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Numerous cancer-specific prognostic models have been developed in the past, wherein
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Email: raghava@iiitd.ac.in genes across 33 cancers in the context of patient survival. Firstly, we identified spe-

cific prognostic biomarker genes for 30 cancers. The cancer-specific prognostic mod-
els achieved a minimum Hazard Ratio, HRsycpm = 1.99 and maximum HRyycp = 41.59.
Secondly, a comprehensive analysis was performed to identify universal biomarkers
across many cancers. Our best prognostic model consisted of 11 genes (TOP2A, ISG20,
CD44, LEF1, CASP2, PSEN1, PTK2, SATB1, SLC20A1, EREG, and CD2) and stratified
risk groups across 27 cancers (HRqy = 1.53-HR v = 11.74). The model was validated
on eight independent cancer cohorts and exhibited a comparable performance. Fur-
ther, we clustered cancer-types on the basis of shared survival related apoptosis genes.
This approach proved helpful in development of cross-cancer prognostic models. To
show its efficacy, a prognostic model consisting of 15 genes was thereby developed
for LGG-KIRC pair (HRyrc = 3.27, HR g = 4.23). Additionally, we predicted potential
therapeutic candidates for LGG-KIRC high risk patients.
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1 | INTRODUCTION

Cancer is the leading cause of death worldwide [1] and its develop-
ment has been attributed to various regulatory factors [2]. The explo-
ration of these regulatory mechanisms that lead to cancer has been a
hot topicin recent years. It provides important insights into fundamen-
tal biological processes linked with carcinogenesis. Besides this, the
knowledge about underlying mechanistic processes has led to devel-
opment of novel drugs and therapeutic strategies. It has also resulted
in the identification of several prognostic biomarkers for risk assess-
ment in cancer patients. However, a major challenge in cancer prog-
nosis is the unavailability of a universal biomarker applicable across all
the cancers. The availability of even at-least a handful of cross-cancer
prognostic biomarker(s) that can be used for risk assessment across
maximum cancers remains absent. An ideal universal biomarker would
bypass the need of several different biomarkers currently in use. With
an added advantage of being time effective, these biomarkers would
also be of great financial benefit to already burdened cancer patients.
Such patients would also not have to undergo a variety of agonizing
prognostic examinations, thereby reducing any further effect on their
previously compromised health conditions. However, instead of such
biomarkers, there exists a plethora of biomarkers and risk prediction
methods. Majority of these biomarkers/methods are specific only to a
particular cancer and fail when employed for other cancers. However,
with the increase in omics data, a few pan-cancer prognostic biomark-
ers have also been developed. Recent examples include a comprehen-
sive analysis presented by Ning Zhao et al. [3] wherein, the multi-omics
data for 13 cancers was used to identify prognostic biomarker genes
specific to the cancers as well as seven genes associated with survival
in 13 cancers. Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-
15) expression levels were found to be associated with eight cancers
in the context of overall-survival. Siglec-15 is a member of family of
lectins that recognize sialylated glycans and control immune function.
A maximum risk stratification with HR = 3.03, p = 0.044 was obtained
in THCA (Thyroid carcinoma) patients by employing mRNA expression
of Siglec-15 [4]. Yet another study showed that the mRNA expression
levels of the gene, Long intergenic non-coding RNA 1614 (LINC01614)
can be used to segregate risk groups in 11 cancers based on over-
all survival, with the maximum separation achieved in THCA patients
with HR = 4.047 and p = 0.010 [5]. A few other studies have also
elucidated the prognostic potential of genes such as FUNDC1 whose
expression was linked to prognosis in eight cancers with a maximal risk
separationin LIHC (HR = 1.73, logrank-p = 0.0022) [6] and HSP90AA1
whose differential expression was observed in eight cancers and was
found to be a prognostic biomarker in hepatocellular carcinoma [7].
Apart from these, tumour mutational burden and indel burden have
also been recently shown to be linked with prognosis in 14 cancers
[8] with the best performance in CHOL (HR = 6.10, p = 0.002). These
studies are promising, however one of the major pitfalls associated
with these studies is the applicability range. Most of the prognostic
biomarkers suggested in these studies are applicable to just a hand-
ful of cancers. Another crucial disadvantage is the low-risk stratifica-
tion achieved in terms of Hazard ratios and p-values. Therefore, the
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* In the past, several cancer-specific prognostic biomark-
ers/models have been identified/developed, which are
applicable to only a particular type of cancer population.
In this study, we have attempted to identify universal or
multiple cancer prognostic biomarkers and develop prog-
nostic models which are applicable across a number of
cancer types. By means of a comprehensive evaluation of
prognostic potential of expression of apoptotic pathway
genes, we were able to catalogue survival associated genes
in 30 cancers. Based on this, risk prediction models were
first developed for each cancer-type. Henceforth, we were
able toidentify a gene signature that is significantly associ-
ated with survival risk across 27 cancers. Briefly, this study
finds its significance by proposing a versatile prognostic
method for a large number of cancer types complemented
by a computational strategy for devising similar methods
based on a novel clustering-based approach. A practical
realisation of this study can be monumental in cancer care

and therapeutic management.

challenge for finding more accurate biomarkers which offer prognos-
tic value across a large number of cancers remains open. As discussed
earlier, since amultitude of factors cause heterogeneity of cancer, more
efforts are required towards thorough investigation of cardinal molec-
ular processes that have been associated with cancer progression and
development in the past.

One of these fundamental processes is the programmed cell death
process, which, when defunct, leads to accumulation of malignant cells
in the body [9]. This cell death mechanism, also known as Apoptosis,
is a multistep cellular process involving a large number of regulatory
molecules. It primarily consists of genes and their encoded proteins,
which orchestrate the death of a cell as a result of various stresses.
The downregulation of tumour suppressor gene, p53, leading to
tumour development and progression is perhaps the most popular
example [10]. Other examples include the downregulation of lev-
els of pro-apoptotic BCL2 family proteins such as BCL2, BCL-XL,
MCL1, and upregulation of anti-apoptotic BCL2 family proteins
such as BAX, BAK in many cancers [11]. Apoptosis is also one of the
widely studied processes in the context of development of prognostic
biomarkers and therapeutics which target its key components [12].
Few prominent examples include biomarkers based on correlation of
protein/gene expression of apoptotic molecules such as Caspase 3/6,
XIAP, Apaf-1, ML-IAP, and XAF1 with patient survival and/or other
clinico-pathological features in Melanoma as reviewed by Charles EM
et al. [13]; identification of apoptosis related biomarkers such as BCL2
(HR = 5.21, p = 0.0063), Fas/FasL (HR = 3.49, p = 0.005), p53 (HR =
2.48,p=0.046), TRAIL (HR = 1.21, p = 0.026) in the context of overall

survival of colorectal cancer patients along-with various statistical and
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mathematical models for risk assessment [14-16]. Apoptosis related
molecules have also been identified to play prognostic roles in other
cancers such as identification of survival related proteins AGR2, ENO1,
GDI2, GRP78, GRP94, PPIA, PRDX1, PTEN, and gene KIF15 by means
of immunohistochemical staining in gastric cancer [17,18]; high protein
and mRNA levels of BIK as markers of tumour recurrence in breast
cancer [19]; gene expression of MCL1 as prognostic biomarker in Non-
small cell lung cancer [20]; high expression of TOP2A was shown to be
linked with poor survival in bladder urothelial carcinoma [21]; a seven
gene signature was established to distinguish patients with isocitrate-
wildtype glioblastoma [22] and increased FER1L4 expression was
found to promote apoptosis and suppress epithelial-mesenchymal
transition in osteosarcoma [23]. In thyroid cancer, alterations in
apoptotic molecules such as p53, BCL2, BCL-XL, BAX, p73, Fas/FasL,
PPARG, TGFb, and NFKb have also been associated with carcinogen-
esis [24]. However, the scope of these studies was limited to specific
cancers with a limited set of genes/proteins. Since apoptosis consists
of a large number of regulatory genes/proteins, gauging the prognos-
tic significance of maximum number of genes/proteins involved in
apoptosis across several cancers can offer a better understanding. It
can also reveal several novel targets and help in development of finer
biomarkers for cancer prognosis.

In this study, we utilized the gene-expression data of 33 cancer
cohorts from The Cancer Genome Atlas (TCGA) and evaluated the
prognostic performance of 165 genes involved in the apoptosis path-
way. Apart from identifying cancer-specific prognostic genes, we also
constructed multiple gene-based risk prediction models based on the
overall survival of patients. Firstly, we developed universal biomark-
ers which can be used for prognosis across 33 cancers. Secondly, for
individual cancer cohorts, we were able to develop risk assessment
methods, some of which are superior to previously suggested biomark-
ers/methods. Thirdly, we developed an 11-gene multi-cancer prognos-
tic biomarker that can be used across 27 cancers. Finally, we pro-
pose a strategy for constructing cross-cancer prognostic biomarkers
by means of hierarchical clustering of cancers on the basis of common
prognostic genes. We show the efficacy of this strategy by developing
a 15 gene biomarker applicable for both brain low grade glioblastoma

(LGG) and kidney renal cell carcinoma (KIRC) patient prognosis.

2 | METHODS
2.1 | Data collection and preprocessing

Normalized gene expression datasets ‘rsem.genes.normalized_results’
and raw counts ‘rsem.genes.results’ for 33 cancer cohorts were
obtained from ‘The Cancer Genome Atlas’ (TCGA) using TCGA
Assembler-2 [25]. A ‘pan-cancer’ dataset was formed by combining all
the samples with raw expression values of genes across 33 cancers
and normalizing them using 75th percentile normalization. A list of
165 apoptosis genes was obtained from [26]. The gene expression
data for these 165 genes were extracted from the downloaded TCGA

cancer datasets and pan-cancer dataset. Only those patient samples
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were retained in all the datasets for whom overall-survival and censor-
ing information were available. The number of samples in pan-cancer
dataset was 9569, while the number of samples in each cancer cohort,
N, is mentioned in Table 2. TCGA abbreviations for cancers are pro-
vided in S2 Table 1.

2.2 | Survival analysis

Univariate unadjusted Cox proportional hazards (Cox-PH) regression
models were used to screen survival-associated genes from their

expression data using the formula:
h(G,t) = ho (t) exp (BG) (1)

where the variable G is the expression data of a gene, h is the haz-
ard function and the variable t is the overall-survival time. The Cox
regression coefficient, 8> O signifies that the elevated gene expression
is unfavourable while inverse applies for 8 < 0. R packages ‘survival’
and ‘survminer’ were used to implement the Cox-PH models. Using
these, Hazard ratios (HR) were computed along-with confidence inter-
vals (%95 Cl) and p-values. HR is the ratio of hazard rates representing
the death risk associated with one group as compared with another by
using an appropriate cut-off of gene-expression. Based on its definition,
HR > 1 implies the increase in death risk when the expression of the
gene is increased, and vice-versa for HR < 1. However, the expression
of gene has no effect on survival if HR = 1. For comparison of survival
curves between two risk groups, we used Kaplan-Meier (KM) plots
and log-rank tests. Survival associated genes were identified with HR
greater than or less than 1 and p < 0.05. The metric Concordance index
(C) was used to evaluate the model’s predictive performance [27-29].

2.3 | Prognostic index (PI)

As implemented in [30-33], for n genes, g4, 8>, ... 8, With cox coeffi-
cients 84,85 ... 8, obtained from the univariate Cox-PH analyses using

median cut-offs, Prognostic Index (PI) was defined as:
Pl = Bg (2)

where g = [g1 82 83 .... 85] and B = [18283 ... Bn]. Thereafter, risk
groups were segregated by using univariate Cox-PH regression model,
as defined earlier with G replaced by PI. The cut-off value for Pl was
evaluated using cutp from ‘survMisc’ package in R. Model’s perfor-

mance is estimated using HR, p, %95 Cl and C values.

2.4 | Voting model

As implemented in [34], for an n-gene voting model, a n-bit vector is
assigned to each patient sample. Thereafter, each bit is labelled as high

or low risk on the basis of corresponding classification by individual
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genes, using Cox-PH univariate models. Finally, the sample is allotted
an overall risk label decided by majority of the labelled bits (i.e., greater
than n/2 labels).

2.5 | Gene ontology (GO) functional enrichment
analysis

A GO enrichment analysis was performed for finding the molecular
function (MF) associated with survival associated genes in specific
cancers. The STRING application programming interface (API) for GO
functional enrichment was implemented in python and used for per-
forming this analysis (https://string-db.org/help/api/). Thereafter, the
GO MF enriched terms were analysed across different cancers to find

out overlapping terms.

2.6 | Screening of candidate therapeutic molecules

The univariate Cox-PH survival analysis provides information about
the risk associated with an increase in the expression of specific genes.
These genes can be categorized into two groups: genes whose ele-
vated expressionis arisk factor and genes whose elevated expression is
favourable for patient survival. The modulation of the expression pro-
file of these genes can be a potential therapy for cancer patients. For
this, we employ the Connectivity Map2 database [35,36], which pro-
vides a list of enriched small molecules based on the list of upregulated
or downregulated genes. The predicted molecules are ranked based on
enrichment values and can act as potential therapeutic candidates for
altering the gene expression.

3 | RESULTS

3.1 | Survival-risk prediction for all types of cancer
patients

The dataset comprising of patient samples belonging to all cancer types
(pan-cancer) was utilized here to develop risk prediction models which
can be applicable across all the cancers. Top survival associated genes
were first screened and after that used to develop models which strat-
ify the patients into High or Low risk groups. Apart fromrisk prediction,
survival probabilities were also estimated using the KM plots. In order
to screen top genes, two different approaches were implemented: (i)
correlation analysis-based approach, and (ii) Cox-PH survival analysis-

based approach. Details are provided below.

3.1.1 | Correlation based universal prognostic
biomarkers

Pearson correlation coefficient (R) was used to determine the relation-

ship of the expression of 165 apoptotic genes with OSin the pan-cancer

TABLE 1 Top survival associated genes in the pan-cancer cohort

S.no. Gene g HR p-value 1/HR C

1. EREG 0.68 1.98 1.69x 1075 0.50 0.60
2. IL1A 0.65 1.91 341x107% 052 0.59
3. IL18 0.51 1.66 502x 10731 0.60 0.58
4. BAK1 0.51 1.66 1.03x107%°  0.60 0.58
5. BID 0.50 1.65 344x107%0 061 0.58
6. CDC25B 0.50 164  110x107% 0.61 0.58
7. IL1B 0.49 1.63 470x107%  0.61 0.58
8. ANXA1 0.46 1.59 3.16x107%¢  0.63 0.57
9. TOP2A 046 159  432x1072¢ 063 058
10. BRCA1 0.46 1.58 1.94x10°%  0.63 0.58

HR: Hazard Ratio, C: Concordance Index, 3: Cox regression coefficient.
Cox-PH univariate regression analysis with >median expression cut-off was
used to estimate survival risk associated with the two risk groups, for each
gene.

dataset. It was observed that gene expression was weakly related to
OS when the pan-cancer dataset was used. Figure 1A shows the genes
having |R|> 0.04, LEF1 being the top correlated gene with R = 0.077
(see S1 Table 1 for complete results). Figure 1B shows the histogram
plot for the correlation analysis. Most of the genes were found to be
negatively related to OS implying the inverse role of their expression
with OS. For example, CASP7 and BMP2 upregulation was observed
to weakly reduce OS of the patients, while LEF1 expression showed an
opposite nature. Further, risk stratification models based on Pl and vot-
ing methods were developed for the top five correlated genes (LEF1,
CASP7, BMP2, LPPR4, and ANXA1). The Pl model defined as, Pl =
0.098 x LEF1 + 0.182 x CASP7 + 0.333 x BMP2 - 0.257 x LPPR4 +
0.465 x ANXA1, was able to stratify high and low risk patients with HR
=1.67,p-value=9.75x10733,C =0.58,%95C| 1.54-1.82 and logrank-
p = 2.85 x 10732, Whereas, voting model performed the second best
with HR = 1.60, p-value = 2.67 x 1072%, C = 0.56, %95CI 1.46-1.74
and logrank-p = 2.29 x 10~2>. KM plots for these models are shown in
Figure 1C and Figure 1D.

3.1.2 | Cox-PH survival analysis based universal
prognostic biomarkers

A univariate unadjusted Cox-PH analysis was performed on the pan-
cancer dataset. For each gene out of 165 genes, median expression
cut-off was used to segregate high and low risk patients. 119 genes
were found to be significantly related with OS (p < 0.05), with HR rang-
ing from 0.63-1.98 (C values 0.52-0.56). Expression of 24 genes was
related to overall good prognosis, while expression of remaining 95
genes was related with overall poor prognosis of cancer patients (S1
Table 1). Table 1 shows the results for the top ten genes based on p-
values. The top genes were observed to be bad prognostic biomarkers
that is, their upregulated expression was linked with an unfavourable

survival in cancer patients. The next step was to develop universal
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FIGURE 1 Correlation based universal prognostic biomarkers. (A) Top genes whose expression is correlated with OS having absolute Pearson
correlation coefficient, |R| > 0.04. (B) Histogram plot showing number of genes with respect to the correlation coefficient (R). (C) KM plot
representing risk stratification using Pl (HR = 1.67, p-value = 9.75 x 1033). (D) KM plot representing risk stratification by voting model (HR =

1.60, p-value = 2.67 x 10726)
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FIGURE 2 Universal prognostic biomarkers based on survival associated genes. (A) KM plot representing risk stratification by voting model
(HR = 2.14, p-value = 7.81 x 10%2). (B) KM plot representing risk stratification using Plg,., (HR = 1.87, p-value = 1.29 x 10-3%)

prognostic biomarkers using the expression profile of these genes,
which could be used for all the cancers. For this, we constructed Pl and
voting models. Here, Pl denoted as Plg,, was able to stratify high and
low risk patients with HR = 1.87, p-value = 1.29 x 10737, C = 0.59,
%95Cl 1.71-2.06 and logrank-p = 1.18 x 10~#2. The voting model, on
the other hand, was able to stratify high and low risk patients with HR =
2.14, p-value = 7.81x 10742 C = 0.62, %95CI 1.96-2.34 and logrank-p
= 6.41x 107%, Figure 2 shows the KM plots corresponding to these.
Amongst these genes, expression of EREG has been previously
linked with tumour progression, metastasis and gastric cancer prog-
nosis [37], IL18 was found to be a prognostic biomarker in melanoma
patients with strong correlation with CD8*T and NK cell infiltration
[38], BAK1 expression was recently found to be a prognosis predic-
tor in chemotherapy treated gastric cancer patients [39], role of IL1B
as prognostic biomarker and therapeutic target for multiple sclerosis
patients was shown in [40], ANXA1 was found to act as tumour sup-

pressor in HNSC [41], TOP2A expression was related to prognosis of
BLCA patients [21] and while, the role of the mutations of DNA repair
gene BRCAL1 in breast cancer is very well established, it has recently

been observed to play a prognostic role in prostate cancer [42].

3.2 | Survival-risk prediction and analysis for
different types of cancer patients

Cox-PH survival analysis was utilized to identify prognostic biomarker
genes that were significantly associated with overall patient survival in
different cancer cohorts. After the screening of biomarker genes, risk
prediction models were developed for each cancer type. We also per-
formed a GO enrichment analysis to find out molecular functions asso-
ciated with top prognostic biomarker genes in each cancer and their
overlap across different cancers. Details are provided below.
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3.2.1 | Identification of prognostic biomarker genes

Univariate Cox-PH survival analysis was performed for 165 genes
using each cancer’s dataset. Genes were classified as good prognostic
marker (GPM) or bad prognostic marker (BPM) on the basis of whether
a gene’s expression is positively correlated with OS (GPM) or nega-
tively correlated with OS (BPM). BPM genes are identified with an HR
> 1, while GPM genes have an HR < 1. For BPM genes, patients with
gene expression more than the median gene expression were classi-
fied as high risk and patients with gene expression less than/equal to
the median gene expression as low risk. The inverse applies for a GPM
gene. S1 Table 2 shows the results of survival analysis for each of 165
genes across 33 cancers (HR values and p-values), while S1 Table 3
shows the cancers vs. genes matrix with HR values of only significant
genes (p < 0.05). Table 2 shows the number of survival associated genes
for each cancer among other details. It is seen that in most of can-
cers BPM genes are more than GPM genes, showing the detrimental
role of the upregulated expression of some apoptotic genes in cancer.
Table 2 also mentions the top genes (at most ten) for each cancer on
the basis of p-values obtained from univariate survival analysis. None
of the 165 genes was significantly associated with survival in three can-
cers: DLBC, TCGT, and PCPG.

3.2.2 | Cancer specific risk prediction models

The top genes mentioned in Table 2 were used to construct models
for risk stratification in 30 cancers, excluding TCGT, PCPG, and DLBC.
Both gene voting based models and Pl models were used to segre-
gate patients into risk groups. HR, p-values and C index were then
calculated. Voting models showed the best results and are shown in
Table 3. S1 Table 4 shows the results for Pl models. For the case of
PRAD and READ (two genes each), a tie case was considered as High
Risk.

3.2.3 | Gene Ontology (GO) functional enrichment
analysis

We performed a GO functional enrichment for finding out the top
molecular function (most significant p-value) in the case of these
cancers for top genes. Figure 3A shows the results for this. Figure 3B
shows the distribution of cancers enriched to each function. We find
that the molecular function ‘enzyme binding’ was enriched in most of
the cancers viz. ACC, CESC, LUSC, SARC, STAD, and UVM. Amongst
these, CESC and LUSC also have ‘enzyme binding’ as their top specific
enriched function with p~10~> . There was a total of 26 genes from
the apoptotic pathway related to this common function. S2 Table 2
shows these genes and the PMIDs of the studies that relate them
with different cancers. The analysis was done to see which are the
underlying molecular functions where these prognostic genes are
involved. ‘enzyme binding’ was the most common function amongst

cancers.

3.3 | Universal model for risk stratification of
different types of cancer patients

Heatmap S2 Figure 1 shows all the survival genes in 30 cancers. We
found that there are 11 genes that play a prognostic role in more than
or equal to eight cancers (in at least 25% cancers). S2 Table 3 shows
the list of genes. It mentions the HR range, top enriched molecular
function (GO) and PMIDs related to studies that mention the associ-
ation of these genes in the context of cancer using Candidate Can-
cer Gene Database [43]. Figure 4A shows the role of these genes as
BPM or GPM in different cancers. Figure 4B shows the 27 cancers
associated with these genes. Most of the genes play a BPM role that
is, their elevated expression prevents cellular apoptosis and thus pro-
motes tumour progression (High Risk patients). Amongst these, EREG
was found to be a BPM in all the associated cancers. The drug gene
interaction database (DGIdB) predicts anti-EGFR therapeutic Panitu-
mumab as the most interactable drug molecule for EREG [44]. EREG
expression has been known to be linked with advanced stage cancers
such as metastatic colorectal cancer. EREG is a known EGFR ligand
which promotes tumour cell proliferation and differentiation and thus
used as both predictive biomarker for anti-EGFR therapy as well as a
potential target [45]. SATB1 on the other hand plays a GPM role in
majority of the cancers it is associated with that is, its high expression is
linked with better overall survival. Whereas, CASP2 plays both kind of
roles. Prognostic index (PI) and voting models were constructed using
the multi-cancer genes (11 gene panel) in 27 cancers. Results for voting
models are shown in Table 4 and Pl models are given in S1 Table 5. This
universal model performed best in UVM, THYM, PRAD, KICH, and ACC
based on HR and C index, where it can be readily used as a single prog-
nostic test. Though in other cancers, the risk prediction performance of
this 11 gene panel was moderate (THCA, UCEC, and PAAD) to poor and
thus for them, cancer specific prognostic biomarkers should be relied
on for a better risk prognosis.

3.4 | External validation of the universal
prognostic model

The evaluation of the performance of the universal model on exter-
nal cohorts is necessary for its practical translation. Therefore, we
assessed the prognostic strength of the obtained eleven gene signa-
ture on various datasets. We utilized a specialized tool, ‘SurvExpress’,
developed for the validation of biomarker on multiple cancer types
[46]. Table 5 shows the validation of expression profile of EREG and
SATB1 in different cancers in the context of their respective nega-
tive and positive correlation with overall survival. As depicted, the
prognostic role of EREG as BPM and SATB1 as GPM as identified in
our analysis is strengthened following these validation results. Fur-
thermore, SurvExpress constructed a prognostic index-based model
of the 11 genes that were provided. Table 6 represents the result of
the universal model on eight different cancer cohorts. The cohorts
for which the expression data was unavailable were rejected for the

analysis. As observed from the results the universal model performed
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TABLE 2 The table shows the no. of patient samples (N), no. of BPM and GPM genes and top ten survival associated genes for 33 cancers

Cancer

LGG

KIRC

MESO

SKCM

PAAD

ACC

BRCA
LAML

HNSC

UvM

CESC
KIRP

SARC
BLCA

LIHC

STAD

LUSC

LUAD

ESCA

COAD
ov
THCA

KICH
GBM
UCEC
Ucs
CHOL
THYM
PRAD
READ
DLBC
PCPG
TGCT

N
511

532

86

449

178

79

1091
173

519

80

304
287

257
404

369

413

488

497

183

297
305
505

65
160
541
57
36
119
497
96
47
179
133

BPM
77

50

33

10

34

22

10
14

19

17

16
21

12

13

12

N

O O O r » N W N U1 00 O

GPM
17

32

15

38

14

25
16

10

12

10

16
15

(63}

OO O O P P N P W O »r N

Total
94

82

48

43

41

36

35
30

29

29

26
24

23
22

16

16

15

14

13

10

O

O O O N N M M 1 1 N @

Top Genes

WEE1, BTG3, BMP2, PLAT, SMAD7, ANXA1, PEA15, CDK2, HSPB1,
SOD2

CASP9,F2, TIMP1, IL6,CDC25B, ADD1, CCNA1, BAK1, SLC20A1,
TIMP3

HMGB2, TOP2A, BRCA1, PLAT, SLC20A1, WEE1, PPP2R5B, MADD,
PDC, 4, LMNA

TNFSF10, SATB1, DPYD, BIRC3, SOD2, F2R, CYLD, GCH1, CD69,
PSEN2

CASP4, TNFSF10, PSEN1, CD44, CASP2, EMP1, TOP2A, DPYD,
CCND1,MGB2

TOP2A, PEA15,BRCA1, H1FO, HMGB2, MADD, CDK2, SPTAN1,
CYLD, S,STM1

PTK2, NEFH, IGF2R, PLAT, DNM1L, XIAP, ETF1, NEDD9, IRF1, RARA

PDCD4, 1SG20, LMNA, NEDD9, CCND2, PSEN1, HGF, SOD1, ADD1,
CD44

CCND1, BMF,CCNA1, BAK1, PSEN1, APP, TIMP1, BCAP31, SLC20A1,
TN, RSF12A

ERBBS3, ISG20, EREG, TIMP3, LEF1, SATB1, TXNIP, PPP2R5B, ERBB2,
PT2

EREG, CASP2, MGMT, CD2, IL1B, IGF2R, APP, NEFH, TIMP2, GCH1

BCL2L10, TOP2A, PMAIP1, MCL1, LEF1, PPP2R5B, PEA15, DCN,
IRF1,H10

CTH, RNASEL, GSN, IRF1,SPTAN1, CASP1,BTG2, CFLAR, TNF, CASP2

EMP1, GCH1,HMGB2, GSTM1, CASP7, ANXA1, IFNGR1, ETF1,
SLC20A1, AIFM3

MGMT, ETF1, RARA, GPX3, EREG, CD2, DAP3, GPX4, FASLG,
CDC25B

CAV1,CD44, PDGFRB, DNAJC3, EREG, TGFB2, CTNNB1, DFFA,
BCL2L11, CASP6

CD14, BTG3, EREG, CCND2, PTK2, PAK1, ADD1, HSPB1, TIMP3,
SMAD7

EREG, VDAC2, BBC3, SLC20A1, BTG2, TOP2A, RELA, CD2, GPX4,
ETF1

ENO2,1L18, TOP2A, DAP,BCL2L1, PMAIP1,1SG20, IL1A, TSPO,
SATB1

BCL10, CASP4, FAS, IL6, GSR, TIMP1, BGN, LUM, ERBB2, BTG2
DAP, CASP8,EMP1, BIRC3, CASP2, WEE1, PSEN1, NEDD9,SOD1

ANXA1, TGFBR3, CLU, PSEN1, TNFRSF12A, GPX4, TIMP3, LEF1,
BNIP3L

IFNB1, MADD, BIK, GSR, TOP2A, PTK2, DAP3, CLU
HSPB1, FDXR, TXNIP, ANKH, EGR3, F2R, IER3
BCL2L1, MCL1, AVPR1A, SLC20A1, ISG20

MGMT, HGF, BMF, H1FO, PTK2

PSEN1, BNIP3L, EREG, JUN

IER3,SOD2,CD2, LEF1

SATB1, IER3

BRCA1, DNAJC3
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FIGURE 3 GO enrichment analysis in individual cancer cohorts. (A) The top enriched GO molecular function for each cancer corresponding to
top genes. x-axis is the -logqg (p-value) and y corresponds to the enriched function corresponding to the cancer. (B) Heatmap showing enriched GO

molecular functions by top genes for each cancer. Number of genes is

encoded by different colours
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FIGURE 4 Multi-cancer survival genes. (A) Shows the distribution of role of each of these 11 genes across 27 cancers. y-axis shows the number
of cancers in which the corresponding gene plays prognostic role. (B) Red blocks indicate that the survival genes associated with the cancer
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TABLE 3 The performance of prognostic gene-voting models for each cancer

Cancer HR p-value logrank-p C %95 CI L %95 ClU
THCA 41.59 3.36x 1074 3.81x 1078 0.84 542 319.17
UVM 40.50 5.32x 107* 5.12x 1077 0.85 4.99 328.82
KICH 25.61 227 x 1078 3.53x10°° 0.83 3.19 205.6
ACC 22.68 7.95x 1077 1.63x 10710 0.81 6.57 78.31
THYM 12.53 2.42x 1072 6.98x 1073 0.79 1.39 112.93
UCEC 10.42 4.51x107% 1.13x 104 0.7 2.81 38.6
CHOL 8.72 4.75x 10~ 2.45x 1074 0.77 2.59 294
PRAD 8.42 4.41x10°° 420x 1078 0.65 1.94 36.5
READ? 7.45 6.50 x 102 2.56 x 1072 0.72 0.88 62.93
KIRP 5.10 6.64x107° 1.27 x 1073 0.72 2.29 11.37
LGG 4.99 2.88x 10712 154 x 10713 0.72 3.18 7.83
CESC 4.92 2.14x 1078 2.98 x 1077 0.71 2.82 8.6
LIHC 4.58 7.91x10~11 224 x10~1 0.7 2.89 7.24
PAAD 441 4.23x 1077 1.72x 1077 0.69 2.48 7.85
COAD 4.08 5.05x 107> 2.42x107° 0.67 2.07 8.05
MESO 3.99 1.67 x 1076 2.00x 10¢ 0.68 226 7.03
KIRC 3.96 541x107% 3.03x10°Y 0.68 2.84 5.53
LAML 3.96 3.92x 10712 5.07 x 10~12 0.67 2.68 5.84
ESCA 3.80 2.19x10°¢ 3.32x10°¢ 0.65 2.19 6.61
ucs 3.61 8.77 x 10~* 6.13x 1074 0.68 1.69 7.67
BRCA 3.45 2.36x 1077 6.76x 10710 0.67 2.3 5.18
BLCA 341 6.35x 10710 3.51x 1071 0.66 231 5.02
STAD 3.35 2.78 x 10~/ 1.39x 1077 0.64 2.11 5.31
SARC 2.81 1.32x10°° 1.03x10° 0.67 1.77 4.48
LUAD 2.76 6.94x 1078 4.82x 1078 0.63 191 3.99
HNSC 2.36 9.24x 1078 5.80x 1078 0.62 172 3.24
LUSC 221 126 x 1076 1.30x 107 0.61 1.6 3.04
oV 2.19 1.38x 1076 1.16x 107 0.61 1.59 3
GBM 2.07 3.73x 10~ 3.22x 107 0.61 1.38 3.09
SKCM 1.99 2.18x 10~ 2.55x 107> 0.59 1.45 2.75

aStatistically insignificant, HR: Hazard Ratio, C: Concordance Index.

best for prostate cancer (HR = 5.88) which is in corroboration with
its performance on TCGA PAAD dataset (HR = 4.49). The model is
also seen to perform significantly in a variety of cancer types such
as kidney cancer, ovarian cancer, lung cancer and so on. thereby
strengthening its employability as a multi-cancer risk prediction

model.

3.5 | Clustering of different type of cancers

It is interesting to find out which genes are shared across cancers in
the context of their association with patient overall survival. Firstly, it
will help in development of prognostic biomarkers applicable across
cancers. Further, it will also elucidate the key apoptotic genes whose

altered expression is linked with carcinogenesis in those cancers. The
identification of such genes could motivate future experimental efforts
in the direction of understanding their fundamental biological roles as
well as designing better therapeutic strategies. To do this, we find out
pairwise similarity between cancers c1 and c2 using Jaccard similarity
index defined as:
cl nc2

J(c1, c2) = w (3)
where cland c2 represent the set of genes that are associated with
survival in cancer c1 and cancer c2, respectively. The similarity
matrix thus obtained is converted to distance matrix, following which
UPGMA (unweighted pair group method with arithmetic mean) is used
for hierarchical clustering of cancers. Figure 5 shows the dendrograms
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TABLE 4 Risk stratification using 11 gene voting based universal prognostic model

Cancer
UVM
THYM
PRAD
KICH
ACC
THCA
UCEC
PAAD
MESO
CHOL
CESC
KIRP
LIHC
KIRC
LGG
LUAD
BLCA
STAD
ucs
SKCM
ESCA
HNSC
BRCA
SARC
LAML
LUSC
ov

HR: Hazard Ratio, C: Concordance Index.

TABLES

S.no.

u A W N -

HR: Hazard Ratio, C: Concordance Index.

HR
11.74
10.12
8.94
7.41
7.37
4.81
4.49
4.17
3.45
3.22
2.93
2.93
2.92
2.87
275
247
2.38
2.28
219
2.07
2.03
1.95
1.90
1.72
1.68
1.59
1.53

External validation of the top BPM (EREG) and GPM (SATB1) genes in external cohorts

Dataset
EREG
PACA-AU - ICGC

Bild Nevins lung GSE3141
Rousseaux GSE30219
Zhao renal kidney GSE3538

p-value

1.80x 1073
4.07 x 102
4,07 x 1072
1.27 x 102
3.09x107°
4.94 % 1073
1.04 x 1072
4.21x107¢
1.29x10°°
4.15 x 1072
1.96 x 1074
2.85x 1073
6.27 x107¢
1.14x 10?7
6.37x107¢
9.02x 1077
2.11x107°
1.06 x 1073
4.14x 1072
4.19x10°°
9.00x 1073
3.19x107°
2.08x 1073
3.16x 1072
6.55x 1073
8.86x 1073
1.51x 1072

Chibon F Sarcoma GSE21050

SATB1

Zhao renal kidney GSE3538

Rao Giddings esophagus GSE11595

Cancer

Pancreatic
Lung
Lung
Kidney

Sarcoma

Kidney
Esophageal

logrank-p
1.77 x 1074
1.48 x 102
1.01x 102
4.98x 1078
3.77x107¢
3.93x 1073
1.07 x 102
7.61x 1077
1.75x 1075
4.89 x 1072
8.11x 1075
2.58x 1073
2.38x10°°
1.55 x 10~1°
2.69x107¢
1.09 x 106
574x107°
5.75x 10~
3.72x 1072
9.45x 107°
8.56x 1073
2.49x107°
1.57 x 1073
3.86x 1072
7.46 x 1072
1.12x 1072
1.83x 1072

HR

1.47
1.79
1.45
1.61
1.04

0.63
0.30

0.71
0.77
0.62
0.72
0.73
0.74
0.64
0.69
0.65
0.65
0.65
0.65
0.61
0.63
0.66
0.63
0.59
0.61
0.58
0.58
0.60
0.60
0.61
0.56
0.58
0.54
0.53

p-value

0.04
0.02
0.01
0.02
0.84

0.03
0.01

55.7
58.66
538.77
56.6
51.06

57.73
65.96

%95 CIL
2.50
1.10
1.10
1.53
2.88
1.61
142
227
1.98
1.05
1.67
1.45
1.83
2.04
1.77
1.72
1.59
1.39
1.03
1.46
1.19
1.42
1.26
1.05
1.16
1.12
1.09

%95Cl

1-2.15

1.06-3.04
1.06-1.97
1.05-2.46
0.72-1.49

0.41-0.97
0.11-0.79

%95 ClU
55.17
92.91
72.80
35.75
18.86
14.37
14.18
7.65
6.02
9.91
517
5.95
4.65
4.03
4.26
3.54
3.54
Sy
4.66
2.93
3.45
2.67
2.86
281
245
225
217

logrank-p

0.04
0.02
0.01
0.02
0.83

0.03
0.01
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TABLE 6 External validation of Universal prognostic model in eight cancer cohorts

S.no. Dataset/GEO accession HR’ HR p-value © %95Cl logrank-p

1 Zhao Renal Kidney GSE3538 2.87 3.03 1.84x 107 0.69 1.92-4.79 4.82x 1077

2 Tothill Bowtell Survival Ovarian 153 3.97 2.17 x 1071 0.76 2.6-6.09 6.15x 10712
GSE9891

3 OV-AU - ICGC Ovarian Cancer - Serous 1.53 24 6.01x 1074 0.65 1.46-3.96 4.20x107%
cystadenocarcinoma

4 Gulzar-Prostate-GSE40272 8.94 5.88 1.20x 1072 0.84 2.01-17.24 1.80x 107*

5 Tomida lung GSE13213 2.47 3.97 241x107° 0.75 2.09-7.54 5.43x107¢

6 Hoshida Golub liver GSE10186 2.92 246 1.70 x 102 0.65 1.17-5.15 1.40x 102

7 PACA-AU - ICGC - Pancreatic cancer - 4.17 2.59 2.05x10°¢ 0.67 1.75-3.84 8.67 x 1077
Ductal adenocarcinoma

8 Peters C.Fitzgerald Esophagus 2.03 2.8 1.00x 10~ 0.64 1.67-4.72 5.59 x 10—°

GSE19417

HR: Hazard Ratio, C: Concordance Index, 3: Cox regression coefficient.

The reference column HR’ denotes the model’s performance in TCGA datasets for respective cancer type followed by the columns showing validation perfor-

mance.

1.0

0.0

FIGURE 5 Hierarchical clustering of cancers based on (A) shared GPM genes, (B) shared BPM genes, and (C) all shared survival related genes

representing hierarchical clustering plots on the basis of shared GPM
genes, shared BPM genes and shared total survival genes (both BPM
and GPM). S1 Tables 6-8 highlight the number of shared genes in the
form of matrices and Table S9 shows the Jaccard indices Jgpm, Jgpm

and J,, evaluated to create dendrograms.

3.6 | Case study: Cross-cancer prognostic
biomarkers (LGG vs. KIRC)

Based on the Jaccard similarity index, J,; = 0.34, LGG-KIRC pair was
found to be most similar in the context of survival related genes. The list
of genes is shown in S1 Table 10 along with HR and p-values obtained

from Cox univariate analyses. An intersection between the set of top

20 genes (based on p-values) of both the cancers was used to develop
risk stratification models. The conjoined set consisted of 15 genes viz.
BTG3, CDK2, SOD2, TOP2A, HMGB2, TIMP1, 1SG20, TNFRSF12A,
AFNB1, ADD1, CASP8, CDC25B, IFITM3, CD44, and GPX1. Pl models

were developed for both the cancers as follows:

Plige = 1.19 x BTG3 + 1.07 x CDK2 +0.99 x SOD2 + 1.07
x TOP2A +0.99 x HMGB2 +0.98 x TIMP1 +0.89
X 15G20 +0.91 x TNFRSF12A +0.91 x IFNB1 —0.81
X ADD1 +0.79 x CASP8 +0.77 x CDC25B +0.76

X IFITM3 +0.74 x CD44 +0.74 x GPX1 (4)
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FIGURE 6 Development of cross-cancer prognostic models: LGG-KIRC. (A) KM plots representing the segregation of risk groups by Pl, g in
LGG cohort and in (B) KIRC cohort. (C) KM plots representing the segregation of risk groups by Pl rc in KIRC cohort and in (D) LGG cohort

Plgre = 0.6 x BTG3 +0.7 x CDK2 +0.56 x SOD2 + 0.54
x TOP2A +0.6 x HMGB2 +0.9 x TIMP1 +0.55
x 1SG20 +0.61 x TNFRSF12A +0.57 x IFNB1 —0.79
x ADD1 +0.54 x CASP8 +0.82 x CDC25B +0.53

x IFITM3 +0.52 x CD44 +0.57 x GPX1 (5)

Using these, risk stratification was performed in the respective can-
cer as well as another cancer. While Pl g in LGG segregated the risk
groups with HR = 4.77, p-value = 3.51 x 10~?, C = 0.68, %95C| 2.84-
8.01 and logrank-p = 3.41 x 10~11; it showed a performance of HR =
2.95, p-value = 1.44 x 1011, C = 0.64, %95CI 2.15-4.04 and logrank-p
=1.37 x 10~ in KIRC. Similarly, Pl rc in KIRC stratified high and low
risk patients with HR = 3.27, p-value = 1.82 x 1013, C = 0.66, %95ClI
2.39-4.49 and logrank-p = 1.31 x 10~13 and in LGG with HR = 4.23, p-
value = 1.88 x 1077, C = 0.69, %95Cl 2.64-6.77 and logrank-p = 1.07
x 10710, KM plots corresponding to these are shown in Figure 6. It is
also interesting to observe the same nature of these genes in both the

cancers, as evident from the 8 values.

3.7 | Potential drug molecules for LGG and KIRC

We further utilized the Cmap2 database and screened the potential
drug molecules which could modulate the expression profile of genes
and reduce risk of death associated with high-risk groups in LGG and
KIRC. After querying the list of 15 genes above, we obtained the ranked
therapeutic molecules as shown in -S1 Table 11. Top two enriched can-
didates were Genistein (enrichment = 0.592, p = 0) and Hexestrol
(enrichment = 0.918, p = 0.00004). Amongst these, Genistein contin-
ues to be a focus of attention in the scientific community for its anti-

cancer effects.

4 | DISCUSSION

Risk assessment and management is a major challenge in treatment of
cancer patients. In current clinical practice, patients are characterized
in different risk groups based on several clinico-pathological features.
Thereafter, different therapy regimens and treatment procedures are
employed. However, this risk assessment process is plagued with a

number of limitations which are mainly attributed to the process of
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obtaining the clinical features. To curb these issues and provide more
reliable and efficient prognosis, a variety of molecular prognostic
biomarkers have been proposed. Identification of majority of these
biomarkers is based on the recent high-throughput sequencing data
and modern bioinformatics tools. These biomarkers also offer a better
understanding of the fundamental processes involved in the tumori-
genesis and reveal novel therapeutic targets. Dysregulation of the
apoptotic machinery of the cell is one of the most prominent feature of
tumour cells. As a result of which, it has been widely studied in the past
and the information gained from those studies has been successfully
translated into development of several potential anti-cancer drugs.
However, the past studies were limited in scope and confined to a
small number of apoptosis related regulatory molecules and cancers.
Also, while many of these studies have suggested many genes/proteins
as potential prognostic biomarkers in specific cancers, only a few of
these have identified the biomarkers which could be applicable across
multiple cancers. These handful of pan-cancer biomarkers, however,
have a limited performance. Thus, a comprehensive study involving all
possible apoptosis related molecules across the multitude of cancers
is needed.

In this study, we analysed the expression pattern of 165 genes of the
apoptosis pathway across 33 different cancer cohorts. Using the pan-
cancer dataset, we performed a correlation analysis wherein we found
out that expression of the genes in the dataset was poorly correlated
with OS of the patients. The risk prediction models constructed via uti-
lizing the top correlated genes, thus performed poorly in discriminating
high and low risk groups. Further, by utilizing Cox univariate survival
analysis, we were able to find out genes that were related to the prog-
nosis of patients in pan-cancer cohort in the context of OS. A univer-
sal biomarker based on voting model of top ten genes viz. EREG, IL1A,
IL18,BAK1, BID,CDC25B, IL1B, ANXA1, TOP2A, and BRCA1 was able
to provide a two-fold discrimination between the low and high-risk
groups. Many of the previous studies highlight the prognostic rele-
vance of these genes, thereby, strengthening our finding and providing
additional value to our universal biomarker voting model. However due
to the low stratification ability of the model (C = 0.62), we performed a
further analysis to develop better multi-cancer risk prediction models.
We estimated the prognostic potential of each of the 165 genes in indi-
vidual cancers by means of univariate survival analyses. For each can-
cer, we developed risk stratification models using the top genes of the
cancer and were able to achieve significant stratification in 29 out of 33
cancers. Next, we filtered out 11 genes whose expression was related
to prognosis in at least eight cancers. All of these genes were found
to be associated with one or more cancers as found out by the Cancer
Gene Database. EREG and TOP2A, two of the top ten genes in previous
pan-cancer analysis, were also amongst these 11 genes. Universal risk
prediction models based on Pl and voting were then constructed for
these 11 genes and used to stratify patients in 27 cancer cohorts. Risk
stratification was significant in all the cancers, though performance
varied from HR = 11.74 in UVM (8 out of 11 genes were significantly
related to OS) to HR = 1.73 in OV (2 out of 11 genes were signifi-
cantly related to OS). This 11-gene model, thus can be used across mul-

tiple cancers for patient prognosis as corroborated from the validation
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performance using external datasets belonging to 7 cancer types. We
also proposed a strategy for construction of cross-cancer prognostic
biomarkers. We clustered the cancers in a hierarchical order by uti-
lizing the number of shared survival associated genes, thereby finding
the cancer pairs closest to each other. For this, a number of similar-
ity indices were used (results not shown here) and Jaccard similarity
index was found to be the best measure. We display the efficacy of this
strategy by developing a Pl based 15-gene prognostic biomarker for
LGG-KIRC pair. The expression profile of 15 genes in LGG-KIRC pair,
surprisingly, were observed to have a similar prognostic nature. 10 out
of 11 genes were associated with a poor prognosis while ADD1 gene
was associated with a good prognosis in both the cancers. While many
of these genes have been associated with carcinogenesis in the past
[47-53], these results demand that future efforts should be made to
elucidate the functional roles of these genes in such two distant can-
cers. Further, in order to provide a therapeutic approach for reducing
the mortality rate associated with high risk LGG and KIRC patients, we
screened potential molecules which could modulate the gene expres-
sion of these 15 genes. The top screened molecule, Genistein, is an
isoflavone found in soy products which has recently drawn attention of
the scientific community due to its potential use in treatment of can-
cer. Genistein is well known to induce apoptosis and prevent metas-
tasis and has been shown to benefit colorectal and breast cancer
patients [54,55]. Another top enriched molecule, Hexestrol, is a syn-
thetic oestrogen which was previously used for treatment of prostate
and breast cancer but has been discontinued in most of the countries.
To conclude, our analysis first resulted in the development of cancer
specific biomarkers, many of which show better stratification perfor-
mances than the previously suggested biomarkers. Secondly, we devel-
oped universal or multi-cancer biomarkers which can be utilized across
a larger number of cancers in contrast to the biomarkers suggested in
previous studies. Thirdly, we proposed a new strategy for development
of cross-cancer biomarkers. Overall this study sheds light on the prog-
nostic power of apoptotic pathway genes in various cancers, implying
their association with cancer related risk. The exploitation of this infor-
mation can be used to modulate the expression of key apoptotic genes,
thereby reducing the associated risk of death. Therefore, these genes

could serve as potential therapeutic targets across multiple cancers.

5 | LIMITATIONS OF THE STUDY

Although, our study shows some promising results, we were unable
to devise a universal biomarker which has a high stratification abil-
ity in all the cancers chosen here. Another limitation of the study is
the lack of experimental validation, which is necessary for a clinical
realization of the biomarkers. We were able to validate our univer-
sal model in eight external cancer cohorts but ideally it is expected to
be tested through-out all the cancer cohorts mentioned in this study.
Future efforts through public availability of more datasets would help
realize the complete potential of this study. Moreover, addition of other
omics data could further improve the performance of expression based

prognostic models.
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