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ARTICLE INFO ABSTRACT

Keywords: Advancements in cancer immunotherapy have shown significant outcomes in treating cancers. To design
HLA-Alleles effective immunotherapy, it’s important to understand immune response of a patient based on its genomic
Neobinders

profile. However, analyses to do that requires proficiency in the bioinformatic methods. Swiftly growing

Cancer L sequencing technologies and statistical methods create a blockage for the scientists who want to find the bio-
Prognostic biomarkers . S . . ‘s
Cytokines markers for different cancers but don’t have detailed knowledge of coding or tool. Here, we are providing a web-

based resource that gives scientists with no bioinformatics expertise, the ability to obtain the prognostic bio-
markers for different cancer types at different levels. We computed prognostic biomarkers from 8346 cancer
patients for twenty cancer types. These biomarkers were computed based on i) presence of 352 Human leukocyte
antigen class-I, ii) 660959 tumor-specific HLA1 neobinders, and iii) expression profile of 153 cytokines. It was
observed that survival risk of cancer patients depends on presence of certain type of HLA-I alleles; for example,
liver hepatocellular carcinoma patients with HLA-A*03:01 are at lower risk. Our analysis indicates that neo-
binders of HLA-I alleles have high correlation with overall survival of certain type of cancer patients. For
example, HLA-B*07:02 binders have 0.49 correlation with survival of lung squamous cell carcinoma and —0.77
with kidney chromophobe patients. Additionally, we computed prognostic biomarkers based on cytokine ex-
pressions. Higher expression of few cytokines is survival favorable like IL-2 for bladder urothelial carcinoma,
whereas IL-5R is survival unfavorable for kidney chromophobe patients. Freely accessible to public, CancerHLA-I
maintains raw and analysed data (https://webs.iiitd.edu.in/raghava/cancerhlal/).

suffering from various solid tumours [11,12].

The central pillars of immunotherapy are immune checkpoint in-
hibitors and chimeric antigen receptor (CAR) T cells. These therapies are
entirely dependent on T-lymphocytes (T cells), which recognize tumor-
associated peptides displayed on the tumor cell surface by human
leukocyte antigens (HLA) [13]. HLAs are the highly complex and poly-
morphic genes in the human genome, situated on chromosome 6. Class-I
HLA alleles interact with the CD8" T cell receptors to activate T cells
which further induce several immune responses to knock off the tumor
cells from our system [14-17]. The immunotherapies are entirely based
on the T cells, which identify tumor-associated peptides presented by
human leukocytes antigens (HLA) on the infected cell surface. Recently,
scientists majorly focused on HLA-dependent therapies, including CD8"
T cell therapy, tumor-infiltrating lymphocytes (TILs) therapy, and
TCR-engineered T cells (TCR-Ts) and neoantigen-based therapy [18,19]
to treat cancer patients. HLA-dependent treatments are more effective

1. Introduction

Cancer is one of the top causes of mortality worldwide; GLOBOCAN
reported that 19.3 million new cancer cases and 10 million deaths were
occurred in 2020 [1]. Several researchers have worked tirelessly over
the last few decades to develop novel cures and treatments to fight
against the deadly disease [2]. Traditional therapies like chemotherapy,
radiation, and surgery are the most commonly used treatments [3].
These radiation-based therapies have negative consequences on the
patient’s health and survival [2,4,5]. To circumvent the drawbacks of
conventional medicines, new treatment regimens have been developed,
including targeted cancer therapies, adoptive T cell therapy, immune
checkpoint inhibitor-based therapies, immunomodulators, interferons
and oncolytic viruses [6-10]. Cancer immunotherapy have resulted in
considerable outcomes and increase the life duration of many patients
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List of abbreviations

BLCA bladder urothelial carcinoma

BRCA  beast invasive carcinoma

CESC cervical squamous cell carcinoma and endocervical
adenocarcinoma

CHOL  cholangiocarcinoma

GBM glioblastoma multiforme

HNSC  head and neck squamous cell carcinoma

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

ov ovarian serous cystadenocarcinoma

PAAD  pancreatic adenocarcinoma

PRAD  prostate adenocarcinoma

READ rectum adenocarcinoma

SKCM  skin cutaneous melanoma

STAD stomach adenocarcinoma

THCA  thyroid carcinoma

UCEC uterine corpus endometrial carcinoma
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and efficient than traditional chemotherapies. HLA-peptide binding is
critical for determining the cancer immunogenicity.

In the past, number of repositories such as TCIA [20], TSNAdb [21],
NEPdb [22], dbpepNeo [23], Ovirusdb [24], CancerTope [25] have been
developed for designing immunotherapy. However, these databases lack
the information of impact of class-I HLA-alleles, neobinders and cyto-
kines on the survival of cancer patients. To construct patient-specific
therapy, genetic information such as HLA-alleles, neoantigens,
HLA-peptide binding affinity, and immune response need to be consid-
ered. Fortunately, it is now possible to detect patient-specific HLA-al-
leles with the help of latest technologies and the availability of
sequencing data. In the pilot study, we have developed a resource which
provides patient-specific information from public repositories such as
(TCGA and TCIA) and analysed patient survival based on HLA-alleles, as
well as the correlation of the amount of neobinders specific to
HLA-alleles with the overall survival in various cancer types. Further-
more, we used correlational analysis to better understand the role of
chemokines, cytokines, and their receptors in the prognosis of the cancer
patients. We combine all aforementioned analysis of 20 different types
of cancers onto a single user-friendly, and freely accessible platform
named as “CancerHLA-I” (https://webs.iiitd.edu.in/raghava/cancerhla
1/). CancerHLA-I is currently the most comprehensive web-based plat-
form to explore the roles of HLA-I alleles, neobinders and cytokines
expression on the survival of cancer patients for twenty different types of
cancers.
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Fig. 1. Complete architecture of the study including dataset collection, analysis and website development.
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2. Material & methods
2.1. Overall study design

The complete architecture of the study is depicted in Fig. 1.
2.2. Collection and pre-processing of datasets

In this study, we have obtained the cancer patients datasets from two
major repositories, The Cancer Genome Atlas (TCGA) [20] and The
Cancer Immunome Atlas (TCIA) [26]. We have considered those cancer
types and patients, which are available in both databases. Therefore, we
have a total of 8246 cancer patients with their HLA genotyping, gene
expression, and clinical information. We gathered the genomic and
clinical information for 8346 patients with 20 different types of cancer
(BLCA, BRCA, CESC, CRC, GBM, HNSC, KICH, KIRC, KIRP, LIHC, LUAD,
LUSC, OV, PAAD, PRAD, READ, SKCM, STAD, THCA, and UCEC). From
TCIA, we obtained the control access [with the approval of dbGap
(Project No. 17674)] patient-specific HLA-typing data and neoantigens
data for 20 cancer types. Furthermore, RNA-seq expression profiles for
20 types of cancer were obtained using TCGA assembler 2.0. After that,
we filtered out cytokines, chemokines, and their receptors gene
expression for 20 types of cancer. The expression profiles were then
transformed into log2 values after addition of 1.0 as a constant number
to each of the expression value. The survival information covered vital
status and overall survival time (OS).

2.3. Mean-overall and univariate survival analysis

For each cancer type, we first built a binary matrix based on the
presence or absence of HLA-alleles. Each column represents HLA-alleles,
and each row represents samples/patients. We used individual’s survival
data to calculate mean overall survival (MOS) based on the presence or
absence of an HLA-allele. After that, we computed the difference in MOS
(depending on presence/absence). Cox proportional hazard (Cox-PH)
regression models were used in the current study to identify HLA-alleles
linked with cancer patient survival. The “survival” package in R
(V.3.5.1) was used for univariate analysis. The cox regression coefficient
greater than O indicates that the presence of an HLA-allele affects sur-
vival (unfavorable), whereas less than 0 indicates that the presence of
alleles increases survival (favorable). For each allele, we calculated the
Hazard Ratio (HR) and 95 % CI (Confidence Interval). HR > 1 denotes
high-risk HLA-alleles, while HR < 1 depicts low-risk alleles; however,
HR = 1 has no effect on survival. Furthermore, the log-rank test was
conducted, and p-value was calculated to determine the significant
distribution of low-risk and high-risk patients. To calculate the predic-
tive performance of the models, we used the Concordance index (C). In
this study, univariate survival analysis performed based on HLA-alleles,
cytokines, and chemokines genes for 20 cancer type.

2.4. Correlation analysis

We extracted the strong binding neoantigens/epitopes correspond-
ing to each HLA-allele for each cancer type using the MHCflurry 2.0
software [27]. We classify neoepitopes as strong or weak binders using
the MHCflurry software’s binding affinity (BA) percentile, where neo-
antigens with BA<2 were considered as strong binders, and BA>2 were
taken as weak binders. Following that, we built a count matrix with the
number of strong binders matching to each HLA-allele and cancer type.
Further, we calculated the correlation coefficient between overall sur-
vival and the number of strong binders for each HLA-allele in order to
understand the impact of number of binders on the survival using
Pearson correlation test. The correlation coefficient and p-value (<0.05)
demonstrated the significance of the number of HLA-binding neo-
epitopes on the survival of the cancer patient. Moreover, we conducted
correlation analysis using the expression values of cytokines,
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chemokines genes for each cancer type. We used survival data and the
expression of 153 cytokines, chemokines, and their receptors.

2.5. Database implementation

The web interface of CancerHLA-I (https://webs.iiitd.edu.in/ragha
va/cancerhlal/) was developed using MySQL and hosted on Linux
based Apache server. In order to create the interactive user interface, we
developed responsive framework made up of HTML, CSS, and Java-
Script. To improve the data view, the user interface is responsive, which
means that the web-interface recognizes the user device and modifies its
structure and shape in accordance with the device resolution. With the
help of this functionality, the interface is adaptable to a wide range of
devices and browsers with various screen resolutions. The web-site can
be searched using variety of devices (smartphones or tablets) and
browsers (Google Chrome, Mozilla Firefox, and Safari).

3. Results
3.1. Statistical analysis of data of CancerHLA-I

CancerHLA-I incorporates data on cancer associated HLA-alleles,
neoantigens, cytokines, chemokine, and their relationship with the
overall survival for the 20 cancer types. The genomic and clinical in-
formation of 8346 cancer patients were downloaded from TCGA and
TCIA repositories and processed to build this resource. In Fig. 2, we have
provided the description of 20 types of cancer, with number of samples,
HLA-alleles, total number neoantigens, strong and weak binders. As
shown in Fig. 2B, HLA-B acquire maximum number of alleles i.e., 185
followed by HLA-A (97 alleles) and HLA-C (70 alleles). We observed that
in the case of Uterine Corpus Endometrial Carcinoma (UCEC), highest
number (i.e., 192 HLA-alleles) are reported, whereas Kidney Chromo-
phobe (KICH) reported the lowest number i.e., 86 HLA-alleles (See
Fig. 2C). In addition, we reported top-20 most frequent HLA-alleles
whose frequency distribution is maximum among the cancer patients
(See Fig. 2D). Moreover, we have obtained more than 90,000 strong
binders i.e., neobinders corresponding to Skin Cutaneous Melanoma
(SKCM) and Uterine Corpus Endometrial Carcinoma (UCEC) cancers.
However, we have less than 5000 neobinders for Kidney chromophobe
(KICH) and Thyroid Carcinoma (THCA) cancer types (See Fig. 2E). The
complete data used in this analysis is stored in big MySQL table that can
be searched and browsed by various categories defined in the database
such as cancer type, HLA-allele, neoantigen, HR, p-value, cytokine/
chemokine, correlation coefficient etc.

Of note, we have generated the UpSet plot to understand the distri-
bution of HLA-alleles in different cancer types. These overlapping and
exclusive HLA-alleles among each cancer type (See Fig. 3) are the ones
that can serve the basis for explaining the molecular heterogeneity and
similarity among the different cancer types. It also provides the potential
insights into the progression of disease.

3.2. HLA-based prognostic biomarkers

At first, we have combined all the cancer types to perform the sur-
vival analysis in order to check the overall impact of presence/absence
of HLA alleles on the survival of the cancer patients. As shown in the
Supplementary Table S1, we have not observed any significant trend by
combining all the cancer types due to the tumor heterogeneity. So, we
have generated binary matrix corresponding to each cancer type based
on the presence and absence of the HLA-alleles. With the utility of the
survival package, we have performed survival analysis to identify the
high risk and low risk HLA-alleles corresponding to each cancer type. In
Table 1, we have reported only those HLA-alleles whose presence in-
fluences the survival of more than one type of cancer patients. For
instance, presence of HLA-A*02:01 allele reduces the survival of kidney
cancer (HR = 5.46 with p-value = 0.03) and skin cancer patients (HR =
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Fig. 2. Complete distribution of dataset in 20 cancer types with number of samples, frequency of alleles, HLA-alleles corresponding to class-I genes, most

frequent HLA.

1.36 and p-value = 0.02). We observed that presence of HLA-A*02:01,
HLA-A*68:01, HLA-B*52:01 and HLA-C*03:02 is significantly associ-
ated with the poor prognosis (with HR > 2 and p-value<0.05) in
different types of cancer patients, as shown in Table 1. Moreover, the
presence of certain HLA-alleles significantly improves the survival rate
of cancer patients, for instance, HLA-C*14:02, HLA-C*12:03, HLA-
A*03:01 significantly improve the survival rate and act as good prog-
nostic markers in Bladder urothelial carcinoma (BLCA), Stomach
Adenocarcinoma (STAD), Liver Hepatocellular Carcinoma (LIHC) and
Glioblastoma Multiforme (GBM) (See Table 1).

3.3. HLA-I neobinders based correlation analysis

In this study, we have used MHCflurry 2.0 (O’Donnell et al., 2020)
software for the prediction of neoepitopes having strong binding po-
tential with the class-I HLA alleles. We have identified strong HLA-
specific neobinders for each cancer type. In order to understand the
impact of number of neobinders on the survival of the cancer patients,
we performed Pearson correlation analysis. Fig. 4, shows the correlation
values for the nine HLA-alleles (HLA-A*02:01, HLA-A*03:01, HLA-
C*07:01, HLA-C*07:02, HLA-A*01:01, HLA-B*07:02, HLA-B*08:01,
HLA-A*24:02, and HLA-B*44:02) present in most of the samples and all
cancer types. At first, we have computed the correlation between the
neobinders irrespective of the cancer types by combining all the data
files. We observed that, the overall impact on combining the neobinders
for all the cancer types is very less or negligible (See Fig. 4). On the other

hand, some of the neobinders corresponding to the particular HLA-
alleles have very high positive as well as negative correlation with the
specific cancer types. For instance, HLA-B*07:02 neobinders have very
high negative correlation (r = —0.77) with the survival of KICH patients,
while on the opposite side it shows positive correlation coefficient of
0.49 with the LUSC patients. In the case of BLCA, LUSC, and OV, most of
the nine alleles shows positive correlation with the overall survival.
However, in case of KICH, some of the alleles showed positive associa-
tion and some of them exhibited negative association with the survival.
This signifies that, the binders corresponding to HLA-alleles have
favorable and unfavorable impact based on the different cancer types.

3.4. Cytokines based prognostic biomarkers

In order to understand the prognostic role of cytokines and chemo-
kines, we have performed univariate survival analysis using their
expression profiles. In Fig. 5, we have reported those cytokine and
chemokines, whose expression significantly impact the survival rate of
the cancer patients. We observed that, the high expression of IL2, IFNB1,
IFNAS8, IL5 cytokines were having good impact on the survival of
different cancer patients (HR < 0.4 and p-value <0.05). Whereas IL5RA,
TGFBR3, CCR4, TGFB2, IL17A were highly associated with the poor
survival rate in KICH, READ, and GBM patients (HR > 4 and p-val-
ue<0.05). The complete analysis for all the other cytokines and che-
mokines is available on CancerHLA-I server.

Moreover, we have done the correlation analysis by considering the
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Fig. 3. UpSet plot of top 40 interactions including both common and unique HLA-alleles among each cancer type.
Table 1

Results of univariate survival analysis based on the presence/absence of HLA-alleles in different type of cancers.

Cancer HLA-allele Allele Present (No. of Patients) Allele Absent (No. of Patients) Hazard Ratio (95%CI) p-value Concordance Index
KICH HLA-A*02:01 26 39 5.462 (1.135-26.299) 0.034 0.72
SKCM 203 251 1.36 (1.038-1.781) 0.025 0.528
CRC HLA-A*68:01 24 431 2.466 (1.237-4.918) 0.01 0.532
ov 21 399 1.936 (1.101-3.402) 0.022 0.51
GBM HLA-B*44:03 16 138 1.805 (1.025-3.181) 0.041 0.528
LIHC 46 324 1.665 (1.041-2.663) 0.033 0.529
ov 31 389 1.583 (1.019-2.459) 0.041 0.512
THCA HLA-B*52:01 25 480 4.057 (1.155-14.254) 0.029 0.62
SKCM 16 438 2.183 (1.154-4.132) 0.016 0.515
HNSC 18 483 2.113 (1.149-3.886) 0.016 0.514
LIHC HLA-C*03:02 16 354 2.268 (1.104-4.658) 0.026 0.517
BRCA 96 997 1.659 (1.025-2.685) 0.039 0.52
LIHC 43 327 1.651 (1.034-2.636) 0.036 0.533
LUAD HLA-C*07:01 140 367 1.366 (0.998-1.869) 0.051 0.538
LUSC 139 356 1.365 (1.018-1.829) 0.037 0.526
LUAD HLA-C*12:03 51 456 1.668 (1.075-2.587) 0.022 0.518
BRCA 113 980 1.655 (1.042-2.627) 0.033 0.543
GBM 22 132 0.527 (0.29-0.936) 0.029 0.532
KIRP HLA-A*03:01 74 215 1.884 (1.007-3.526) 0.044 0.531
LIHC 72 298 0.635 (0.397-1.015) 0.046 0.526
BLCA HLA-C*14:02 15 392 0.140 (0.02-1.001) 0.048 0.517
STAD 20 390 0.315 (0.1-0.988) 0.048 0.516

gene expression of cytokine, chemokines and their receptors. The
heatmap shows (Fig. 6) the correlation of overall survival with the
expression of some of the cytokines and chemokines in 20 cancer types.
The darker blue color shows the positive correlation, whereas light
yellow color depicts the negative correlation. We observed that, cyto-
kine IFNG have very high and significant positive correlation with the
survival rate of GBM patients; higher expression of IL9 cytokine is
associated with positive correlation in BLCA and OV cancer patients.
Whereas, cytokine IL2, TNFA1P1, and TNF are associated with the
negative correlations with the survival of KICH patients. In case of

chemokines, we observed that CCL1 (CRC, KIRC and READ), CCL20
(BLCA, READ, and PAAD), CCL27 (GBM, KICH and THCA) had positive
correlation with the overall survival. However, the over-expression of
CCL18, CCL28, CCL4, CCL5 is associated with the negative correlation
with most of the cancer types (See Fig. 6).

3.5. Utility of CancerHLA-I

CancerHLA-I can be interactively browsed and searched in a variety
of different ways to satisfy the query of the user. The homepage of
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Fig. 4. Correlation analysis based on the number of HLA-I neobinders with the overall survival of cancer patients.

CancerHLA-I website provides a simple search page, where users can
search the query in the database for specific cancer types, HLA-alleles,
neoantigens, cytokines/chemokines, and its survival association (See
Fig. 7). The advanced search page in the database provides the
customized search facility for user defined query using Boolean ex-
pressions (AND/OR). We compiled the data in a tabular form corre-
sponding to each cancer type for easy and efficient access. The
advantage of the browsing facility is that users can quickly obtain all the
results by clicking onto specific entry under concerned category.
Moreover, ‘Help’ page on the website provides detailed visualization of
the usage of the CancerHLA-I database. The data can be downloaded as a
tab-delimited, comma separated, JSON, PDF and XLSX file formats.

3.6. Comparison with other resources

In the past, a number of databases have been created to store and
provide the information related to various types of cancers such as
TCGA, GEO, GDC etc. In order to explore the cancer biology, it is
important to process and analyse these genomic datasets using different
bioinformatics tools, pipelines and statistical approaches. However, to
address the questions related to specific field of the cancer biology such
as cancer immunotherapy; devoted resources are required. As shown in
Table 2, we have compiled and compare various web-based resources
with our database based on different parameters. TCIA [20], TSNAdb
[21], NEPdb [22] dbPepNeo [23], TCLP [28], and CancerTope [25]
databases provide information regarding the cancer specific peptides,
and HLA-alleles. However, these resources lack the association of pa-
tient specific HLA-alleles, neoantigens and cytokine expressions with the
overall survival of cancer patients in different cancer types. Of note,
CancerHLA-I provides the impact of presence/absence of HLA-alleles,
neoantigens and cytokines immune signatures on the survival of the
20 different kinds of cancer patients by implementing correlation and
survival analysis.

4. Discussion

Class-I HLA molecules are essential for immunosurveillance and
cancer immunotherapy [29,30]. Several studies report that, there is a
significant impact of HLA-alleles with the survival of cancer patients. For
instance, Naranbhai et al., shows the presence of HLA-A*03 allele in
kidney cancer patients reduces the survival rate and associated with the
poor response against the immune checkpoint blockade (ICB) therapy
[31]. HLA-B*55 and HLA-A*01 significantly improves the survival,
while HLA-B*50 allele reduces the survival rate in the melanoma pa-
tients [32]. Moreover, due to the mutations at the genetic level, loss of
heterozygosity occurs in HLA genes at chromosome 6 in the colorectal
cancer and non-small cell lung carcinoma patients [30,33]. However,
the loss of the functions of class-I HLA molecules exhibits the escape
mechanism by different cancer types [30,34,35]. Moreover, mutations
in type-I and II interferon pathway genes also effect the survival of
cancer patients. Interleukins such as IL-6, IL-11, IL-1, and TGF-$ induces
cancer cell proliferation and progression [36]. The relationship between
cytokines and cancer types is highly complicated and variable. The
outcome or effect of certain types of cytokines, such as IL-2, IL-5, TNF,
etc., varies with the different types of cancer. There could be a number of
reasons associated with the favorable or unfavorable effect of cytokines
with the different types of cancers, such as tumor microenvironment
[37-39] the stage of cancer [40-42], heterogeneous nature of cancer
[43,44], and interaction with the other factors, like other cytokines,
immune cells, and tumor antigens [45].

To understand the overall impact of patient-specific HLA-alleles,
neobinders and cytokines/chemokines expression profiles, we have
conducted a pan-cancer analysis using 20 cancer types. Here, we have
performed survival and correlation analysis using the genomic infor-
mation of cancer patients. Furthermore, we investigated the relationship
between cytokine expression with the overall survival of the cancer
patients. Our analysis reveals that HLA-C*14:01 and HLA-C*12:03
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Fig. 6. Correlation analysis based on the expression profile of cytokines & chemokines with the overall survival of cancer patients.

significantly improves the overall survival of cancer patients, whereas
HLA-A*02:01, HLA-A*68:01, HLA-B*52:01, HLA-C*03:02 are associ-
ated with the poor survival (See Table 1). Some previous studies also

support our findings; for example, Andersson et al., reported that HLA-
A*02 positive epithelial ovarian cancer patients possess poor overall
survival rate [46]. Alifu et al., shows that HLA-A*68:01 associated with
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Table 2
Shows major features integrated in our repository CancerHLA-I and in existing
major repositories.

Major features
integrated in

Different Repositories/Databases

o CancerHLA1 dbPepNeo  TCIA TSNAdb  NEPdb

repositories

Type of cancers 20 14 20 16 23
covered

Search of neopeptides ~ Yes Yes No Yes Yes

Similarity search with ~ Yes No No No Yes
neopeptides

Browse on type of Yes Yes Yes Yes Yes
cancer

HLA allele wise Yes Yes Yes Yes Yes
categorization

Correlation (overall Yes No No No No
survival vs
neobinders of HLA
alleles)

Correlation (overall Yes No No No No
survival vs
expression of
cytokines)

Prognostic value of Yes No No No No
HLA alleles

Prognostic value of Yes No Yes No No
cytokines

the poor survival rate in advanced squamous cell cervical cancer pa-
tients [47]. A study report that presence of HLA-B*52:01 in Japanese
women with cervical cancer significantly associated with poor survival
rate with HR = 1.6 and p < 0.05 [48]. In addition, HLA-B*52 allele is
also having strong association with the development of takayasu arter-
itis (TAK) [49,50]. Moreover, correlation analysis revealed the positive
and negative association of neobinders with the survival rate of the
cancer patients (See Supplementary Figs. S1-59).

Torrenté et al., reported that it is not necessary that the assumption
of gene expression transcriptomic data follows a specific kind of distri-
bution, such as, normal distribution always holds true [33371881].
Therefore, we have implanted the Fitter library of Python to explore the
distributions of cytokine expression. Our results correspond with their
observation that less that 50 % of the cytokine expression data follows
the normal distribution, whereas rest of them follows other distributions
such as Lognormal, Cauchy, and Gamma (See Supplementary Fig. S10).
Further, we identified that, higher expression of some of the cytokines,
such as, IL2, IFNG, IFNB, TNF significantly improves the survival of
cancer patients, while some of the cytokines like IL5, IL17, CCR4, TGF
reduces the survival rate significantly. IL2 elicit anti-tumor immune
response and acts as a key cytokine in our immune system, FDA
approved IL2-based immunotherapy for the treatment of metastatic
renal cell carcinoma and metastatic melanoma. Studies also revealed
that higher expression of IL2 is associated with improved survival rate
[51,52]. Moreover, high expression of interferon-gamma improved the
progression-free survival rate of non-small cell lung cancer patients
treated with nivolumab; and melanoma patients treated with
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pembrolizumab [53]. Wang et al., report that chemokines receptor
(CCR4) acts as negative regulator with survival and its high expression
levels CCR4 in oral tongue carcinoma patients significantly associated
with poorer survival rate [54]. While high serum levels of IL17 cytokine
associated with poor prognosis in non-small cell lung carcinoma,
HBV-related hepatocellular carcinoma, and gastric cancer [55]. These
studies indicate that presence/absence of HLA-alleles and cytokines
expression rate are significantly impact the survival rate of different
cancer patients. In order to aid the clinicians and scientific community
we attempted to develop a highly interactive web-based platform for the
analysis and identification of cancer-specific biomarkers which shows
the overall impact of HLA and cytokines with the overall survival rate.
We have integrated user-friendly browsing, searching, and analysis
modules in our resource “CancerHLA-I” (https://webs.iiitd.edu.in/ra
ghava/cancerhlal/) for easy data retrieval, data comparison, and
examination.

5. Conclusion

Understanding the prognostic importance of HLA-alleles, binding
peptides, and cytokines is crucial to examining the impact and efficacy
of cancer immunotherapy. In this study, we have developed a repository
“CancerHLA-I” which supports the correlation and survival analysis
based on the genomic profiles of 20 types of cancer patients. CancerHLA-
I provides a platform to clinicians and researchers to identify the asso-
ciations between 352 Class-I HLA alleles with the survival of cancer
patients. Moreover, it also provides the correlation and statistical sig-
nificance values of cytokines/chemokines with the survival of different
type of cancer patients. We anticipate that our research yields promising
novel HLA and cytokines-based biomarkers for improved cancer
immunotherapy and treatment.
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