mebutate) gel for skin 
condition; requires label changes (accessed at 13 May, 2021), https://www.fda.go 
v/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-se 
vere-adverse-events-application-picato-ingenol-mebutate. 

[55] H. Heikkila, S. Stubb, S. Reitamo, A study of 72 patients with contact allergy to 
tioconazole, Br. J. Dermatol. 134 (1996) 678–680. 

[56] S.H. Kim, S.D. Park, Y.S. Baek, S.Y. Lee, S.H. Shin, S.I. Woo, D.H. Kim, J. Kwan, 
Prasugrel-induced hypersensitivity skin reaction, Kor. Circ. J. 44 (2014) 355–357. 

[57] Y.H. Nam, E.K. Hwang, G.Y. Ban, H.J. Jin, H.S. Yoo, Y.S. Shin, Y.M. Ye, D.H. Nahm, 
H.S. Park, S.K. Lee, Immunologic evaluation of patients with cefotetan-induced 
anaphylaxis, Allergy Asthma Immunol. Res. 7 (2015) 301–303. 

[58] D.J. Crotty, X.J. Chen, M.R. Scipione, Y. Dubrovskaya, E. Louie, J.A. Ladapo, 
J. Papadopoulos, Allergic reactions in hospitalized patients with a self-reported 
penicillin allergy who receive a cephalosporin or meropenem, J. Pharm. Pract. 30 
(2017) 42–48. 

[59] K.S. Ma, J.C. Wei, W.H. Chung, Correspondence to ’Hypersensitivity reactions with 
allopurinol and febuxostat: a study using the Medicare claims data, Ann. Rheum. 
Dis. (2020), https://doi.org/10.1136/annrheumdis-2020-218090. 

[60] S. Ichimata, Y. Hata, N. Nishida, An autopsy case of sudden unexpected death with 
loxoprofen sodium-induced allergic eosinophilic coronary periarteritis, Cardiovasc. 
Pathol. 44 (2020) 107154. 

[61] T. Lu, T. Grewal, Ezetimibe: an unusual suspect in angioedema, Case Rep. Med. 
2020 (2020) 9309382. 

[62] S.J. Martin, D. Shah, Cutaneous hypersensitivity reaction to digoxin, J. Am. Med. 
Assoc. 271 (1994) 1905. 

[63] M.H. Kim, J.M. Lee, Diagnosis and management of immediate hypersensitivity 
reactions to cephalosporins, Allergy Asthma Immunol. Res. 6 (2014) 485–495. 

[64] Y. Xu, M. Wu, F. Sheng, Q. Sun, Methazolamide-induced toxic epidermal necrolysis 
in a Chinese woman with HLA-B5901, Indian J. Ophthalmol. 63 (2015) 623–624. 

[65] T.S. Sonnex, R.J. Rycroft, Allergic contact dermatitis from orthobenzyl 
parachlorophenol in a drinking glass cleaner, Contact Dermatitis 14 (1986) 
247–248. 

[66] H. Yang, L. Sun, W. Li, G. Liu, Y. Tang, Silico prediction of chemical toxicity for 
drug design using machine learning methods and structural alerts, Front. Chem. 6 
(2018) 30. 

[67] U.S. EPA, User’s guide for T.E.S.T. (version 5.1) (toxicity estimation software tool): 
a program to estimate toxicity from molecular structure, in: Chemical 
Characterization and Exposure Division Cincinnati, 2020. Avaiable at, 
https://www.epa.gov/sites/production/files/2016-05/documents/600r16058.pdf 
2020. (Accessed 13 May 2021). 

[68] Q.S.A.R. VEGA, Laboratory of Environmental Chemistry and Toxicology, 2021. 
https://www.vegahub.eu/portfolio-item/vega-qsar/. (Accessed 23 July 2021). 
accessed. 

[69] G. Patlewicz, N. Jeliazkova, R.J. Safford, A.P. Worth, B. Aleksiev, An evaluation of 
the implementation of the Cramer classification scheme in the Toxtree software, 
SAR QSAR Environ. Res. 19 (2008) 495–524. 

[70] PreADMET. https://preadmet.bmdrc.kr/toxicity-prediction/, 2015. (Accessed 23 
July 2021) accessed. 

[71] P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner, ProTox-II: a webserver for the 
prediction of toxicity of chemicals, Nucleic Acids Res. 46 (2018) W257–W263. 

[72] J. Gu, S. Liu, Y. Zhi, Cefuroxime-induced anaphylaxis with prominent central 
nervous system manifestations: a case report, J. Int. Med. Res. 47 (2019) 
1010–1014. 

[73] A.J. Kinsara, Spironolactone- induced rash: a case report and review, J. Clin. 
Cardiol. Diagn. 1 (2) (2018) 1–2. 

Neelam Sharma (NS) is currently working as Ph.D. in Bioinformatics from Department of 
Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 
India 

Sumeet Patiyal (SP) is currently working as Ph.D. in Bioinformatics from Department of 
Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 
India 

Anjali Dhall (AD) is currently working as Ph.D. in Bioinformatics from Department of 
Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 
India 

Dr. Naorem Leimarembi Devi (NLD) is currently working as Research associate in the 
Department of Computational Biology, Indraprastha Institute of Information Technology, 
New Delhi, India 

Prof. Gajendra P. S. Raghava (GPSR) is currently working as Professor and Head of 
Department of Computational Biology, Indraprastha Institute of Information Technology, 
New Delhi, India 

N. Sharma et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0010-4825(21)00540-0/sref31
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref31
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref31
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref32
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref32
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref32
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref33
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref33
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref33
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref34
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref34
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref35
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref35
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref35
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref36
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref36
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref37
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref37
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref37
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref38
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref38
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref39
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref39
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref39
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref40
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref40
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref41
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref41
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref42
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref42
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref42
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref43
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref43
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref44
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref44
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref45
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref45
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref45
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref46
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref46
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref47
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref47
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref47
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref48
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref48
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref48
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref48
https://lifescience.opensource.epam.com/ketcher/index.html#ketcher-2-0
https://lifescience.opensource.epam.com/ketcher/index.html#ketcher-2-0
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref50
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref50
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref50
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref50
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref50
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref51
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref51
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref51
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref52
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref52
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref52
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref52
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref53
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref53
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref53
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-severe-adverse-events-application-picato-ingenol-mebutate
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-severe-adverse-events-application-picato-ingenol-mebutate
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-severe-adverse-events-application-picato-ingenol-mebutate
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref55
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref55
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref56
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref56
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref57
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref57
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref57
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref58
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref58
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref58
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref58
https://doi.org/10.1136/annrheumdis-2020-218090
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref60
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref60
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref60
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref61
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref61
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref62
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref62
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref63
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref63
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref64
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref64
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref65
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref65
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref65
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref66
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref66
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref66
https://www.epa.gov/sites/production/files/2016-05/documents/600r16058.pdf%202020
https://www.epa.gov/sites/production/files/2016-05/documents/600r16058.pdf%202020
https://www.vegahub.eu/portfolio-item/vega-qsar/
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref69
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref69
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref69
https://preadmet.bmdrc.kr/toxicity-prediction/
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref71
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref71
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref72
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref72
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref72
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref73
http://refhub.elsevier.com/S0010-4825(21)00540-0/sref73

	ChAlPred: A web server for prediction of allergenicity of chemical compounds
	1 Introduction
	2 Methods
	2.1 Dataset collection and descriptors generation
	2.2 Generation of descriptors
	2.3 Dataset preprocessing
	2.4 Selection of descriptors
	2.5 Machine learning models
	2.6 Cross-validation and evaluation parameters

	3 Results
	3.1 Fingerprints based analysis
	3.2 Prediction models using 2D/3D/FP descriptors
	3.3 Prediction models using hybrid features
	3.4 Webserver interface
	3.5 Case study: potential allergenic FDA-approved drugs

	4 Discussion and conclusion
	Funding
	Authors contribution
	Data availability
	Biorxiv link
	Declaration of competing interest
	Acknowledgement
	Appendix A Supplementary data
	References


