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ABSTRACT
Prediction of antifreeze proteins (AFPs) holds significant importance due to their diverse applications in healthcare. An inherent
limitation of current AFP prediction methods is their reliance on unreviewed proteins for evaluation. This study evaluates,
proposed and existing methods on an independent dataset containing 80 AFPs and 73 non-AFPs obtained from Uniport, which
have been already reviewed by experts. Initially, we constructed machine learning models for AFP prediction using selected
composition-based protein features and achieved a peak AUROC of 0.90 with an MCC of 0.69 on the independent dataset.
Subsequently, we observed a notable enhancement in model performance, with the AUROC increasing from 0.90 to 0.93 upon
incorporating evolutionary information instead of relying solely on the primary sequence of proteins. Furthermore, we explored
hybrid models integrating our machine learning approaches with BLAST-based similarity and motif-based methods. However,
the performance of these hybrid models either matched or was inferior to that of our best machine-learning model. Our best
model based on evolutionary information outperforms all existing methods on independent/validation dataset. To facilitate users,
a user-friendly web server with a standalone package named “AFPropred” was developed (https://webs.iiitd.edu.in/raghava/
afpropred).

1 Introduction

In the 1950s, Scholander et al. found fish species that could
survive in freezing temperatures, challenging traditional ideas
about living in cold climates [1–3]. In 1969, DeVries and his team
linked these adaptations to antifreeze proteins (AFPs) [4]. Since
then, AFPs have been discovered in various species, such as
insects, fungi, bacteria, and mammals. These proteins help these
organisms to survive in extremely cold temperatures either by
avoiding freezing or tolerating it [5–10]. AFPs sustain organisms

from freezing stress by thermal hysteresis and preventing ice
recrystallization [5, 11–16]. Due to their unique freeze-resistance
property, AFPs have a wide range of applications, including food
preservation [17–19], medicine [20, 21], human cryosurgery, and
the production of yoghurt [22–26].

Numerous experimental techniques have been developed to
identify and characterize AFPs. This includes ammonium precip-
itation and ice affinity chromatography for purification of AFPs
[27–29], Ice-etching [30, 31], fluorescence-based ice plane affinity

Abbreviations: AAC, amino acid composition; Ala, alanine; AUROC, area under the receiver operating characteristic; BLAST, basic local alignment search tool; ET, extra tree classifier; FS, feature
selection; GNB, Gaussian Naive Bayes; Ile, isoleucine; KNN, k-nearest neighbor; LR, logistic regression; MCC, Matthew’s correlation coefficient; ML, machine learning; MLP, multi-layer perceptron
classifier; PSI-BLAST, position-specific iterated BLAST; PSSM, position-specific scoring matrix; RF, random forest; Thr, threonine; Val, valine; XGB, extreme gradient boosting.
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Summary
∙ Prediction of antifreeze proteins with high precision.

∙ Evaluation of prediction models on an independent
dataset.

∙ Machine learning based models using sequence composi-
tion.

∙ Evolutionary information based prediction models.

∙ Awebserver for predicting, scanning, and designing AFPs.

(FIPA) [32], and site-directed mutations [33–35] to determine
ice-affinity planes to assess the mechanism of AFPs. These
experimental techniques are time-consuming and costly [36].
Simple similarity-based techniques like BLAST or PSI-BLAST fail
to detect distantly related AFPs [23, 25, 37].

Previously, several in silico methods have been used to discrim-
inate AFPs and non-AFPs [38]; a brief description of existing

methods is shown in Table 1. In 2011, Kandaswamy and Chou [23]
developed AFP-Pred, a pioneered ML-based approach deploying
random forest (RF) to classify AFPs. In the same year, Yu and
Lu developed an SVM method, iAFP [39], utilizing a genetic
algorithm (GA) for feature selection. Subsequently, various AFP
prediction tools are AFP_PSSM [40], AFP-PseAAC [41], AFP-
ensemble [42], TargetFreeze [43], iAFP-Ense [44], CryoProtect
[45], afpCOOL [25], and RAFP-Pred [46]. Boosting methods also
have been employed by PoGB-pred [47], Miyata et al. [26], and
AFP-LXGB [24]. Recently, sparse representation-based classifiers
such asAFP-LSE [16] andAFP-SRC [38] have also been developed
for AFP Prediction.

The major limitation of the existing methods is their dataset, as
these methods have been evaluated on unreviewed data. This
study has made a systematic effort to create a validation dataset
of AFPs obtained from Swiss-Prot (reviewed) for evaluation. We
implement a robust strategy for AFP prediction by leveraging
diverse approaches, including machine learning, sequence simi-
larity, and pattern detection. In addition, ensemble methods have
been developed where two or more than two approaches have
been integrated to predict AFPs.

TABLE 1 List of available methods of AFP prediction.

Name Year Source/Database Dataset description

AFP-Preda [23] 2011 Pfam database 481 AFPs and 9493 non-AFPs
iAFPa [39] 2011 PDB, UniProKB Training: 44 AFPs and 3762 non-AFPs

Testing: 369 AFPs
AFP_PSSMa [40] 2012 AFP-Pred 481 AFPs and 9493 non-AFPs
AFP-PseAAC [41] 2014 AFP-Pred 481 AFPs and 9493 non-AFPs
TargetFreezea [43] 2015 AFP-Pred, Pfam

database
Training: 300 AFPs and 300 non-AFPs
Testing: 181 AFPs and 8293 non-AFPs

AFP-ensemblea [42] 2015 AFP-Pred Training: 371 AFPs and 7266 non-AFPs
Testing: 93 AFPs and 1817 non-AFPs

CryoProtect [45] 2016 AFP-Pred 478 AFPs and 9139 non-AFPs
RAFP-Preda [46] 2018 AFP-Pred, iAFP,

UniProKB
Data1: 481 AFPs and 9493 non-AFPs

(AFP-Pred)
Data2: 44 AFPs and 3762 non-AFPs (iAFP)

Data3: 369 AFPs (Uniprot)
afpCOOLa [25] 2018 AFP-Pred, UniProtKB Data1: 481 AFPs and 9493 non-AFPs

Data2: 517 AFP and 517 non-AFPs
AFP-CKSAAP [48] 2019 AFP-Pred, Pfam 481 AFPs and 9493 non-AFPs
W-GDipc-LRMR-Ri [36] 2019 AFP-Pred, MemType-2L Data1: 480 AFPs and 374 no-AFPs

Data2: 7582 MemType-2L dataset
AFP-LSE [16] 2020 AFP-Pred 481 AFPs and 9493 non-AFPs
Sun et al. [49] 2020 AFP-Pred 481 AFPs and 9493 non-AFPs
AFP-CMBPred [50] 2021 AFP-Pred, Pfam

database
Training: 300 AFPs and 300 non-AFPs
Testing: 181 AFPs and 8293 non-AFPs

AFP-LXGBa [24] 2022 AFP-Pred, Pfam
database

481 AFPs and 9193 non-AFPs

AFP-SPTSa [51] 2022 AFP-Pred, Pfam
database

481 AFPs and 9193 non-AFPs

AFP-SRC [38] 2022 AFP-Pred 481 AFPs and 9493 non-AFPs
aWebserver is not working properly or not available.
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2 Material and Methods

2.1 Dataset Compilation and Pre-Processing

The reliability of a method depends on the quality of the dataset
used for training and evaluation. Ideally, both training and testing
datasets should be experimentally validated [52, 53]. In this study,
we have used two datasets, the main and the validation, which
were used formodel training and external validation, respectively.

2.1.1 Validation Dataset

To create an independent/validation dataset, we extracted AFPs
from reviewed sequences of the Swiss-Prot [54]. We retrieved
297 AFPs from UniProtKB using relevant keyword in reviewed
entries, complete list of keywords is shown in Table S1. After
eliminating redundant sequences and fragments, we got 80 non-
redundant sequences out of the 297 sequences. These 80 AFPs
having ranging from 16 to 2439 amino acids used to validate our
models. In order to create set of non-AFP,we searchedUniProtKB
for the term “NOT_antifreeze_protein” and obtained 429,837. We
got 81,339 non-redundant non-AFPs, after removing redundant
sequence using CD-hit at cut-off 40%. We randomly picked an
equal number of negative sequences and then removed sequences
which are not in the range of more than 16 and less than 2439
amino acids. Finally, we have 73 non-AFPs and 80 AFPs in
validation dataset for evaluating our models.

2.1.2 Main Dataset

For the training of our model, we constructed the AFPs (positive)
dataset by initially obtaining 49,352 (unreviewed) AFP sequences
from the UniProt database [54]. Additionally, we applied the
standard practices followed in bioinformatics, by employing
the CD-HIT program [55] to reduce the sequence identity to
40%. After eliminating identical sequences and sequences that
contain non-natural amino acids, we were left with 8134 positive
sequences with lengths varying from 37 to 12,385. Consequently,
the 9493 non-AFPs (negative) were collected from the existing
tool, AFP-Pred. We were left with 9439 non-AFPs after removing
the non-natural amino acids. Finally, we have 17,573 training
sequences for model training and optimization.

2.2 Composition Analysis

In this study, we have conducted an assessment of amino acid
composition (AAC) for both positive and negative datasets, with
a specific focus on AFPs and non-AFPs. AAC is the percentage
frequency of the 20 different amino acids within a peptide or
protein sequence. We have utilized the “Pfeature” [56] module to
compute and calculate the AAC composition. To calculate AAC,
we applied the following equation:

𝐶𝑅𝑖 =
𝑁𝑅𝑖
𝑇𝑅

(1)

CRi represents the composition of residue i; NRi is the total
number of residues of type i; TR stands for the total number of
residue in the sequence.

TABLE 2 List of descriptors calculated using the Pfeature.

Type of feature Vector size

AAC (amino acid composition) 20
DPC (dipeptide composition) 400
ATC (atomic composition) 5
BTC (bond composition) 4
PCP (physico-chemical properties based
composition)

30

RRI (residue repeat information) 20
DDOR (distance distribution of residues) 20
SER (Shannon entropy for all residues) 20
SEP (Shannon entropy at protein level) 1
CTC (conjoint triad calculation) 343
PAAC (pseudo amino acid composition) 21
APAAC (amphiphilic pseudo amino acid
composition)

23

QSO (quasi-sequence order) 42
SOCN (sequence order coupling number) 2
CeTD (composition enhanced transition
and distribution)

189

SPC (Shannon entropy at property level) 25
Total vector size 1165

This analysis helps in gaining important insights into the signif-
icance of AAC for a better understanding of the quantity and
distribution of particular amino acids across various datasets.

2.3 Feature Generation Techniques

Discovering the discriminative features using appropriate tech-
niques is important for designing an effective computational
model for classifying the AFPs. In this regard, we have utilized
the Pande et al. standalone software “Pfeature” [56] to extract the
salient patterns from primary sequences of AFPs [24].

2.3.1 Composition Based Features

In this study, we have utilized the composition-based feature
module of “Pfeature” to compute the features/descriptors listed
in Table 2. This module calculates various features based on the
dataset’s composition or proportion of specific elements.

2.3.2 Evolutionary Based Features

The protein’s evolutionary features are known to provide addi-
tional crucial information about proteins [57, 58]. The evolution-
ary information of proteins was retrieved from a position-specific
scoring matrix (PSSM) profile generated using Position-Specific
Iterated BLAST (PSI-BLAST) [59]. In this study, we have used the
“pssm_composition” module from the POSSUM package [60] to
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generate the PSSM-400, a 20 × 20 dimension matrix for a protein
sequence composition profile that measures the occurrence of 20
amino acids in the sequence. Using the Swiss-Prot, we generated
a PSSM matrix for each sequence whose hit was found in the
database. We have created an empty PSSM-400 with zero values
for those sequences whose PSSM is not generated due to lack of
homologous sequence. The complete dataset pool of sequences is
in the Table S2.

2.4 Feature Selection Techniques

In the majority of datasets, only a small number of features are
relevant that contribute to identifying the endpoint. However,
a vast number of irrelevant and redundant features remain
a significant issue. To overcome this issue, we have applied
the feature selection techniques to identify the relevant subset
of features from the original set. In addition, numerous tech-
niques for feature selection have been developed so far and
effectively implemented in various fields [61]. In this study, we
initially ranked the features based on mutual information by
implementing an ensemble minimum redundancy–maximum
relevance (mRMR) technique [49, 62]. The top-ranked features
were most relevant to discriminating AFPs and non-AFPs and
complementary to each other.

2.5 Selection of Appropriate MLModels

To select an appropriate classifier for the prediction of AFPs,
we have used different machine learning algorithms, as its
prediction performance will depend not only on the feature
representation method but also on the classifier used [24, 43].
This study used a different set of classifiers from the Scikit-
learn [63] library, including k-nearest neighbor (KNN) [64], RF
[65], logistic regression (LR) [66], Gaussian Naïve Bayes (GNB)
[67], extremely randomized tree (ET) [68], multi-layer Perceptron
classifier (MLP) [69], and extreme gradient boosting (XGB) [70].

2.6 Cross-Validation Technique

We have adopted the k-fold cross-validation (CV) as a model
selection criterion in which the whole dataset is divided into
k-folds. In our study, k = 5, then k-1 folds are used for model con-
struction, and the hold-out fold is allocated to model validation
[71].Wehave divided the complete dataset into 80:20 ratios,where
80% constitutes the training dataset, and 20% constitutes the
validation dataset. Themodel was trained and evaluated based on
five-fold CV and the independent validation dataset [49]. Finally,
the mean of the performances of five iterations is used as the
overall performance [58, 72].

2.7 Evaluation Parameters

We have utilized libraries like Scikit-learn (sklearn), pandas, and
numpy to buildmachine-learningmodels based on classification.
From sklearn, we have imported the following classifiers: RF,
ET, GB, MLP, and LR. XGB and other libraries were installed
using the pip packages [73]. To evaluate ourmodel’s performance,

we used the threshold-dependent metrics of sensitivity, speci-
ficity, accuracy,Mathews correlation coefficient (MCC), Youden’s
Index, balanced accuracy, F1-score, and threshold-independent
metrics of area under the receiver operating characteristics curve
(AUROC) [74]. These threshold-dependent parameters can be
calculated as follows:

Sensitivity = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

Specif icity = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3)

Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4)

MCC = (𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)
√
(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)

(5)

Youden′s Index = Sensitivity + Specif icity − 1 (6)

Balanced Accuracy =
Sensitivity + Specif icity

2
(7)

𝐹1 Score = 2 × Precision × Recall

Precision + Recall
(8)

where, TP stands for true positive; TN stands for true negative; FP
stands for false positive; FN stands for false negative

Once the model was evaluated, we chose our top-performing
model for further analysis, in which we integrated the
evolutionary features with composition-based features and the
ML score with the BLAST score and named the hybrid methods.

2.8 Motif Based Features

It is crucial to identify conservedmotifs in biological sequences to
discover common shared functions. This study uses the MERCI
tool to identify degeneratemotifs based on a given classification of
amino acids according to their physico-chemical properties [75].
MERCI is employed to select distinct motifs from the positive
dataset by analyzing input sequences of negative and positive sets.
A number ofMERCI parameters were applied to extract exclusive
or inclusive motifs of both sets. The default value of the maximal
frequency of the negative sequences (fn) is zero, which is used
to create exclusive motifs—that is, motifs that are not shared by
the positive and negative sets. We extended this number to fn = 8
to achieve inclusive motifs. We devised motifs from exclusive
and inclusive motifs by determining values such as (a) No gap,
(b) Gap = 1, (c) Gap = 2, and (d) Class = Koolman–Rohm [75].
Following that, the unique proteins possessing the motifs were
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FIGURE 1 The workflow of the study includes data collection, alignment-based and alignment-free methods, model development and evaluation,
and development of web services.

identified to estimate the total coverage of motifs in the protein
sequence [58].

2.9 Webserver Architecture

In this study, we have developed awebserver named “AFProPred”
(available at https://webs.iiitd.edu.in/raghava/afpropred/) to
predict AFPs and non-AFPs. The webserver front and back end
are developed using HTML5, CSS, Java, and PHP scripts. It is
user-friendly, easily accessible, and compatible with almost all
devices, including the desktop, tablet, and mobile phone. In
the webserver, we have incorporated three major modules: (i)
Predict, (ii) Design, and (iii) Scan.

3 Results

In this study, we have divided the result section broadly
into the following sub-sections: (i) Compositional analysis
of AFPs, (ii) Alignment-based method, (iii) Alignment-free
method, (iv) Hybrid approaches, (v) Benchmarking, and (vi)
Webserver. A complete workflow of the study is shown in
Figure 1, and a description of these subsections can be found
below.

3.1 Compositional Analysis

We have calculated the composition of individual amino acids
to assess the prevalence of amino acid residues in each dataset.
By analyzing the average composition of amino acids in protein
sequence, the researcher can identify the potential AFPs. Here,
we computed the average residue composition for APFs, non-
AFPs, and general proteome in Figure 2, which exhibits that
Alanine (A), Isoleucine (I), Valine (V), Threonine (T) are most
abundant in AFPs (Positive dataset) while in non-AFPs Leucine
(L), Glutamic acid (E) are highly conserved. Figure 3 represents
the difference of average composition scores of AFPs compared to
general proteome and no-nAFPs.

3.2 Alignment-Based Method

3.2.1 Motifs Analysis

We aim to identify exclusive and inclusive motifs/patterns
present in AFPs, which can be used to search AFPs. We
employed the open-source/freeware available MERCI [75]
software to discover motifs. As MERCI provides several options,
we explore the various options or parameters: no gap (default),
a gap of 1, a gap of 2, and Koolman–Rohm (Table S3). It is
crucial to remember that MERCI utilizes an fn (maximum
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FIGURE 2 Comparison analysis of the average composition of amino acid residues in AFPs, non-AFPs, and general proteome.

FIGURE 3 The differences in average-composition scores of AFPs compared to general proteome and non-AFPs.

frequency in negative sequences) with a value of zero by
default, producing exclusive motifs. We changed the fn value
to 8 to widen our analysis and get an inclusive variety of
motifs for both negative and positive datasets. Unfortunately,
only limited number of sequences have motifs. Thus, a motif-
based approach is not adequate to predict the function of all
proteins.

3.2.2 Similarity Search Approach

A commonly used software package, BLAST (BLAST+ 2.7.1),
has been used for performing similarity searches where a query
sequence is searched against a database [76]. A training dataset
was used to build a target database for performing a blastp search,
where query sequences (sequences in the test set) were searched

6 of 13 Proteomics, 2025
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TABLE 3 AUROC of machine learning based models developed
using different types of protein composition on validation dataset (80
AFPs and 73 non-AFPs).

Features XGB RF MLP LR KNN GNB ET

AAC 0.89 0.87 0.86 0.89 0.89 0.79 0.87
DPC 0.84 0.83 0.90 0.91 0.83 0.70 0.82
ATC 0.77 0.76 0.79 0.86 0.75 0.73 0.78
BTC 0.67 0.70 0.56 0.78 0.65 0.58 0.68
PCP 0.89 0.87 0.87 0.89 0.77 0.75 0.86
RRI 0.74 0.71 0.71 0.69 0.63 0.55 0.70
DDR 0.83 0.84 0.81 0.62 0.74 0.66 0.86
SER 0.88 0.87 0.87 0.87 0.89 0.77 0.86
SEP 0.67 0.65 0.68 0.68 0.62 0.69 0.64
CTC 0.75 0.73 0.79 0.77 0.70 0.65 0.74
PAAC 0.88 0.88 0.87 0.89 0.89 0.78 0.88
APAAC 0.87 0.89 0.87 0.90 0.89 0.80 0.89
QSO 0.87 0.86 0.87 0.91 0.89 0.77 0.83
SOCN 0.66 0.67 0.66 0.65 0.63 0.72 0.68
CeTD 0.80 0.72 0.77 0.82 0.75 0.66 0.74
SPCl 0.85 0.87 0.83 0.85 0.74 0.71 0.85

at different e-values. Each query sequence has been classified as
AFP or non-AFP based on the top hit. For example, the query
sequence is designated as an AFP if the query sequence has the
top hit against an AFP. One of the challenges with this approach
is assigning a class to a protein if it has no hits with AFPs or non-
AFPs. Thus, a similarity-based approach is not adequate to predict
the function of all proteins.

3.3 Alignment-Free Method

As shown above, alignment-based techniques were unable to
provide full coverage. To address this challenge, we applied
various machine-learning techniques to construct models for
predicting AFPs. These techniques include RF, MLP, LR, XGB,
KNN, Extra Tree (ET), and Gaussian Naive Bayes (GNB). These
models have been developed using a wide range of compositional
features, evolutionary based features or PSSM profile, combined
features, and selected features.

3.3.1 Compositional Features

We build machine learning-based prediction models using dif-
ferent type of composition-based features that includes AAC as
well as dipeptide composition (DPC). These features have been
generated using standalone software “Pfeature,” different type of
features including number of descriptors is shown in Table 2.
The performance of machine learning based models developed
using different type of features have been shown in Table S4. The
performance in terms of AUROC for these models on different
types of protein compositions on our validation dataset that
contain 80 AFPs and 73 non-AFPs is shown in Table 3.

3.3.2 PSSM Profiles

It has been shown in several studies in the past that evolutionary
information-based models perform better than single-sequence
basedmodels [58, 77–79]. Thus, this study also explores the poten-
tial of evolutionary information in predicting AFPs. We used the
POSSUM package [60] to generate evolutionary information for
each protein sequence in the form of a PSSM profile. While we
managed to successfully generated PSSM profile for 146 out of
153 proteins in validation dataset, the method fails to generate
PSSM profile for seven AFPs (Table S2). The performance of our
machine learning basedmodels developed using PSSM profile on
validation dataset (146 proteins) is shown in Table S5. As shown in
Table S5, models based on ET, XGB and RF achieved a maximum
AUROsC of 0.92 on validation dataset containing 73 AFPs and 73
non-AFPs.

3.3.3 Combined Features

Subsequently, we aggregated all compositional features, resulting
in a vector of size 1165 for each sequence across the datasets.
We then developed the prediction models employing the
distinct classifier on the combined feature dataset, meticulously
fine-tuning the parameters to optimize the AUROC. Our
analysis showed that the ET and XGB perform almost equally
in terms of AUROC, which is 0.86 and 0.87, respectively.
Additionally, they achieved MCC scores of 0.54 and 0.63,
correspondingly. Table 4 provides a comprehensive overview of
performance metrics, encompassing both threshold-dependent
and threshold-independent measures, for all the classifiers
that were trained and validated across training and validation
datasets.

3.3.4 Selected Features

In a large number of feature sets, some might be unrelated,
making it time-consuming to analyze and train the model. It
is essential to select the more relevant features that result in a
more simplified model by focusing only on the significant ones.
In this study, we have generated 1165 features using Pfeature. We
used mRMR [80, 81] feature selection technique to select most
relevant features by removing redundant features. We got best set
of 150 features after applying mRMR. These features were used to
develop machine learning based models for discriminating AFPs
and non-AFPs (Table 5). As shown in Table 5, ET and RF perform
better other methods.

3.4 Hybrid Approaches

As demonstrated in the preceding sections, we utilized
alignment-based methods (Motif & BLAST) and alignment-
free methods (machine learning techniques). Each approach
has its advantages and drawbacks. Alignment-based methods
offer high specificity but poor sensitivity. Their performance
relies on the similarity or presence of motifs. On the other hand,
machine learning-based models or alignment-free methods are
more generalized, with performance unaffected by similarity.
We developed ensemble or hybrid methods to capitalize on the
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TABLE 4 Performance of different models on the combined features on main (for training) and validation dataset (for validation).

Classifier Sens (%) Spec (%) Acc (%) AUROC MCC F1-score BAC (%) YI

Training (8134 AFPs and 9439 non-AFPs)
ET 81.72 81.39 81.54 0.90 0.63 0.80 81.55 0.63
GNB 35.28 82.74 60.78 0.67 0.21 0.45 59.01 0.18
KNN 58.78 73.87 66.89 0.72 0.33 0.62 66.33 0.33
LR 70.85 71.99 71.46 0.78 0.43 0.70 71.42 0.43
MLP 69.98 70.01 69.99 0.76 0.40 0.68 69.99 0.40
RF 81.72 82.1 81.92 0.90 0.64 0.81 81.91 0.64
XGB 82.70 82.53 82.61 0.91 0.65 0.82 82.62 0.65

Validation (80 AFPs and 73 non-AFPs)
ET 71.25 82.19 76.47 0.86 0.54 0.76 76.72 0.53
GNB 67.50 61.64 64.71 0.67 0.29 0.67 64.57 0.29
KNN 38.75 69.86 53.6 0.55 0.09 0.47 54.31 0.09
LR 61.25 79.45 69.94 0.82 0.41 0.68 70.35 0.41
MLP 56.25 90.41 72.55 0.78 0.49 0.68 73.33 0.47
RF 62.50 82.19 71.90 0.84 0.45 0.70 72.35 0.45
XGB 82.50 80.82 81.70 0.87 0.63 0.83 81.66 0.63

Abbreviations: Acc, accuracy; AUROC, area under receiver operating curve; BAC, balanced accuracy; ET, extra-trees classification; GNB, Gaussian Naive Bayes;
KNNs, k-nearest neighbors; LR, logistic regression; MCC, Matthews correlation coefficient; MLP, multi-layer perceptron classifier; RF, random forest; Sens,
sensitivity; Spec, specificity; XGB, XGBoost; YI, Youden’s Index.

TABLE 5 The performance of machine learning based models developed using 150 features select by mRMR technique.

Features Sens (%) Spec (%) Acc (%) AUROC MCC F1-score BAC (%) YI

Training (8134 AFPs and 9439 non-AFPs)
ET 79.41 79.09 79.24 0.88 0.58 0.78 79.25 0.58
GNB 56.06 78.15 67.93 0.74 0.35 0.62 67.11 0.34
KNN 67.09 72.51 70.00 0.76 0.40 0.67 69.80 0.40
LR 73.48 74.48 74.02 0.81 0.48 0.72 73.98 0.48
MLP 83.53 83.36 83.44 0.90 0.67 0.82 83.44 0.67
RF 82.59 83.49 83.08 0.91 0.66 0.82 83.04 0.66
XGB 80.98 80.62 80.79 0.89 0.62 0.80 80.80 0.62

Validation (80 AFPs and 73 non-AFPs)
ET 83.75 84.93 84.31 0.90 0.69 0.85 84.34 0.69
GNB 58.75 91.78 74.51 0.83 0.53 0.71 75.27 0.51
KNN 61.25 82.19 71.24 0.77 0.44 0.69 71.72 0.43
LR 78.75 82.19 80.39 0.87 0.61 0.81 80.47 0.61
MLP 53.75 86.30 69.28 0.80 0.42 0.65 70.03 0.40
RF 76.25 91.78 83.66 0.92 0.69 0.83 84.02 0.68
XGB 70.00 82.19 75.82 0.88 0.52 0.75 76.10 0.52

Abbreviations: Acc, accuracy; AUROC, area under receiver operating curve; BAC, balanced accuracy; ET, extra-trees classification; GNB, Gaussian Naive Bayes;
KNNs, k-nearest neighbors; LR, logistic regression; MCC, Matthews correlation coefficient; MLP, multi-layer perceptron classifier; RF, random forest; Sens,
sensitivity; Spec, specificity; XGB, XGBoost; YI, Youden’s Index.
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TABLE 6 Performance on the PSSM composition profile combined with AAC composition on main (for training) and validation dataset (for
validation).

Classifier Sens (%) Spec (%) Acc (%) AUROC MCC F1-score BAC (%) YI

Training (8134 AFPs and 9439 non-AFPs)
ET 82.91 83.66 83.32 0.92 0.67 0.82 83.29 0.67
GNB 51.48 78.79 66.15 0.73 0.32 0.59 65.14 0.30
KNN 82.35 82.07 82.20 0.90 0.64 0.81 82.21 0.64
LR 80.16 80.06 80.11 0.87 0.60 0.79 80.11 0.60
MLP 85.52 85.68 85.60 0.93 0.71 0.85 85.60 0.71
RF 83.38 83.19 83.28 0.91 0.67 0.82 83.29 0.67
XGB 84.13 84.37 84.26 0.92 0.68 0.83 84.25 0.69

Validation (80 AFPs and 73 non-AFPs)
ET 85.00 91.78 88.24 0.93 0.77 0.89 88.39 0.77
GNB 46.25 91.78 67.97 0.85 0.42 0.60 69.02 0.38
KNN 68.75 87.67 77.78 0.89 0.57 0.76 78.21 0.56
LR 47.50 79.45 62.75 0.79 0.28 0.57 63.48 0.27
MLP 70.00 73.97 71.90 0.80 0.44 0.72 71.99 0.44
RF 76.25 87.67 81.70 0.91 0.64 0.81 81.96 0.64
XGB 73.75 78.08 75.82 0.86 0.52 0.76 75.92 0.52

Abbreviations: Acc, accuracy; AUROC, area under receiver operating curve; BAC, balanced accuracy; ET, extra-trees classification; GNB, Gaussian Naive Bayes;
KNNs, k-nearest neighbors; LR, logistic regression; MCC, Matthews correlation coefficient; MLP, multi-layer perceptron classifier; RF, random forest; Sens,
sensitivity; Spec, specificity; XGB, XGBoost; YI, Youden’s Index.

strengths of both alignment-free and alignment-based models.
First, we developed ML models using a combination of PSSM-
based features and AAC. The hybrid PSSM-based ET models
perform better than others, achieving anAUROCof 0.93with 0.77
MCC, as shown in Table 6. In addition, we developed machine
learning techniques using a combination of 150 selected and
the PSSM profile. It was observed that RF and ET attain almost
similar performance in terms of AUROC of 0.92 (Table S6).
We have combined BLAST-based approach with our ET-based
models developed using AAC+PSSM model and achieved a
maximum AUROC of 0.90 (Table S7). In this study, we have tried
many combinations to develop hybrid models. We achieved a
maximum performance AUROC of 0.93 on the validation dataset
using the PSSM+AAC feature based on ET-model. Ultimately,
we used this model for our study to develop a standalone package
and web server.

3.5 Benchmarking

To assess the significance of a newly developed method, it is
important to compare its performance with available methods
on the same dataset. Thus, we evaluate existing methods on our
validation dataset. Unfortunately, not all existing methods are
available. Therefore, we can predict the performance of those
methods that are fully functional and available to the public. Our
findings show that the existing methods CryoProtect [45], AFP-
CKSAAP [48], AFP-LSE [16], and AFP-SRC [38] do not perform
better on the validation dataset as compared to AFProPred, as
shown in Table 7.

3.6 Webserver Implementation

To provide a more user-friendly webserver for the scientific
community, we developed AFProPred, which can be accessed
at https://webs.iiitd.edu.in/raghava/afpropred/. This platform is
designed to predict AFPs using our top-performing model.
AFProPred offers several modules: Prediction, Design, and
Protein Scan. The Prediction module effectively distinguishes
between AFPs and non-AFPs, allowing users to submit protein
sequences in FASTA format for prediction. The Design module
enables users to generate all possible analogs of the input
sequence and predict AFPs among analogs. The protein Scan
module assists in identifying AFP regions within a given protein
sequence. This platform is developed using a responsive template
to browse on various devices, including smartphones, laptops,
and desktops. Additionally, we have created a Python-based
standalone package named “AFProPred” to facilitate users in
predicting AFP proteins at the genome scale. This package is
available via the “downloadmodule” on the web server at https://
webs.iiitd.edu.in/raghava/afpropred/standalone.html.

4 Discussion

Numerous methods have been developed in the past to improve
the accuracy of prediction of AFPs (Table 1). Most of the existing
studies used the AFP-Pred dataset, which contains 481 AFPs
and 9493 non-AFPs. AFPs were mainly extracted from the Pfam
database in a few studies (like iAFP) that extracted AFPs from
PDB. One of the significant limitations of existing studies is their
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TABLE 7 Comparison of available methods on the validation dataset (80 AFPs and 73 non-AFPs).

Name Year Sens (%) Spec (%) Acc (%) YI MCC AUROC F1-score BAC (%)

Cryoprotect 2017 0.79 0.43 60.13 0.22 0.23 0.61 NA 0.61
AFP-
CKSAAP

2019 0.78 0.88 82.00 0.65 0.65 0.89 NA 0.83

AFP-LSE 2020 0.73 0.75 74.00 0.48 0.48 NA 0.74 0.74
AFP-SRC 2022 0.56 0.58 57.00 0.14 0.14 NA 0.58 0.57
AFProPred — 0.85 0.92 88.24 0.77 0.77 0.93 0.89 0.90

Abbreviations: Acc, accuracy; AUROC, area under receiver operating curve; BAC, balanced accuracy; MCC, Matthews correlation coefficient; Sens, sensitivity;
Spec, specificity; YI, Youden’s Index.

dataset; none of the existing studies used experimentally vali-
datedAFPs orwell-annotatedAFPs available in Swiss-prot,which
contain reviewed proteins. Thus, developing a method based on
annotated or experimentally supported data is critical. In this
study, we systematically attempted to create a dataset of well-
annotated AFPs. We queried Swiss-prot for extracting annotated
AFPs and got only 80 AFPs, which is insufficient for training,
testing, and validating our predictionmodels. Thus,weused these
80 AFPs only to validate our model and existing models.

Similarly, we obtained 73 non-AFPs from Swiss-prot using
the keyword “NOT_antifreeze_protein.” Finally, we build an
independent dataset that contains well-annotated 80 AFPs and
73 non-AFPs. This independent dataset is not used for train-
ing or optimization of hyperparameters of machine learning
techniques.

Our primary analysis indicated common evolutionary
relationships among AFPs where certain residues are conserved
in AFPs (e.g., Ala, Ile, Val, and Thr). The amino acid Thr
increases the activity of AFPs by adding hydrogen bonds to their
surface area [45]. First, we utilized the similarity-based standard
technique BLAST to identify AFPs. In this study, BLAST fails to
discriminate between AFPs and non-AFPs due to poor similarity
among AFPs. To overcome this challenge, we used generalized
machine learning techniques to predict AFPs. These techniques
are also called alignment-free techniques as they are not based
on alignment. Since, most of the machine learning techniques
need fixed length vectors and proteins have variable lengths, we
have computed composition-based features [16]. Here, we tried
various machine-learning techniques and achieved a maximum
AUC of 0.90 on an independent dataset. It is a well-known
fact that evolutionary information is important for predicting
the function of proteins. Thus, in this study, we also developed
models using evolutionary information obtained from the PSSM
profile generated using PSI-BLAST. The performance of our
model also improved from AUC 0.90 to 0.93 when PSSM was
used instead of protein composition. Finally, we compared the
performance of our method with the existing methods. In order
to provide a fair evaluation, we compare the performance of our
model as well as existing methods on an independent dataset
of 80 AFPs and 73-non AFPs. As shown in the Section 3, our
method performs better than existing methods. One of the major
weakness of this study is the evaluation dataset which is too
small for a robust evaluation. Despite our best effort, we failed to
create a larger validation dataset for robust evaluation. We hope

that in the future, researchers will generate large datasets of
AFPs and non-AFPs for training, testing and validation of their
models.

5 Conclusion

To uncover the relationship between proteins and ice crystals
and, more generally, the adaptation of organisms to their envi-
ronments, depends on the ability to understand the evolution
of AFPs [49]. Our findings revealed that the conservation of
several essential amino acids showed opposite tendencies inAFPs
and non-AFPs. This suggests that there has been a significant
selection pressure related to these amino acids, leading to the
differentiation between AFPs and non-AFPs in regards to their
ice-binding capacities. Therefore, our hybrid approachAAC com-
bined with PSSM profiles, had high performed and outperformed
the state-of-the-art tools; hence, they are effective and beneficial
for identifying new AFPs.
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