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Abstract

Numerous cancer-specific prognosticmodels havebeendeveloped in thepast,wherein

one model is applicable for only one type of cancer. In this study, an attempt has been

made to identify universal or multi-cancer prognostic biomarkers and develop models

for predicting survival risk across different types of cancer patients. In order to accom-

plish this, we gauged the prognostic role ofmRNAexpression of 165 apoptosis-related

genes across 33 cancers in the context of patient survival. Firstly, we identified spe-

cific prognostic biomarker genes for 30 cancers. The cancer-specific prognostic mod-

els achieved a minimum Hazard Ratio, HRSKCM = 1.99 and maximum HRTHCA = 41.59.

Secondly, a comprehensive analysis was performed to identify universal biomarkers

acrossmany cancers.Our best prognosticmodel consisted of 11 genes (TOP2A, ISG20,

CD44, LEF1, CASP2, PSEN1, PTK2, SATB1, SLC20A1, EREG, and CD2) and stratified

risk groups across 27 cancers (HROV = 1.53-HRUVM = 11.74). Themodel was validated

on eight independent cancer cohorts and exhibited a comparable performance. Fur-

ther,we clustered cancer-types on the basis of shared survival related apoptosis genes.

This approach proved helpful in development of cross-cancer prognostic models. To

show its efficacy, a prognostic model consisting of 15 genes was thereby developed

for LGG-KIRC pair (HRKIRC = 3.27, HRLGG = 4.23). Additionally, we predicted potential

therapeutic candidates for LGG-KIRC high risk patients.
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1 INTRODUCTION

Cancer is the leading cause of death worldwide [1] and its develop-

ment has been attributed to various regulatory factors [2]. The explo-

ration of these regulatory mechanisms that lead to cancer has been a

hot topic in recent years. It provides important insights into fundamen-

tal biological processes linked with carcinogenesis. Besides this, the

knowledge about underlying mechanistic processes has led to devel-

opment of novel drugs and therapeutic strategies. It has also resulted

in the identification of several prognostic biomarkers for risk assess-

ment in cancer patients. However, a major challenge in cancer prog-

nosis is the unavailability of a universal biomarker applicable across all

the cancers. The availability of even at-least a handful of cross-cancer

prognostic biomarker(s) that can be used for risk assessment across

maximum cancers remains absent. An ideal universal biomarker would

bypass the need of several different biomarkers currently in use. With

an added advantage of being time effective, these biomarkers would

also be of great financial benefit to already burdened cancer patients.

Such patients would also not have to undergo a variety of agonizing

prognostic examinations, thereby reducing any further effect on their

previously compromised health conditions. However, instead of such

biomarkers, there exists a plethora of biomarkers and risk prediction

methods. Majority of these biomarkers/methods are specific only to a

particular cancer and fail when employed for other cancers. However,

with the increase in omics data, a few pan-cancer prognostic biomark-

ers have also been developed. Recent examples include a comprehen-

sive analysis presented byNing Zhao et al. [3] wherein, themulti-omics

data for 13 cancers was used to identify prognostic biomarker genes

specific to the cancers as well as seven genes associated with survival

in 13 cancers. Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-

15) expression levels were found to be associated with eight cancers

in the context of overall-survival. Siglec-15 is a member of family of

lectins that recognize sialylated glycans and control immune function.

A maximum risk stratification with HR = 3.03, p = 0.044 was obtained

in THCA (Thyroid carcinoma) patients by employing mRNA expression

of Siglec-15 [4]. Yet another study showed that the mRNA expression

levels of the gene, Long intergenic non-coding RNA1614 (LINC01614)

can be used to segregate risk groups in 11 cancers based on over-

all survival, with the maximum separation achieved in THCA patients

with HR = 4.047 and p = 0.010 [5]. A few other studies have also

elucidated the prognostic potential of genes such as FUNDC1 whose

expressionwas linked to prognosis in eight cancers with amaximal risk

separation in LIHC (HR= 1.73, logrank-p= 0.0022) [6] andHSP90AA1

whose differential expression was observed in eight cancers and was

found to be a prognostic biomarker in hepatocellular carcinoma [7].

Apart from these, tumour mutational burden and indel burden have

also been recently shown to be linked with prognosis in 14 cancers

[8] with the best performance in CHOL (HR = 6.10, p = 0.002). These

studies are promising, however one of the major pitfalls associated

with these studies is the applicability range. Most of the prognostic

biomarkers suggested in these studies are applicable to just a hand-

ful of cancers. Another crucial disadvantage is the low-risk stratifica-

tion achieved in terms of Hazard ratios and p-values. Therefore, the

STATEMENTOF SIGNIFICANCE

∙ In the past, several cancer-specific prognostic biomark-

ers/models have been identified/developed, which are

applicable to only a particular type of cancer population.

In this study, we have attempted to identify universal or

multiple cancer prognostic biomarkers and develop prog-

nostic models which are applicable across a number of

cancer types. By means of a comprehensive evaluation of

prognostic potential of expression of apoptotic pathway

genes,wewereable to catalogue survival associatedgenes

in 30 cancers. Based on this, risk prediction models were

first developed for each cancer-type. Henceforth, wewere

able to identify a gene signature that is significantly associ-

atedwith survival risk across 27 cancers. Briefly, this study

finds its significance by proposing a versatile prognostic

method for a large number of cancer types complemented

by a computational strategy for devising similar methods

based on a novel clustering-based approach. A practical

realisation of this study can bemonumental in cancer care

and therapeutic management.

challenge for finding more accurate biomarkers which offer prognos-

tic value across a large number of cancers remains open. As discussed

earlier, since amultitudeof factors causeheterogeneity of cancer,more

efforts are required towards thorough investigation of cardinal molec-

ular processes that have been associated with cancer progression and

development in the past.

One of these fundamental processes is the programmed cell death

process, which, when defunct, leads to accumulation of malignant cells

in the body [9]. This cell death mechanism, also known as Apoptosis,

is a multistep cellular process involving a large number of regulatory

molecules. It primarily consists of genes and their encoded proteins,

which orchestrate the death of a cell as a result of various stresses.

The downregulation of tumour suppressor gene, p53, leading to

tumour development and progression is perhaps the most popular

example [10]. Other examples include the downregulation of lev-

els of pro-apoptotic BCL2 family proteins such as BCL2, BCL-XL,

MCL1, and upregulation of anti-apoptotic BCL2 family proteins

such as BAX, BAK in many cancers [11]. Apoptosis is also one of the

widely studied processes in the context of development of prognostic

biomarkers and therapeutics which target its key components [12].

Few prominent examples include biomarkers based on correlation of

protein/gene expression of apoptotic molecules such as Caspase 3/6,

XIAP, Apaf-1, ML-IAP, and XAF1 with patient survival and/or other

clinico-pathological features in Melanoma as reviewed by Charles EM

et al. [13]; identification of apoptosis related biomarkers such as BCL2

(HR = 5.21, p = 0.0063), Fas/FasL (HR = 3.49, p = 0.005), p53 (HR =

2.48, p= 0.046), TRAIL (HR= 1.21, p= 0.026) in the context of overall

survival of colorectal cancer patients along-with various statistical and

 16159861, 2022, 3, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202000311 by L
ibrary &

 Inform
ation C

entre Indraprastha Institute O
f, W

iley O
nline L

ibrary on [19/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3 of 15

mathematical models for risk assessment [14–16]. Apoptosis related

molecules have also been identified to play prognostic roles in other

cancers such as identification of survival relatedproteinsAGR2, ENO1,

GDI2, GRP78, GRP94, PPIA, PRDX1, PTEN, and gene KIF15 by means

of immunohistochemical staining in gastric cancer [17,18]; high protein

and mRNA levels of BIK as markers of tumour recurrence in breast

cancer [19]; gene expression ofMCL1 as prognostic biomarker in Non-

small cell lung cancer [20]; high expression of TOP2A was shown to be

linked with poor survival in bladder urothelial carcinoma [21]; a seven

gene signature was established to distinguish patients with isocitrate-

wildtype glioblastoma [22] and increased FER1L4 expression was

found to promote apoptosis and suppress epithelial-mesenchymal

transition in osteosarcoma [23]. In thyroid cancer, alterations in

apoptotic molecules such as p53, BCL2, BCL-XL, BAX, p73, Fas/FasL,

PPARG, TGFb, and NFKb have also been associated with carcinogen-

esis [24]. However, the scope of these studies was limited to specific

cancers with a limited set of genes/proteins. Since apoptosis consists

of a large number of regulatory genes/proteins, gauging the prognos-

tic significance of maximum number of genes/proteins involved in

apoptosis across several cancers can offer a better understanding. It

can also reveal several novel targets and help in development of finer

biomarkers for cancer prognosis.

In this study, we utilized the gene-expression data of 33 cancer

cohorts from The Cancer Genome Atlas (TCGA) and evaluated the

prognostic performance of 165 genes involved in the apoptosis path-

way. Apart from identifying cancer-specific prognostic genes, we also

constructed multiple gene-based risk prediction models based on the

overall survival of patients. Firstly, we developed universal biomark-

ers which can be used for prognosis across 33 cancers. Secondly, for

individual cancer cohorts, we were able to develop risk assessment

methods, some ofwhich are superior to previously suggested biomark-

ers/methods. Thirdly, we developed an 11-gene multi-cancer prognos-

tic biomarker that can be used across 27 cancers. Finally, we pro-

pose a strategy for constructing cross-cancer prognostic biomarkers

by means of hierarchical clustering of cancers on the basis of common

prognostic genes. We show the efficacy of this strategy by developing

a 15 gene biomarker applicable for both brain low grade glioblastoma

(LGG) and kidney renal cell carcinoma (KIRC) patient prognosis.

2 METHODS

2.1 Data collection and preprocessing

Normalized gene expression datasets ‘.rsem.genes.normalized_results’

and raw counts ‘.rsem.genes.results’ for 33 cancer cohorts were

obtained from ‘The Cancer Genome Atlas’ (TCGA) using TCGA

Assembler-2 [25]. A ‘pan-cancer’ dataset was formed by combining all

the samples with raw expression values of genes across 33 cancers

and normalizing them using 75th percentile normalization. A list of

165 apoptosis genes was obtained from [26]. The gene expression

data for these 165 genes were extracted from the downloaded TCGA

cancer datasets and pan-cancer dataset. Only those patient samples

were retained in all the datasets for whom overall-survival and censor-

ing information were available. The number of samples in pan-cancer

dataset was 9569, while the number of samples in each cancer cohort,

N, is mentioned in Table 2. TCGA abbreviations for cancers are pro-

vided in S2 Table 1.

2.2 Survival analysis

Univariate unadjusted Cox proportional hazards (Cox-PH) regression

models were used to screen survival-associated genes from their

expression data using the formula:

h (G, t) = h0 (t) exp (𝛽G) (1)

where the variable G is the expression data of a gene, h is the haz-

ard function and the variable t is the overall-survival time. The Cox

regression coefficient, β> 0 signifies that the elevated gene expression

is unfavourable while inverse applies for β < 0. R packages ‘survival’

and ‘survminer’ were used to implement the Cox-PH models. Using

these, Hazard ratios (HR) were computed along-with confidence inter-

vals (%95 CI) and p-values. HR is the ratio of hazard rates representing

the death risk associated with one group as compared with another by

using anappropriate cut-off of gene-expression. Basedon its definition,

HR > 1 implies the increase in death risk when the expression of the

gene is increased, and vice-versa for HR < 1. However, the expression

of gene has no effect on survival if HR = 1. For comparison of survival

curves between two risk groups, we used Kaplan-Meier (KM) plots

and log-rank tests. Survival associated genes were identified with HR

greater than or less than 1 and p< 0.05. Themetric Concordance index

(C) was used to evaluate themodel’s predictive performance [27–29].

2.3 Prognostic index (PI)

As implemented in [30–33], for n genes, g1, g2, . . . gn with cox coeffi-

cients 𝛽1, 𝛽2 . . . 𝛽n obtained from the univariate Cox-PH analyses using

median cut-offs, Prognostic Index (PI) was defined as:

PI = B.g (2)

where g = [g1 g2 g3 . . . . gn] and B = [𝛽1𝛽2𝛽3 . . . 𝛽n]. Thereafter, risk

groups were segregated by using univariate Cox-PH regressionmodel,

as defined earlier with G replaced by PI. The cut-off value for PI was

evaluated using cutp from ‘survMisc’ package in R. Model’s perfor-

mance is estimated using HR, p, %95 CI and C values.

2.4 Voting model

As implemented in [34], for an n-gene voting model, a n-bit vector is

assigned to each patient sample. Thereafter, each bit is labelled as high

or low risk on the basis of corresponding classification by individual
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genes, using Cox-PH univariate models. Finally, the sample is allotted

an overall risk label decided bymajority of the labelled bits (i.e., greater

than n/2 labels).

2.5 Gene ontology (GO) functional enrichment
analysis

A GO enrichment analysis was performed for finding the molecular

function (MF) associated with survival associated genes in specific

cancers. The STRING application programming interface (API) for GO

functional enrichment was implemented in python and used for per-

forming this analysis (https://string-db.org/help/api/). Thereafter, the

GOMF enriched terms were analysed across different cancers to find

out overlapping terms.

2.6 Screening of candidate therapeutic molecules

The univariate Cox-PH survival analysis provides information about

the risk associated with an increase in the expression of specific genes.

These genes can be categorized into two groups: genes whose ele-

vatedexpression is a risk factor andgeneswhoseelevatedexpression is

favourable for patient survival. The modulation of the expression pro-

file of these genes can be a potential therapy for cancer patients. For

this, we employ the Connectivity Map2 database [35,36], which pro-

vides a list of enriched small molecules based on the list of upregulated

or downregulated genes. The predictedmolecules are ranked based on

enrichment values and can act as potential therapeutic candidates for

altering the gene expression.

3 RESULTS

3.1 Survival-risk prediction for all types of cancer
patients

Thedataset comprising of patient samples belonging to all cancer types

(pan-cancer) was utilized here to develop risk predictionmodels which

can be applicable across all the cancers. Top survival associated genes

were first screened and after that used to develop models which strat-

ify the patients intoHighor Low risk groups. Apart from risk prediction,

survival probabilities were also estimated using the KM plots. In order

to screen top genes, two different approaches were implemented: (i)

correlation analysis-based approach, and (ii) Cox-PH survival analysis-

based approach. Details are provided below.

3.1.1 Correlation based universal prognostic
biomarkers

Pearson correlation coefficient (R) was used to determine the relation-

shipof theexpressionof165apoptotic geneswithOS in thepan-cancer

TABLE 1 Top survival associated genes in the pan-cancer cohort

S.no. Gene 𝜷 HR p-value 1/HR C

1. EREG 0.68 1.98 1.69× 10−54 0.50 0.60

2. IL1A 0.65 1.91 3.41× 10−49 0.52 0.59

3. IL18 0.51 1.66 5.02× 10−31 0.60 0.58

4. BAK1 0.51 1.66 1.03× 10−30 0.60 0.58

5. BID 0.50 1.65 3.44× 10−30 0.61 0.58

6. CDC25B 0.50 1.64 1.10× 10−29 0.61 0.58

7. IL1B 0.49 1.63 4.70× 10−29 0.61 0.58

8. ANXA1 0.46 1.59 3.16× 10−26 0.63 0.57

9. TOP2A 0.46 1.59 4.32× 10−26 0.63 0.58

10. BRCA1 0.46 1.58 1.94× 10−25 0.63 0.58

HR: Hazard Ratio, C: Concordance Index, 𝛽: Cox regression coefficient.

Cox-PHunivariate regression analysiswith>median expression cut-offwas

used to estimate survival risk associated with the two risk groups, for each

gene.

dataset. It was observed that gene expression was weakly related to

OS when the pan-cancer dataset was used. Figure 1A shows the genes

having |R|> 0.04, LEF1 being the top correlated gene with R = 0.077

(see S1 Table 1 for complete results). Figure 1B shows the histogram

plot for the correlation analysis. Most of the genes were found to be

negatively related to OS implying the inverse role of their expression

with OS. For example, CASP7 and BMP2 upregulation was observed

to weakly reduce OS of the patients, while LEF1 expression showed an

opposite nature. Further, risk stratificationmodels basedonPI and vot-

ing methods were developed for the top five correlated genes (LEF1,

CASP7, BMP2, LPPR4, and ANXA1). The PI model defined as, PIcorr =

0.098 × LEF1 + 0.182 × CASP7 + 0.333 × BMP2 - 0.257 × LPPR4 +

0.465×ANXA1, was able to stratify high and low risk patients with HR

=1.67,p-value=9.75×10−33,C=0.58,%95CI1.54–1.82and logrank-

p = 2.85 × 10−32. Whereas, voting model performed the second best

with HR = 1.60, p-value = 2.67 × 10−26, C = 0.56, %95CI 1.46–1.74

and logrank-p= 2.29 × 10−25. KM plots for these models are shown in

Figure 1C and Figure 1D.

3.1.2 Cox-PH survival analysis based universal
prognostic biomarkers

A univariate unadjusted Cox-PH analysis was performed on the pan-

cancer dataset. For each gene out of 165 genes, median expression

cut-off was used to segregate high and low risk patients. 119 genes

were found to be significantly relatedwithOS (p< 0.05), withHR rang-

ing from 0.63–1.98 (C values 0.52–0.56). Expression of 24 genes was

related to overall good prognosis, while expression of remaining 95

genes was related with overall poor prognosis of cancer patients (S1

Table 1). Table 1 shows the results for the top ten genes based on p-

values. The top genes were observed to be bad prognostic biomarkers

that is, their upregulated expression was linked with an unfavourable

survival in cancer patients. The next step was to develop universal
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F IGURE 1 Correlation based universal prognostic biomarkers. (A) Top genes whose expression is correlated with OS having absolute Pearson
correlation coefficient, |R|> 0.04. (B) Histogram plot showing number of genes with respect to the correlation coefficient (R). (C) KM plot
representing risk stratification using PIcorr (HR= 1.67, p-value= 9.75× 10−33). (D) KMplot representing risk stratification by voting model (HR=
1.60, p-value= 2.67× 10−26)

F IGURE 2 Universal prognostic biomarkers based on survival associated genes. (A) KM plot representing risk stratification by votingmodel
(HR= 2.14, p-value= 7.81× 10−62). (B) KM plot representing risk stratification using PIsurv (HR= 1.87, p-value= 1.29× 10−39)

prognostic biomarkers using the expression profile of these genes,

which could be used for all the cancers. For this, we constructed PI and

voting models. Here, PI denoted as PIsurv was able to stratify high and

low risk patients with HR = 1.87, p-value = 1.29 × 10−39, C = 0.59,

%95CI 1.71–2.06 and logrank-p = 1.18 × 10−42. The voting model, on

theother hand,was able to stratify high and low risk patientswithHR=

2.14, p-value= 7.81× 10−62, C= 0.62, %95CI 1.96–2.34 and logrank-p

= 6.41× 10−66. Figure 2 shows the KMplots corresponding to these.

Amongst these genes, expression of EREG has been previously

linked with tumour progression, metastasis and gastric cancer prog-

nosis [37], IL18 was found to be a prognostic biomarker in melanoma

patients with strong correlation with CD8+T and NK cell infiltration

[38], BAK1 expression was recently found to be a prognosis predic-

tor in chemotherapy treated gastric cancer patients [39], role of IL1B

as prognostic biomarker and therapeutic target for multiple sclerosis

patients was shown in [40], ANXA1 was found to act as tumour sup-

pressor in HNSC [41], TOP2A expression was related to prognosis of

BLCA patients [21] and while, the role of the mutations of DNA repair

gene BRCA1 in breast cancer is very well established, it has recently

been observed to play a prognostic role in prostate cancer [42].

3.2 Survival-risk prediction and analysis for
different types of cancer patients

Cox-PH survival analysis was utilized to identify prognostic biomarker

genes that were significantly associatedwith overall patient survival in

different cancer cohorts. After the screening of biomarker genes, risk

prediction models were developed for each cancer type. We also per-

formed aGO enrichment analysis to find outmolecular functions asso-

ciated with top prognostic biomarker genes in each cancer and their

overlap across different cancers. Details are provided below.
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3.2.1 Identification of prognostic biomarker genes

Univariate Cox-PH survival analysis was performed for 165 genes

using each cancer’s dataset. Genes were classified as good prognostic

marker (GPM) or bad prognosticmarker (BPM) on the basis ofwhether

a gene’s expression is positively correlated with OS (GPM) or nega-

tively correlated with OS (BPM). BPM genes are identified with an HR

> 1, while GPM genes have an HR < 1. For BPM genes, patients with

gene expression more than the median gene expression were classi-

fied as high risk and patients with gene expression less than/equal to

the median gene expression as low risk. The inverse applies for a GPM

gene. S1 Table 2 shows the results of survival analysis for each of 165

genes across 33 cancers (HR values and p-values), while S1 Table 3

shows the cancers vs. genes matrix with HR values of only significant

genes (p<0.05). Table 2 shows thenumber of survival associated genes

for each cancer among other details. It is seen that in most of can-

cers BPM genes are more than GPM genes, showing the detrimental

role of the upregulated expression of some apoptotic genes in cancer.

Table 2 also mentions the top genes (at most ten) for each cancer on

the basis of p-values obtained from univariate survival analysis. None

of the165geneswas significantly associatedwith survival in three can-

cers: DLBC, TCGT, and PCPG.

3.2.2 Cancer specific risk prediction models

The top genes mentioned in Table 2 were used to construct models

for risk stratification in 30 cancers, excluding TCGT, PCPG, and DLBC.

Both gene voting based models and PI models were used to segre-

gate patients into risk groups. HR, p-values and C index were then

calculated. Voting models showed the best results and are shown in

Table 3. S1 Table 4 shows the results for PI models. For the case of

PRAD and READ (two genes each), a tie case was considered as High

Risk.

3.2.3 Gene Ontology (GO) functional enrichment
analysis

We performed a GO functional enrichment for finding out the top

molecular function (most significant p-value) in the case of these

cancers for top genes. Figure 3A shows the results for this. Figure 3B

shows the distribution of cancers enriched to each function. We find

that the molecular function ‘enzyme binding’ was enriched in most of

the cancers viz. ACC, CESC, LUSC, SARC, STAD, and UVM. Amongst

these, CESC and LUSC also have ‘enzyme binding’ as their top specific

enriched function with p∼10−5 . There was a total of 26 genes from

the apoptotic pathway related to this common function. S2 Table 2

shows these genes and the PMIDs of the studies that relate them

with different cancers. The analysis was done to see which are the

underlying molecular functions where these prognostic genes are

involved. ‘enzyme binding’ was the most common function amongst

cancers.

3.3 Universal model for risk stratification of
different types of cancer patients

Heatmap S2 Figure 1 shows all the survival genes in 30 cancers. We

found that there are 11 genes that play a prognostic role in more than

or equal to eight cancers (in at least 25% cancers). S2 Table 3 shows

the list of genes. It mentions the HR range, top enriched molecular

function (GO) and PMIDs related to studies that mention the associ-

ation of these genes in the context of cancer using Candidate Can-

cer Gene Database [43]. Figure 4A shows the role of these genes as

BPM or GPM in different cancers. Figure 4B shows the 27 cancers

associated with these genes. Most of the genes play a BPM role that

is, their elevated expression prevents cellular apoptosis and thus pro-

motes tumour progression (High Risk patients). Amongst these, EREG

was found to be a BPM in all the associated cancers. The drug gene

interaction database (DGIdB) predicts anti-EGFR therapeutic Panitu-

mumab as the most interactable drug molecule for EREG [44]. EREG

expression has been known to be linked with advanced stage cancers

such as metastatic colorectal cancer. EREG is a known EGFR ligand

which promotes tumour cell proliferation and differentiation and thus

used as both predictive biomarker for anti-EGFR therapy as well as a

potential target [45]. SATB1 on the other hand plays a GPM role in

majority of the cancers it is associatedwith that is, its high expression is

linked with better overall survival. Whereas, CASP2 plays both kind of

roles. Prognostic index (PI) and voting models were constructed using

themulti-cancer genes (11 gene panel) in 27 cancers. Results for voting

models are shown in Table 4 and PI models are given in S1 Table 5. This

universalmodel performedbest inUVM,THYM,PRAD,KICH, andACC

based on HR and C index, where it can be readily used as a single prog-

nostic test. Though in other cancers, the risk prediction performance of

this 11 genepanelwasmoderate (THCA,UCEC, andPAAD) to poor and

thus for them, cancer specific prognostic biomarkers should be relied

on for a better risk prognosis.

3.4 External validation of the universal
prognostic model

The evaluation of the performance of the universal model on exter-

nal cohorts is necessary for its practical translation. Therefore, we

assessed the prognostic strength of the obtained eleven gene signa-

ture on various datasets. We utilized a specialized tool, ‘SurvExpress’,

developed for the validation of biomarker on multiple cancer types

[46]. Table 5 shows the validation of expression profile of EREG and

SATB1 in different cancers in the context of their respective nega-

tive and positive correlation with overall survival. As depicted, the

prognostic role of EREG as BPM and SATB1 as GPM as identified in

our analysis is strengthened following these validation results. Fur-

thermore, SurvExpress constructed a prognostic index-based model

of the 11 genes that were provided. Table 6 represents the result of

the universal model on eight different cancer cohorts. The cohorts

for which the expression data was unavailable were rejected for the

analysis. As observed from the results the universal model performed
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TABLE 2 The table shows the no. of patient samples (N), no. of BPM andGPMgenes and top ten survival associated genes for 33 cancers

Cancer N BPM GPM Total Top Genes

LGG 511 77 17 94 WEE1, BTG3, BMP2, PLAT, SMAD7, ANXA1, PEA15, CDK2, HSPB1,

SOD2

KIRC 532 50 32 82 CASP9, F2, TIMP1, IL6, CDC25B, ADD1, CCNA1, BAK1, SLC20A1,

TIMP3

MESO 86 33 15 48 HMGB2, TOP2A, BRCA1, PLAT, SLC20A1,WEE1, PPP2R5B,MADD,

PDC, 4, LMNA

SKCM 449 10 33 43 TNFSF10, SATB1, DPYD, BIRC3, SOD2, F2R, CYLD, GCH1, CD69,

PSEN2

PAAD 178 34 7 41 CASP4, TNFSF10, PSEN1, CD44, CASP2, EMP1, TOP2A, DPYD,

CCND1,MGB2

ACC 79 22 14 36 TOP2A, PEA15, BRCA1, H1F0, HMGB2,MADD, CDK2, SPTAN1,

CYLD, S, STM1

BRCA 1091 10 25 35 PTK2, NEFH, IGF2R, PLAT, DNM1L, XIAP, ETF1, NEDD9, IRF1, RARA

LAML 173 14 16 30 PDCD4, ISG20, LMNA, NEDD9, CCND2, PSEN1, HGF, SOD1, ADD1,

CD44

HNSC 519 19 10 29 CCND1, BMF, CCNA1, BAK1, PSEN1, APP, TIMP1, BCAP31, SLC20A1,

TN, RSF12A

UVM 80 17 12 29 ERBB3, ISG20, EREG, TIMP3, LEF1, SATB1, TXNIP, PPP2R5B, ERBB2,

PT2

CESC 304 16 10 26 EREG, CASP2,MGMT, CD2, IL1B, IGF2R, APP, NEFH, TIMP2, GCH1

KIRP 287 21 3 24 BCL2L10, TOP2A, PMAIP1,MCL1, LEF1, PPP2R5B, PEA15, DCN,

IRF1, H10

SARC 257 7 16 23 CTH, RNASEL, GSN, IRF1, SPTAN1, CASP1, BTG2, CFLAR, TNF, CASP2

BLCA 404 7 15 22 EMP1, GCH1, HMGB2, GSTM1, CASP7, ANXA1, IFNGR1, ETF1,

SLC20A1, AIFM3

LIHC 369 12 4 16 MGMT, ETF1, RARA, GPX3, EREG, CD2, DAP3, GPX4, FASLG,

CDC25B

STAD 413 13 3 16 CAV1, CD44, PDGFRB, DNAJC3, EREG, TGFB2, CTNNB1, DFFA,

BCL2L11, CASP6

LUSC 488 12 3 15 CD14, BTG3, EREG, CCND2, PTK2, PAK1, ADD1, HSPB1, TIMP3,

SMAD7

LUAD 497 9 5 14 EREG, VDAC2, BBC3, SLC20A1, BTG2, TOP2A, RELA, CD2, GPX4,

ETF1

ESCA 183 6 7 13 ENO2, IL18, TOP2A, DAP, BCL2L1, PMAIP1, ISG20, IL1A, TSPO,

SATB1

COAD 297 5 5 10 BCL10, CASP4, FAS, IL6, GSR, TIMP1, BGN, LUM, ERBB2, BTG2

OV 305 4 5 9 DAP, CASP8, EMP1, BIRC3, CASP2,WEE1, PSEN1, NEDD9, SOD1

THCA 505 4 5 9 ANXA1, TGFBR3, CLU, PSEN1, TNFRSF12A, GPX4, TIMP3, LEF1,

BNIP3L

KICH 65 6 2 8 IFNB1,MADD, BIK, GSR, TOP2A, PTK2, DAP3, CLU

GBM 160 6 1 7 HSPB1, FDXR, TXNIP, ANKH, EGR3, F2R, IER3

UCEC 541 5 0 5 BCL2L1,MCL1, AVPR1A, SLC20A1, ISG20

UCS 57 2 3 5 MGMT, HGF, BMF, H1F0, PTK2

CHOL 36 3 1 4 PSEN1, BNIP3L, EREG, JUN

THYM 119 2 2 4 IER3, SOD2, CD2, LEF1

PRAD 497 1 1 2 SATB1, IER3

READ 96 1 1 2 BRCA1, DNAJC3

DLBC 47 0 0 0 -

PCPG 179 0 0 0 -

TGCT 133 0 0 0 -
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F IGURE 3 GOenrichment analysis in individual cancer cohorts. (A) The top enriched GOmolecular function for each cancer corresponding to
top genes. x-axis is the -log10 (p-value) and y corresponds to the enriched function corresponding to the cancer. (B) Heatmap showing enriched GO
molecular functions by top genes for each cancer. Number of genes is encoded by different colours

F IGURE 4 Multi-cancer survival genes. (A) Shows the distribution of role of each of these 11 genes across 27 cancers. y-axis shows the number
of cancers in which the corresponding gene plays prognostic role. (B) Red blocks indicate that the survival genes associated with the cancer
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TABLE 3 The performance of prognostic gene-voting models for each cancer

Cancer HR p-value logrank-p C %95CI L %95 CI U

THCA 41.59 3.36× 10−4 3.81× 10−8 0.84 5.42 319.17

UVM 40.50 5.32× 10−4 5.12× 10−7 0.85 4.99 328.82

KICH 25.61 2.27× 10−3 3.53× 10−5 0.83 3.19 205.6

ACC 22.68 7.95× 10−7 1.63× 10−10 0.81 6.57 78.31

THYM 12.53 2.42× 10−2 6.98× 10−3 0.79 1.39 112.93

UCEC 10.42 4.51× 10−4 1.13× 10−4 0.7 2.81 38.6

CHOL 8.72 4.75× 10−4 2.45× 10−4 0.77 2.59 29.4

PRAD 8.42 4.41× 10−3 4.20× 10−3 0.65 1.94 36.5

READa 7.45 6.50× 10−2 2.56× 10−2 0.72 0.88 62.93

KIRP 5.10 6.64× 10−5 1.27× 10−5 0.72 2.29 11.37

LGG 4.99 2.88× 10−12 1.54× 10−13 0.72 3.18 7.83

CESC 4.92 2.14× 10−8 2.98× 10−9 0.71 2.82 8.6

LIHC 4.58 7.91× 10−11 2.24× 10−11 0.7 2.89 7.24

PAAD 4.41 4.23× 10−7 1.72× 10−7 0.69 2.48 7.85

COAD 4.08 5.05× 10−5 2.42× 10−5 0.67 2.07 8.05

MESO 3.99 1.67× 10−6 2.00× 10−6 0.68 2.26 7.03

KIRC 3.96 5.41× 10−16 3.03× 10−17 0.68 2.84 5.53

LAML 3.96 3.92× 10−12 5.07× 10−12 0.67 2.68 5.84

ESCA 3.80 2.19× 10−6 3.32× 10−6 0.65 2.19 6.61

UCS 3.61 8.77× 10−4 6.13× 10−4 0.68 1.69 7.67

BRCA 3.45 2.36× 10−9 6.76× 10−10 0.67 2.3 5.18

BLCA 3.41 6.35× 10−10 3.51× 10−10 0.66 2.31 5.02

STAD 3.35 2.78× 10−7 1.39× 10−7 0.64 2.11 5.31

SARC 2.81 1.32× 10−5 1.03× 10−5 0.67 1.77 4.48

LUAD 2.76 6.94× 10−8 4.82× 10−8 0.63 1.91 3.99

HNSC 2.36 9.24× 10−8 5.80× 10−8 0.62 1.72 3.24

LUSC 2.21 1.26× 10−6 1.30× 10−6 0.61 1.6 3.04

OV 2.19 1.38× 10−6 1.16× 10−6 0.61 1.59 3

GBM 2.07 3.73× 10−4 3.22× 10−4 0.61 1.38 3.09

SKCM 1.99 2.18× 10−5 2.55× 10−5 0.59 1.45 2.75

aStatistically insignificant, HR: Hazard Ratio, C: Concordance Index.

best for prostate cancer (HR = 5.88) which is in corroboration with

its performance on TCGA PAAD dataset (HR = 4.49). The model is

also seen to perform significantly in a variety of cancer types such

as kidney cancer, ovarian cancer, lung cancer and so on. thereby

strengthening its employability as a multi-cancer risk prediction

model.

3.5 Clustering of different type of cancers

It is interesting to find out which genes are shared across cancers in

the context of their association with patient overall survival. Firstly, it

will help in development of prognostic biomarkers applicable across

cancers. Further, it will also elucidate the key apoptotic genes whose

altered expression is linked with carcinogenesis in those cancers. The

identification of such genes couldmotivate future experimental efforts

in the direction of understanding their fundamental biological roles as

well as designing better therapeutic strategies. To do this, we find out

pairwise similarity between cancers c1 and c2 using Jaccard similarity

index defined as:

J (c1, c2) =
|c1 ∩ c2|
|c1 ∪ c2|

(3)

where c1and c2 represent the set of genes that are associated with

survival in cancer c1 and cancer c2, respectively. The similarity

matrix thus obtained is converted to distance matrix, following which

UPGMA (unweighted pair groupmethodwith arithmetic mean) is used

for hierarchical clustering of cancers. Figure 5 shows the dendrograms
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TABLE 4 Risk stratification using 11 gene voting based universal prognostic model

Cancer HR p-value logrank-p C %95CI L %95 CI U

UVM 11.74 1.80× 10−3 1.77× 10−4 0.71 2.50 55.17

THYM 10.12 4.07× 10−2 1.48× 10−2 0.77 1.10 92.91

PRAD 8.94 4.07× 10−2 1.01× 10−2 0.62 1.10 72.80

KICH 7.41 1.27× 10−2 4.98× 10−3 0.72 1.53 35.75

ACC 7.37 3.09× 10−5 3.77× 10−6 0.73 2.88 18.86

THCA 4.81 4.94× 10−3 3.93× 10−3 0.74 1.61 14.37

UCEC 4.49 1.04× 10−2 1.07× 10−2 0.64 1.42 14.18

PAAD 4.17 4.21× 10−6 7.61× 10−7 0.69 2.27 7.65

MESO 3.45 1.29× 10−5 1.75× 10−5 0.65 1.98 6.02

CHOL 3.22 4.15× 10−2 4.89× 10−2 0.65 1.05 9.91

CESC 2.93 1.96× 10−4 8.11× 10−5 0.65 1.67 5.17

KIRP 2.93 2.85× 10−3 2.58× 10−3 0.65 1.45 5.95

LIHC 2.92 6.27× 10−6 2.38× 10−5 0.61 1.83 4.65

KIRC 2.87 1.14× 10−9 1.55× 10−10 0.63 2.04 4.03

LGG 2.75 6.37× 10−6 2.69× 10−6 0.66 1.77 4.26

LUAD 2.47 9.02× 10−7 1.09× 10−6 0.63 1.72 3.54

BLCA 2.38 2.11× 10−5 5.74× 10−5 0.59 1.59 3.54

STAD 2.28 1.06× 10−3 5.75× 10−4 0.61 1.39 3.73

UCS 2.19 4.14× 10−2 3.72× 10−2 0.58 1.03 4.66

SKCM 2.07 4.19× 10−5 9.45× 10−5 0.58 1.46 2.93

ESCA 2.03 9.00× 10−3 8.56× 10−3 0.60 1.19 3.45

HNSC 1.95 3.19× 10−5 2.49× 10−5 0.60 1.42 2.67

BRCA 1.90 2.08× 10−3 1.57× 10−3 0.61 1.26 2.86

SARC 1.72 3.16× 10−2 3.86× 10−2 0.56 1.05 2.81

LAML 1.68 6.55× 10−3 7.46× 10−3 0.58 1.16 2.45

LUSC 1.59 8.86× 10−3 1.12× 10−2 0.54 1.12 2.25

OV 1.53 1.51× 10−2 1.83× 10−2 0.53 1.09 2.17

HR: Hazard Ratio, C: Concordance Index.

TABLE 5 External validation of the top BPM (EREG) and GPM (SATB1) genes in external cohorts

S.no. Dataset Cancer HR p-value C %95CI logrank-p

EREG

1 PACA-AU - ICGC Pancreatic 1.47 0.04 55.7 1–2.15 0.04

2 Bild Nevins lung GSE3141 Lung 1.79 0.02 58.66 1.06–3.04 0.02

3 Rousseaux GSE30219 Lung 1.45 0.01 53.77 1.06–1.97 0.01

4 Zhao renal kidney GSE3538 Kidney 1.61 0.02 56.6 1.05–2.46 0.02

5 Chibon F SarcomaGSE21050 Sarcoma 1.04 0.84 51.06 0.72–1.49 0.83

SATB1

1 Zhao renal kidney GSE3538 Kidney 0.63 0.03 57.73 0.41–0.97 0.03

2 RaoGiddings esophagus GSE11595 Esophageal 0.30 0.01 65.96 0.11–0.79 0.01

HR: Hazard Ratio, C: Concordance Index.
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TABLE 6 External validation of Universal prognostic model in eight cancer cohorts

S.no. Dataset/GEO accession HR’ HR p-value C %95CI logrank-p

1 Zhao Renal Kidney GSE3538 2.87 3.03 1.84× 10−6 0.69 1.92–4.79 4.82× 10−7

2 Tothill Bowtell Survival Ovarian

GSE9891

1.53 3.97 2.17× 10−10 0.76 2.6–6.09 6.15× 10−12

3 OV-AU - ICGCOvarian Cancer - Serous

cystadenocarcinoma

1.53 2.4 6.01× 10−4 0.65 1.46–3.96 4.20× 10−4

4 Gulzar-Prostate-GSE40272 8.94 5.88 1.20× 10−3 0.84 2.01–17.24 1.80× 10−4

5 Tomida lung GSE13213 2.47 3.97 2.41× 10−5 0.75 2.09–7.54 5.43× 10−6

6 Hoshida Golub liver GSE10186 2.92 2.46 1.70× 10−2 0.65 1.17–5.15 1.40× 10−2

7 PACA-AU - ICGC - Pancreatic cancer -

Ductal adenocarcinoma

4.17 2.59 2.05× 10−6 0.67 1.75–3.84 8.67× 10−7

8 Peters C.Fitzgerald Esophagus

GSE19417

2.03 2.8 1.00× 10−4 0.64 1.67–4.72 5.59× 10−5

HR: Hazard Ratio, C: Concordance Index, 𝛽: Cox regression coefficient.

The reference columnHR’ denotes themodel’s performance in TCGAdatasets for respective cancer type followed by the columns showing validation perfor-

mance.

F IGURE 5 Hierarchical clustering of cancers based on (A) shared GPM genes, (B) shared BPM genes, and (C) all shared survival related genes

representing hierarchical clustering plots on the basis of shared GPM

genes, shared BPM genes and shared total survival genes (both BPM

and GPM). S1 Tables 6–8 highlight the number of shared genes in the

form of matrices and Table S9 shows the Jaccard indices JGPM, JBPM

and Jall evaluated to create dendrograms.

3.6 Case study: Cross-cancer prognostic
biomarkers (LGG vs. KIRC)

Based on the Jaccard similarity index, Jall = 0.34, LGG-KIRC pair was

found tobemost similar in the context of survival relatedgenes. The list

of genes is shown in S1 Table 10 along with HR and p-values obtained

from Cox univariate analyses. An intersection between the set of top

20 genes (based on p-values) of both the cancers was used to develop

risk stratification models. The conjoined set consisted of 15 genes viz.

BTG3, CDK2, SOD2, TOP2A, HMGB2, TIMP1, ISG20, TNFRSF12A,

AFNB1, ADD1, CASP8, CDC25B, IFITM3, CD44, and GPX1. PI models

were developed for both the cancers as follows:

PILGG = 1.19 × BTG3 + 1.07 × CDK2 + 0.99 × SOD2 + 1.07

× TOP2A + 0.99 × HMGB2 + 0.98 × TIMP1 + 0.89

× ISG20 + 0.91 × TNFRSF12A + 0.91 × IFNB1 − 0.81

× ADD1 + 0.79 × CASP8 + 0.77 × CDC25B + 0.76

× IFITM3 + 0.74 × CD44 + 0.74 × GPX1 (4)
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F IGURE 6 Development of cross-cancer prognostic models: LGG-KIRC. (A) KM plots representing the segregation of risk groups by PILGG in
LGG cohort and in (B) KIRC cohort. (C) KMplots representing the segregation of risk groups by PIKIRC in KIRC cohort and in (D) LGG cohort

PIKIRC = 0.6 × BTG3 + 0.7 × CDK2 + 0.56 × SOD2 + 0.54

× TOP2A + 0.6 × HMGB2 + 0.9 × TIMP1 + 0.55

× ISG20 + 0.61 × TNFRSF12A + 0.57 × IFNB1 − 0.79

× ADD1 + 0.54 × CASP8 + 0.82 × CDC25B + 0.53

× IFITM3 + 0.52 × CD44 + 0.57 × GPX1 (5)

Using these, risk stratification was performed in the respective can-

cer as well as another cancer. While PILGG in LGG segregated the risk

groups with HR = 4.77, p-value = 3.51 × 10−9, C = 0.68, %95CI 2.84–

8.01 and logrank-p = 3.41 × 10−11; it showed a performance of HR =

2.95, p-value= 1.44× 10−11, C= 0.64, %95CI 2.15–4.04 and logrank-p

= 1.37× 10−11 in KIRC. Similarly, PIKIRC in KIRC stratified high and low

risk patients with HR = 3.27, p-value = 1.82 × 10−13, C = 0.66, %95CI

2.39–4.49 and logrank-p= 1.31 × 10−13 and in LGGwith HR= 4.23, p-

value = 1.88 × 10−9, C = 0.69, %95CI 2.64–6.77 and logrank-p = 1.07

× 10−10. KM plots corresponding to these are shown in Figure 6. It is

also interesting to observe the same nature of these genes in both the

cancers, as evident from the 𝛽 values.

3.7 Potential drug molecules for LGG and KIRC

We further utilized the Cmap2 database and screened the potential

drug molecules which could modulate the expression profile of genes

and reduce risk of death associated with high-risk groups in LGG and

KIRC.After querying the list of 15 genes above,weobtained the ranked

therapeutic molecules as shown in -S1 Table 11. Top two enriched can-

didates were Genistein (enrichment = 0.592, p = 0) and Hexestrol

(enrichment = 0.918, p = 0.00004). Amongst these, Genistein contin-

ues to be a focus of attention in the scientific community for its anti-

cancer effects.

4 DISCUSSION

Risk assessment and management is a major challenge in treatment of

cancer patients. In current clinical practice, patients are characterized

in different risk groups based on several clinico-pathological features.

Thereafter, different therapy regimens and treatment procedures are

employed. However, this risk assessment process is plagued with a

number of limitations which are mainly attributed to the process of
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obtaining the clinical features. To curb these issues and provide more

reliable and efficient prognosis, a variety of molecular prognostic

biomarkers have been proposed. Identification of majority of these

biomarkers is based on the recent high-throughput sequencing data

and modern bioinformatics tools. These biomarkers also offer a better

understanding of the fundamental processes involved in the tumori-

genesis and reveal novel therapeutic targets. Dysregulation of the

apoptotic machinery of the cell is one of themost prominent feature of

tumour cells. As a result of which, it has beenwidely studied in the past

and the information gained from those studies has been successfully

translated into development of several potential anti-cancer drugs.

However, the past studies were limited in scope and confined to a

small number of apoptosis related regulatory molecules and cancers.

Also, while many of these studies have suggestedmany genes/proteins

as potential prognostic biomarkers in specific cancers, only a few of

these have identified the biomarkers which could be applicable across

multiple cancers. These handful of pan-cancer biomarkers, however,

have a limited performance. Thus, a comprehensive study involving all

possible apoptosis related molecules across the multitude of cancers

is needed.

In this study, we analysed the expression pattern of 165 genes of the

apoptosis pathway across 33 different cancer cohorts. Using the pan-

cancer dataset, we performed a correlation analysis wherein we found

out that expression of the genes in the dataset was poorly correlated

withOS of the patients. The risk predictionmodels constructed via uti-

lizing the top correlated genes, thus performedpoorly in discriminating

high and low risk groups. Further, by utilizing Cox univariate survival

analysis, we were able to find out genes that were related to the prog-

nosis of patients in pan-cancer cohort in the context of OS. A univer-

sal biomarker based on voting model of top ten genes viz. EREG, IL1A,

IL18, BAK1, BID, CDC25B, IL1B, ANXA1, TOP2A, and BRCA1was able

to provide a two-fold discrimination between the low and high-risk

groups. Many of the previous studies highlight the prognostic rele-

vance of these genes, thereby, strengthening our finding and providing

additional value to our universal biomarker votingmodel.However due

to the low stratification ability of themodel (C= 0.62), we performed a

further analysis to develop better multi-cancer risk prediction models.

We estimated the prognostic potential of each of the 165 genes in indi-

vidual cancers by means of univariate survival analyses. For each can-

cer, we developed risk stratification models using the top genes of the

cancer andwere able to achieve significant stratification in 29out of 33

cancers. Next, we filtered out 11 genes whose expression was related

to prognosis in at least eight cancers. All of these genes were found

to be associated with one or more cancers as found out by the Cancer

GeneDatabase. EREGandTOP2A, two of the top ten genes in previous

pan-cancer analysis, were also amongst these 11 genes. Universal risk

prediction models based on PI and voting were then constructed for

these 11 genes and used to stratify patients in 27 cancer cohorts. Risk

stratification was significant in all the cancers, though performance

varied from HR = 11.74 in UVM (8 out of 11 genes were significantly

related to OS) to HR = 1.73 in OV (2 out of 11 genes were signifi-

cantly related toOS). This 11-genemodel, thus can be used acrossmul-

tiple cancers for patient prognosis as corroborated from the validation

performance using external datasets belonging to 7 cancer types. We

also proposed a strategy for construction of cross-cancer prognostic

biomarkers. We clustered the cancers in a hierarchical order by uti-

lizing the number of shared survival associated genes, thereby finding

the cancer pairs closest to each other. For this, a number of similar-

ity indices were used (results not shown here) and Jaccard similarity

index was found to be the best measure.We display the efficacy of this

strategy by developing a PI based 15-gene prognostic biomarker for

LGG-KIRC pair. The expression profile of 15 genes in LGG-KIRC pair,

surprisingly, were observed to have a similar prognostic nature. 10 out

of 11 genes were associated with a poor prognosis while ADD1 gene

was associated with a good prognosis in both the cancers. While many

of these genes have been associated with carcinogenesis in the past

[47–53], these results demand that future efforts should be made to

elucidate the functional roles of these genes in such two distant can-

cers. Further, in order to provide a therapeutic approach for reducing

themortality rate associated with high risk LGG and KIRC patients, we

screened potential molecules which could modulate the gene expres-

sion of these 15 genes. The top screened molecule, Genistein, is an

isoflavone found in soy productswhich has recently drawn attention of

the scientific community due to its potential use in treatment of can-

cer. Genistein is well known to induce apoptosis and prevent metas-

tasis and has been shown to benefit colorectal and breast cancer

patients [54,55]. Another top enriched molecule, Hexestrol, is a syn-

thetic oestrogen which was previously used for treatment of prostate

and breast cancer but has been discontinued inmost of the countries.

To conclude, our analysis first resulted in the development of cancer

specific biomarkers, many of which show better stratification perfor-

mances than the previously suggested biomarkers. Secondly, we devel-

oped universal ormulti-cancer biomarkerswhich can be utilized across

a larger number of cancers in contrast to the biomarkers suggested in

previous studies. Thirdly, we proposed a new strategy for development

of cross-cancer biomarkers. Overall this study sheds light on the prog-

nostic power of apoptotic pathway genes in various cancers, implying

their associationwith cancer related risk. The exploitation of this infor-

mation can be used tomodulate the expression of key apoptotic genes,

thereby reducing the associated risk of death. Therefore, these genes

could serve as potential therapeutic targets across multiple cancers.

5 LIMITATIONS OF THE STUDY

Although, our study shows some promising results, we were unable

to devise a universal biomarker which has a high stratification abil-

ity in all the cancers chosen here. Another limitation of the study is

the lack of experimental validation, which is necessary for a clinical

realization of the biomarkers. We were able to validate our univer-

sal model in eight external cancer cohorts but ideally it is expected to

be tested through-out all the cancer cohorts mentioned in this study.

Future efforts through public availability of more datasets would help

realize the completepotential of this study.Moreover, additionof other

omics data could further improve the performance of expression based

prognostic models.
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