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Abstract

Increasing use of therapeutic peptides for treating cancer has received considerable attention of the scientific community in
the recent years. The present study describes the in silico model developed for predicting and designing anticancer peptides
(ACPs). ACPs residue composition analysis show the preference of A, F, K, L and W. Positional preference analysis revealed
that residues A, F and K are favored at N-terminus and residues L and K are preferred at C-terminus. Motif analysis revealed
the presence of motifs like LAKLA, AKLAK, FAKL and LAKL in ACPs. Machine learning models were developed using various
input features and implementing different machine learning classifiers on two datasets main and alternate dataset. In the
case of main dataset, dipeptide composition based ETree classifier model achieved maximum Matthews correlation
coefficient (MCC) of 0.51 and 0.83 area under receiver operating characteristics (AUROC) on the training dataset. In the case
of alternate dataset, amino acid composition based ETree classifier performed best and achieved the highest MCC of 0.80
and AUROC of 0.97 on the training dataset. Five-fold cross-validation technique was implemented for model training and
testing, and their performance was also evaluated on the validation dataset. Best models were implemented in the
webserver AntiCP 2.0, which is freely available at https://webs.iiitd.edu.in/raghava/anticp2/. The webserver is compatible
with multiple screens such as iPhone, iPad, laptop and android phones. The standalone version of the software is available
at GitHub; docker-based container also developed.
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Introduction
Cancer is the second most dangerous disease, leading to deaths
globally, after cardiovascular diseases. According to WHO report,
in 2017, 9.56 million people died prematurely due to cancer,
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worldwide, which states that every sixth person dying in the
world is because of cancer. The detection of cancer at an early
stage is one of the major challenges. If the cancer is diagnosed
at an early stage, then there are higher possibilities of surviving
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and less morbidity. However, the lack of early diagnosis of cancer
is one of the major barriers in treating the patients [1]. Due
to the inadequacy of accurate and non-invasive markers, the
detection of cancer is usually biased [2]. Recent advancements in
the field of genomics and proteomics have led to the discovery
of peptide-based biomarkers, which has enhanced the detection
of cancer at an early stage [3]. After diagnosing cancer, the next
step involves its treatment. Currently, chemotherapy, radiation
therapy, hormonal therapy and surgery are the conventional
treatments available for treating cancer. Adverse side effects and
high cost of these conventional methods are the obstacles for
effective treatment [4], and even if the treatment is success-
ful, then there are the chances of reoccurrence of cancer [5],
which indicates towards the need of better and more effective
treatment. In the past few years, peptide-based therapy has
emanated as an advanced and novel strategy for treating cancer
[6]. It has several advantages like high target specificity, good
efficacy, easily synthesized, low toxicity, easily modified chemi-
cally [7], less immunogenic when compared to recombinant anti-
bodies [8]. In recent years, therapeutic peptides have appeared
as a diagnostic tool and have the ability to treat many diseases
[9–14]. More than 7000 natural peptides have been reported in
the last decade, which exhibit multiple bioactivities (antifungal,
antiviral, antibacterial, anticancer, tumor-homing, etc.) [15]. As
per the report, more than 60 drugs have been approved by the
FDA, and >500 are under clinical trials [16].

Anticancer peptides (ACPs) are part of the antimicrobial
peptide (AMP) group that exhibits anticancer activity. These
are small peptides (5–50 amino acids) and cationic in nature.
Mostly they possess α-helix as the secondary structure (e.g. LL-
37, BMAP-27, BMAP-28, Cercopin A, etc.) or folds into β-sheet
(e.g. Lactoferrin, Defensins, etc.). Some peptides have shown
extended linear structure such as Tritrpticin and Indolicidin [17,
18]. Cancer cell exhibits different properties in comparison to
normal cells. Cancer cells possess larger surface area due to
presence of a higher number of microvilli, negatively charged
cell membrane, higher fluidity of membrane, etc. [19–21]. These
features allow cationic ACPs to interact with the negatively
charged membrane via electrostatic interactions ultimately
leading to necrosis, i.e. selective killing of cancer cells [22]. Other
means by which ACPs exhibit its function includes lysing of
mitochondrial membrane (apoptosis), inhibiting angiogenesis
pathway or recruiting other immune cells for attacking cancer
cells, and activating essential proteins which ultimately lyse
cancer cells [23]. Different mechanism of ACP function is shown
in Figure 1. In order to explore the novel therapeutic ACPs
mechanism of action and development, accurate prediction
of ACPs is very essential. As the experimental process is
time consuming, labor intensive and costly, there is need for
computational tools to do the same. In past, many sequence-
based methods have been proposed for predicting and designing
ACPs. Some of the popular methods include AntiCP [24],
iACP [25], ACPP [26], iACP-GAEnsC [27], MLACP [28], SAP [29],
TargetACP [30], ACPred [15], ACP-DL [31], ACPred-FL [32], PTPD
[33], Hajisharifi et al.’s method [34], Li and Wang’s method [35],
ACPred-Fuse [36] and PEPred-Suite [37]. Detail information for
most of these methods is provided in an article by Schaduangrat
et al. [15].

However, there are certain limitations associated with the
methods mentioned above. The major limitation includes the
selection of dataset both quality and quantity wise for develop-
ing the respective methods. This creates a challenging situation
for an experimental scientist in selecting the method and the
feature for the prediction study. In addition, some of the methods

such as iACP-GAEnsC and TargetACP do not provide webserver
facility, hence, limiting the utility of these methods for biologists.
The other important drawback of the above mentioned methods
is their inability to discriminate peptides having similar compo-
sition but different activity. Aforementioned issues motivated us
to come up with a method that addresses the above mentioned
limitations. This manuscript describes a method AntiCP 2.0
developed for predicting ACPs with high precision.

Materials and methods
Datasets preparation

In this study, we created datasets called main and alternate
datasets. ACPs were obtained from datasets of previous studies
that include ACP-DL, ACPP, ACPred-FL, AntiCP and iACP. In addi-
tion, ACPs were also extracted from ACP database CancerPPD
[38]. After removing small, long, identical and non-natural pep-
tides, we got 970 unique ACPs having 4 or more residues and
50 or fewer residues. These 970 ACPs were used for creating the
following two datasets

(i) Main dataset: In the main dataset, experimentally vali-
dated ACPs are taken as positive class and AMPs as non-
ACPs or negative class. We obtained AMPs from datasets
of previous studies like ACP-DL, ACPP, ACPred-FL, AntiCP
and iACP, which did not show any anticancer properties.
After removing all peptides having both anticancer and
antimicrobial properties, we got 861 peptides. In summary,
our main dataset contains 861 experimentally validated
ACPs and 861 non-ACPs (or AMPs).

(ii) Alternate dataset: This dataset has anticancer and random
peptides; here, we assume that random peptides are non-
ACPs. In order to obtain random peptides, we generated
random peptides from protein in SwissProt [39, 40]. To create
a balanced dataset, we picked 970 random peptides and
assigned them as non-ACPs. In simple words, our alternate
dataset contains 970 experimentally validated ACPs and 970
non-ACPs (or random peptides).

Internal and external validations

The datasets were partitioned into two parts randomly. The first
part, i.e. training dataset, comprises of 80% data, and the second
part, i.e. validation dataset comprises remaining 20% data. In
case of internal validation, we developed prediction models
and evaluated them using 5-fold cross validation technique. In
this particular technique, sequences are divided randomly into
five parts. Among these five parts, any four parts are used for
training and the fifth one is used for testing purposes. The above-
mentioned process is repeated five times till each of the five
parts is used at least once for testing. In the end, final result is
computed by averaging the performance of all five sets. In case of
external validation, we evaluated the performance of the model
(developed using training dataset) on validation dataset [39–41].

MERCI motifs analysis

MERCI (Motif-EmeRging and with Classes-Identification) soft-
ware [41] was used for searching the motifs exclusively present
in ACPs. Software was run on default parameters. Motif analysis
renders the information related to various kind of patterns,
which could be present in the ACPs. Default parameters were
used for running the MERCI code.
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Figure 1. Various mechanism of action of ACPs.

Features for prediction

In order to develop any prediction or classification model, one
needs to generate feature for each peptide. In this study, we
created and used wide range of features for developing machine
learning technique based models that includes composition and
binary profile based features. Following is brief description of
protocols used for creating different type of features.

Amino acid composition

One of the simplest feature one can think is composition of
component of a peptide. As all peptides are made of 20 amino
acids, so we compute amino acid composition (AAC) of peptides.
AAC provides the information regarding the percentage of each
residue present in the protein/peptide, which can be represented
by a vector of dimension 20. The formula for calculating AAC for
each residue is provided in the equation (1)

AAC (i) = Ri
N

∗ 100 (1)

where AAC (i) is the amino acid per cent composition (i); Ri is
the residue number of type i and N represents the length of the
peptide sequence.

Dipeptide composition

Dipeptide composition (DPC) provides more information than
AAC, as it also provides composition of all possible pair of
residues. It provides local order of residues and can be repre-
sented by a vector of dimension 400 (20 × 20). To compute the
DPC of the given protein/peptide, we first compute all the possi-
ble pairs of the 20 amino acids, also known as dipeptides (e.g. A-
A, A-C, A-D . . . .Y-W, Y-Y), and then compute their composition.

The formula for calculating DPC is illustrated in equation (2)

DPC(i) = Total number of Dipeptide(i)
N − 1

∗ 100 (2)

where DPC (i) is a dipeptide type out of 400 dipeptides and N is
the peptide length.

Terminus composition

We have also computed both the composition (amino acid and
dipeptide) for 5, 10 and 15 residues present at N- and C-terminus
of the protein/peptide. We have also combined the terminal
residues like N5C5, N10C10 and N15C15 and then again com-
puted the composition.

Binary profile

One of the major advantages of binary profile is it provide order
of residues in a peptide, which is not possible with composition-
based features. Thus, binary profile can also discriminate com-
positionally similar but functionally different peptides [39, 40].
Since the length of peptides used in this study is variable, it is
challenging to generate a fixed-length pattern. To overcome this,
and for generating fixed length binary profile, we have extracted
the segments of fixed-length from either terminus (N-terminus
or C-terminus) [42]. After computing the fixed-length patterns,
we have generated the binary profiles for the residues of both
the terminus, i.e. N5, N10, N15, C5, C10, C15 and similarly for
combined terminal residues N5C5, N10C10 and N15C15.

Hybrid features

In the previous studies, it has been shown that hybrid features
improve prediction accuracy and provides better and biologically
reliable predictions [43, 44]. In our study, too, we developed two
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types of SVM-based models using hybrid features. In the first
category, we integrated binary profile information of the peptide
along with its composition (amino acid and dipeptide). This
will maintain both the compositional as well as residue order
information of the peptide. In the second category, we used
motif information along with amino acid and DPC information.
MERCI software was used to extract motifs from the peptides.
Motifs were extracted only form the training dataset and not
the validation datasets. To predict a given sequence as ACP or
non-ACP, we added +1 or −1 in the SVM score if the motif
is present in the given sequence from the ACP or non-ACP,
respectively.

Machine learning techniques

Number of machine learning techniques has been implemented
in this study using Python library scikit-learn [45] and SVM light
[46]. Scikit-learn is a python library that allows to develop models
using different machine learning techniques. Here, we used six
machine learning classifiers from this package namely support
vector machine (SVM), random forest (RF), k-nearest neighbors
(KNN), extra trees (ETree), artificial neural network (ANN) and
ridge classifier. Different parameters present in these classifiers
was tuned during the run and reported the results achieved on
the best parameters.

Performance measure

Threshold dependent and threshold independent parameters
were used for measuring the performance of our methods.
Parameters belonging to threshold dependent category include
sensitivity (Sen), specificity (Spc), accuracy (Acc) and Matthews
correlation coefficient (MCC). These parameters are calculated
using the following equations:

Sensitivity = TP
TP + FN

× 100 (3)

Specificity = TN
TN + FP

× 100 (4)

Accuracy = TP + TN
TP + FP + TN + FN

× 100 (5)

MCC = (TP × TN) − (FP × FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(6)

where TP represents the correct positive predictions, TN repre-
sents the correct negative predictions, FP represents the false
positive predictions, which are actually negative and FN repre-
sents the false negative predictions, which are actually positive.
For the threshold independent parameter evaluation, area under
receiver operating characteristics (AUROC) curve was calculated
where a ROC curve was drawn in between false positive and false
negative rates.

Result
In order to understand properties of ACPs, different types of
analysis were performed such as composition analysis, residue
preference analysis and exclusive motifs present in the peptides.
All these analysis were performed on the main dataset.

Compositional analysis

Firstly, percent AAC of ACPs and non-ACPs was computed.
Secondly, percent composition of ACPs and non-ACPs were

compared to identify type of residues preferred in ACPs. In
addition, we also compute percent AAC of proteins in SwissProt.
The percent AAC of ACPs, non-ACPs and SwissProt proteins is
shown by bar graph in Figure 2. It was observed that residues
like A, F, K, L and W are more abundant in ACPs (Figure 2). It was
also observed that non-ACPs (or AMPs) rich in residues like C,
G, R and S. Comparison with residue composition of SwissProt
proteins was made to check that the residue composition of
ACPs is not random and can be easily differentiated with normal
proteins/peptides. The analysis shows that ACPs are rich in
positively charged residue and aromatic amino acids. The posi-
tively charged residues of the ACPs interact with the cancer cell
membrane negatively charged residues for carrying out its lysis.

Positional preference of residues

In above analysis, it was observed that certain residues are more
abundant in ACPs. It was not clear whether preferred residues
are equally distributed or preferred at certain position. In order
to understand the positional preference of residues, we compute
two sample logos for N-terminus and C-terminus residues in
peptides. The first 10 residues were taken for generating the logo
for N-terminus and last 10 residues were taken for generating
the logo for C-terminus residues. As shown in Figure 3A, at N-
terminus, following is position wise preference of residues; F
at first, A at second and K at third position. Apart from these
residues, L was also preferred at other positions. At C-terminus,
residues L and K were found to be highly preferred in comparison
to other amino acids (Figure 3B).

Motif analysis

In order to identify exclusive motifs present anticancer and
AMPs in main dataset, we used MERCI software. It was observed
that following motifs ‘LAKLA, AKLAK, FAKL and LAKL’ were fond
exclusively in ACPs. It was also observed that following motifs
‘GLW, CKIK, DLV and AGKG’ were exclusively found in non-ACPs.
List of exclusive motifs found in ACPs and non-ACPs is provided
in Supplementary Table S1.

Development of models on main dataset

As shown in above analysis that ACPs and non-ACPs have differ-
ent residue composition. Thus, it is possible that residue compo-
sition of peptides can be used as feature for developing models
that can discriminate ACPs and non-ACPs. First, we developed
models based on different machine learning techniques using
AAC of peptides. The performance of different models based on
composition is shown in Table 1. It was observed that ETree-
based model perform better than other models and achieve
maximum AUROC 0.82 on the training dataset and AUROC 0.83
on validation dataset (Table 1). AAC provides no information of
pairs, thus we also developed model using DPC of peptides. In
case of DPC, ETree-based model out-perform other models and
achieve maximum AUROC 0.83 on both training and validation
dataset (Table 2).

It was observed in Figure 3, that certain residues are pre-
ferred at certain position. In order to capture this information,
we developed model using composition of terminal residues.
Thus we extract fix number of residues from peptides and
compute their composition. For example, we extracted first 5
residues from N-terminus called N5. Similarly, we extract differ-
ent number of residues from N-terminus and C-terminus and
commination (N5, N10, N15, C5, C10, C15, N5C5, N10C10 and
N15C15). The model developed using the composition of N5C5
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Figure 2. Bar plot shows the percent AAC of anticancer.

Figure 3. Two sample logos generated from (A) N-terminus (first 10 residues) and (B) C-terminus (last 10 residues) of peptides.

performed achieve highest AUROC 0.83 AUROC on the training
dataset and 0.82 AUROC on the validation dataset. The perfor-
mance of support vector based models developed on different
profiles (like N10, N15, N5C5) is shown in Supplementary Table
S2. Similarly, support vector based models have been developed

using terminus DPC. The model developed using DPC N5 got
maximum AUROC of 0.86 on the training dataset and 0.83 on
the validation dataset. The performance of support vector based
models developed using DPC on different profiles (like N10, N15,
N5C5) is shown in Supplementary Table S3.
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Table 1. The performance of AAC-based models developed using different machine learning techniques on main dataset

Techniques (Parameters) Training dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVC (g = 0.001, c = 1) 72.90 68.99 70.94 0.42 0.78 73.41 65.32 69.36 0.39 0.79
RF (Ntree = 100) 74.35 73.33 73.84 0.48 0.82 78.03 68.21 73.12 0.46 0.83
ETree (Ntree = 400) 74.78 74.06 74.42 0.49 0.82 79.19 68.79 73.99 0.48 0.83
MLP (activation = logistic) 63.91 69.86 66.88 0.34 0.73 61.85 69.94 65.90 0.32 0.71
KNN (neighbors = 10) 67.54 70.29 68.91 0.38 0.76 71.10 69.36 70.23 0.40 0.78
Ridge (alpha = 0) 67.83 57.97 62.90 0.26 0.70 69.36 58.96 64.16 0.28 0.71

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

Table 2. The performance of DPC-based models developed using different machine learning techniques on main dataset

Techniques (Parameters) Training dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVC (g = 0.001, c = 1) 75.94 68.84 72.39 0.45 0.81 75.72 66.47 71.10 0.42 0.80
RF (Ntree = 100) 75.07 74.06 74.57 0.49 0.83 80.92 67.05 73.99 0.48 0.83
ETree (Ntree = 400) 74.06 76.52 75.29 0.51 0.83 77.46 73.41 75.43 0.51 0.83
MLP (activation = logistic) 69.71 69.13 69.42 0.39 0.78 75.72 68.79 72.25 0.45 0.80
KNN (neighbors = 10) 72.46 69.13 70.80 0.42 0.79 76.88 67.63 72.25 0.45 0.81
Ridge (alpha = 0) 70.43 69.42 69.93 0.40 0.75 71.68 70.52 71.10 0.42 0.76

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

Table 3. The performance of SVM-based models developed on main dataset; models were developed using binary profile of terminal residues
of peptides

Techniques (Parameters) Training dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

N5 (g = 0.01, c = 4) 73.56 66.83 70.03 0.40 0.77 73.72 66.46 70.06 0.40 0.76
N10 (g = 0.01, c = 4) 73.57 66.56 70.04 0.40 0.79 77.50 64.42 70.90 0.42 0.80
N15 (g = 0.01, c = 4) 70.09 68.14 69.00 0.38 0.78 73.45 66.91 69.84 0.40 0.76
C5 (g = 0.01, c = 4) 64.10 63.25 63.66 0.27 0.68 61.82 66.87 64.33 0.29 0.70
C10 (g = 0.01, c = 4) 68.71 63.17 65.92 0.32 0.73 73.01 58.54 65.75 0.32 0.74
C15 (g = 0.01, c = 4) 66.52 61.69 63.83 0.28 0.72 67.83 63.12 65.23 0.31 0.74
N5C5 (g = 0.01, c = 4) 69.76 68.65 69.20 0.38 0.77 72.35 70.41 71.39 0.43 0.79
N10C10 (g = 0.01, c = 4) 76.32 68.61 72.44 0.45 0.81 79.39 66.27 72.81 0.46 0.81
N15C15(g = 0.01, c = 4) 73.76 70.98 72.22 0.44 0.80 72.17 65.96 68.75 0.38 0.79

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve, N5/N10/N15: First
5/10/15 elements from N-terminal, C5/C10/C15: First 5/10/15 elements from C-terminal, N5C5/N10C10/N15C15: First 5/10/15 elements from N-terminal as well as from
C-terminal joined together.

All models developed above are composition based where
they use either composition of whole peptide or composition
of peptide terminus residues. One of the challenge with these
models is that they cannot discriminate compositionally similar
but functionally different peptides. In order to provide solution
to this problem, we developed support vector based model using
binary profile. The binary profile is an important feature when
it comes to classifying two classes of peptides, as shown in pre-
vious studies [47]. Models were developed for different lengths
of peptides (first 5, 10 and 15) from N- and C-terminus. Also,
models were developed by joining the peptides obtained from
both N- and C-terminus i.e., N5C5, N10C10 and N15C15. Mod-
els developed using binary profile of N10C10 achieved highest
AUROC 0.81 on training dataset and 0.81 on validation dataset
(Table 3).

These result indicate that composition-based models per-
form better than binary-based models, whereas binary profile
have ability to discriminate compositionally similar peptides.

In order to utilize strength of two techniques, we developed
hybrid models that combine two approaches. The performance
of various hybrid models developed using compositional and
binary profile (N10C10) is shown in Table 4. In addition, we also
developed model that combine composition-based models using
motif-based approach. As shown in Table 4, AAC + motif model
achieved AUROC 0.83 and 0.82 on the training and validation
dataset, respectively.

Model developed on alternate dataset

In addition, we also developed models on alternate dataset
where model discriminate anticancer and random peptides. It
was observed that ETree-based model developed using AAC out-
perform models developed using other machine learning tech-
niques. We also get best performance on models developed using
ETree on main dataset. Our ETree-based model developed using
AAC obtained AUROC 0.97 on training as well as on validation
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Table 4. The performance of models developed on main dataset using hybrid features that combines composition with binary profiles and
motif

Feature (Parameters) Training dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

AAC (ETree Ntree = 400) 74.78 74.06 74.42 0.49 0.82 79.19 68.79 73.99 0.48 0.83
DPC (ETree Ntree = 400) 74.06 76.52 75.29 0.51 0.83 77.46 73.41 75.43 0.51 0.83
AAC + Bin_N10C10 (g = 0.01,
c = 4)

75.81 70.03 72.91 0.46 0.80 81.71 66.67 74.16 0.49 0.82

DPC + Bin_N10C10 (g = 0.001,
c = 10)

73.81 72.78 73.29 0.47 0.81 76.83 71.52 74.16 0.48 0.81

AAC + motif (g = 0.005, c = 1) 74.89 73.88 74.38 0.49 0.83 79.07 65.70 72.38 0.45 0.82
DPC + motif (g = 0.001, c = 10) 75.47 72.28 73.88 0.48 0.81 78.49 68.60 73.55 0.47 0.79

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

Table 5. The performance of AAC-based models developed using different machine learning techniques on alternate dataset

Techniques (Parameters) Training dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVC (g = 0.01, c = 10) 89.46 88.95 89.20 0.78 0.97 89.18 96.39 92.78 0.86 0.97
RF (Ntree = 200) 90.62 88.17 89.40 0.79 0.97 91.24 92.27 91.75 0.84 0.97
ETree (Ntree = 400) 90.23 89.97 90.10 0.80 0.97 92.27 91.75 92.01 0.84 0.97
MLP (activation = tanh) 88.69 85.86 87.28 0.75 0.94 87.11 89.69 88.40 0.77 0.94
KNN (neighbors = 10) 88.82 88.30 88.56 0.77 0.95 92.27 89.18 90.72 0.81 0.96
Ridge (alpha = 0) 87.15 86.25 86.70 0.73 0.92 89.18 87.63 88.40 0.77 0.94

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

Table 6. The performance of DPC-based models developed using different machine learning techniques on alternate dataset

Techniques (Parameters) Training dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVC (g = 0.001, c = 2) 90.36 87.53 88.95 0.78 0.96 90.72 87.11 88.92 0.78 0.95
RF (Ntree = 1000) 88.56 87.53 88.05 0.76 0.95 89.18 87.63 88.40 0.77 0.95
ETree (Ntree = 400) 90.75 88.82 89.78 0.80 0.96 90.72 90.21 90.46 0.81 0.96
MLP (activation = logistic) 87.79 85.22 86.50 0.73 0.93 86.08 88.66 87.37 0.75 0.94
KNN (neighbors = 9) 91.77 80.46 86.12 0.73 0.94 94.33 74.23 84.28 0.70 0.94
Ridge (alpha = 0) 84.19 84.96 84.58 0.69 0.90 85.05 83.51 84.28 0.69 0.91

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

dataset. The performance of model developed using different
machine learning techniques is shown Table 5. In case of DPC,
our ETree-based model achieve maximum AUROC 0.96 on both
training and validation dataset (Table 6).

Similar to the main dataset, support vector based models
were also developed for alternate dataset using the terminus
AAC for various patterns. The model developed using the N15C15
pattern performed best with 0.84 MCC, and 0.97 AUROC on the
training dataset and 0.89 MCC, and 0.97 AUROC on the vali-
dation dataset. A detailed result for other patterns is provided
in Supplementary Table S4. Likewise, in the case of support
vector based models developed using terminus DPC, the model
developed using the N15C15 pattern performed best. It achieved
the highest MCC of 0.81, and AUROC of 0.96 on the training
dataset and MCC of 0.84 and AUROC of 0.95 on the validation
dataset. The performance of models developed using DPC is
shown in Supplementary Table S5.

In the case of binary profile based models for the alternate
dataset, the model developed using N15C15 pattern performed
best among all models. We achieved MCC of 0.75, and AUROC of

0.95 on training and MCC, of 0.76 and AUROC of 0.95 on validation
dataset. The result for all other profiles for the alternate dataset
is provided in Table 7.

In case of alternate dataset too, composition-based models
perform better than binary-based models whereas binary profile
have ability to discriminate compositionally similar peptides.
In order to utilize strength of two techniques, we developed
hybrid models that combine two approaches. The performance
of various hybrid models developed using compositional and
binary profile (N15C15) is shown in Table 8. In addition, we also
developed model that combine composition-based models using
motif-based approach. As shown in Table 8, AAC + motif model
achieved AUROC 0.98 and 0.97 on the training and validation
dataset, respectively.

Benchmarking with existing methods

We also benchmarked the performance of existing methods with
our method on the validation dataset of both datasets (main
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Table 7. The performance of SVM-based models developed on alternate dataset; models were developed using binary profile of terminal residues
of peptides

Techniques (Parameters) Training dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

N5 (g = 0.5, c = 4) 84.50 83.29 83.39 0.68 0.92 88.14 87.63 87.89 0.76 0.93
N10 (g = 0.01, c = 3) 85.95 83.14 84.58 0.69 0.92 88.48 86.63 87.60 0.75 0.94
N15 (g = 0.01, c = 3) 85.09 84.74 84.90 0.70 0.93 87.50 85.53 86.49 0.73 0.94
C5 (g = 0.5, c = 1) 82.30 75.84 79.06 0.58 0.88 83.51 86.08 84.79 0.70 0.90
C10 (g = 0.01, c = 3) 81.04 79.14 80.11 0.60 0.88 80.63 82.56 81.54 0.63 0.89
C15 (g = 0.01, c = 3) 83.02 84.90 84.03 0.68 0.90 81.25 88.82 85.14 0.70 0.91
N5C5 (g = 0.01, c = 3) 84.88 81.75 83.31 0.67 0.91 86.08 84.54 85.31 0.71 0.93
N10C10 (g = 0.01, c = 4) 87.99 87.43 87.72 0.75 0.94 85.34 91.28 88.15 0.77 0.95
N15C15 (g = 0.01, c = 1) 88.68 86.36 87.43 0.75 0.95 88.19 88.16 88.18 0.76 0.95

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve, N5/N10/N15: First
5/10/15 elements from N-terminal, C5/C10/C15: First 5/10/15 elements from C-terminal, N5C5/N10C10/N15C15: First 5/10/15 elements from N-terminal as well as from
C-terminal joined together.

Table 8. The performance of models developed on alternate dataset using hybrid features that combines composition with binary profile and
motif

Features (Parameters) Training dataset Validation dataset

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

AAC (ETree Ntree = 400) 90.23 89.97 90.10 0.80 0.97 92.27 91.75 92.01 0.84 0.97
DPC (ETree Ntree = 400) 90.75 88.82 89.78 0.80 0.96 90.72 90.21 90.46 0.81 0.96
AAC + Bin_N15C15 (g = 0.01,
c = 4)

93.38 90.58 91.88 0.84 0.98 92.36 93.42 92.91 0.86 0.97

DPC + Bin_N15C15 (g = 0.001,
c = 10)

92.06 91.40 91.70 0.83 0.97 91.67 87.50 89.53 0.79 0.95

AAC + Motif (g = 0.005, c = 1) 92.40 91.11 91.75 0.84 0.98 91.24 89.69 90.46 0.81 0.97
DPC + Motif (g = 0.001, c = 1) 90.85 89.82 90.34 0.81 0.97 89.69 90.21 89.95 0.80 0.95

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

and alternate). We observed that our model outperformed previ-
ously existing methods on both datasets, as shown in Table 9.
We observed that other methods were predicting most of the
peptides as positive, i.e. indicating higher sensitivity and poor
specificity in the case of the main dataset. However, our method
discriminates the peptides as positive or negative with bal-
anced sensitivity and specificity. In the case of the alternate
dataset, most of the methods were able to distinguish positive
peptides from negative peptides with balanced sensitivity and
specificity; however, the accuracy of our model among all the
methods was highest. The webserver of some of the methods
like ACPP was not working. Methods like iACP-GAEnSC, SAP and
Hajisharifi et al. do not provide web-based service. MLACP is
predicting cell-penetrating peptide potency instead of predicting
anticancer potency of a given peptide. Therefore, these meth-
ods were excluded during the benchmarking study. Recently,
a method ACPred-Fuse has been developed which outperform
almost all existing methods [36]. As shown in Table 9, ACPred-
Fuse performs better than most of the methods. It is also pos-
sible that AntiCP 2.0 perform better than ACPred-Fuse due to
dataset used for evaluation. In order to provide unbiased com-
parison, we compute the performance of AntiCP 2.0 and ACPred-
Fuse on independent dataset used in ACPred-Fuse. Our method
AntiCP 2.0 got MCC 0.47, whereas ACPred-Fuse got MCC 0.32. This
observation indicates the superiority of AntiCP 2.0 over existing
methods and reliability.

Implementation of webserver

We have developed a web-based server called AntiCP 2.0 (https://
webs.iiitd.edu.in/raghava/anticp2/), which implements our two
best models (Model-1 and Model-2) and hybrid models for
predicting ACPs. Model-1 was trained on main dataset that
discriminate anticancer and AMPs. Model-2 was developed on
alternate dataset and developed to predict ACPs, discriminates
from random peptides. Our server is a sequence-based method,
so it does not provides the facility to incorporate information
of features like disulfide bonds, modification information such
as terminus or post-translational modifications. Also, there is
length check in the webserver during prediction. The minimum
length of sequence should be 4 and maximum should be 50.
Major modules implemented in web server includes (a) PREDICT;
(b) DESIGN; (c) Protein Scan; (d) Motif Scan and (e) Download.
Detail description of these modules is provided below.

Predict

This module predicts the anticancer potency of the submitted
peptides. Users can submit multiple peptides in FASTA format
in the box or can upload the file containing the same. The
server will provide the result in the form of ‘ACP’ or ‘non-
ACP,’ along with prediction score and physiochemical properties
selected during submission. In this module, we have provided
four different models for prediction. Model-1 is a DPC-based
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Table 9. The performance of existing methods on validation or independent dataset corresponding to our main and alternate dataset

Main dataset Alternate dataset

Methods Sen Spc Acc MCC Sen Spc Acc MCC

AntiCP_2.0 77.46 73.41 75.43 0.51 92.27 91.75 92.01 0.84
AntiCP 100.0 01.16 50.58 0.07 89.69 90.20 89.95 0.80
ACPred 85.55 21.39 53.47 0.09 87.11 83.51 85.31 0.71
ACPred-FL 67.05 22.54 44.80 -0.12 60.21 25.58 43.80 -0.15
ACPpred-Fuse 69.19 68.60 68.90 0.38 64.43 93.30 78.87 0.60
PEPred-Suite 33.14 73.84 53.49 0.08 40.21 74.74 57.47 0.16
iACP 77.91 32.16 55.10 0.11 78.35 76.80 77.58 0.55

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient.

model developed using the main dataset. Model-2 is an AAC-
based model developed using the alternate dataset. The range
of peptide length for models 1 and 2 is in between 4 and 50.
Hybrid_DS1 model is a hybrid model developed using DPC and
N10C10 binary profile as a feature on the main dataset. The
minimum peptide length for this model should be 10, as it
incorporates the N10C10 binary profile. Likewise, Hybrid_DS2 is
also a hybrid model developed using AAC and N15C15 binary
profile as a feature on the main dataset. The minimum peptide
length for this model should be 15 as it incorporates the N15C15
binary profile.

Design

This module allows the user to design novel ACPs with better
activity. Users can enhance the activity by selecting the peptide
with the best mutation and prediction score. The input is given
in the form of a single line (no FASTA). Once input sequence
is provided, all possible mutants of the peptides with a single
mutation are generated by the server. These mutants peptides
will further get predicted by the selected model. The prediction
score, along with the prediction result, will be provided based on
the chosen threshold value. In the next step, the user can chose
the best mutant peptides and use it further for generating new
mutant peptides.

Protein scan

In this module, the user needs to submit the protein sequence
in a single line. The server will generate overlapping protein
patterns by choosing the appropriate size. Next, based on the
selected threshold value, the server will predict the anticancer
potency of all the generated overlapping patterns. The result
page will provide the sequence information, the prediction score
and the prediction result, i.e. whether the peptide is ACP or non-
ACP. This facility allows users to scan the possible anticancer
region in the given protein sequence.

Motif scan

This module allows users to scan whether their protein/peptide
sequence comprises of motifs exclusively present in ACPs. This
will enable the user to identify whether their protein/peptide is
capable of being ACP or not.

Download

Users can download the datasets used in this study. The
sequences are present in the FASTA file format.

Standalone

In order to serve the community, we have developed the stan-
dalone of the software in Python. Users can download the code
and other required files from our GitHub account https://githu
b.com/raghavagps/anticp2/. We have also provided a standalone
facility in the form of docker technology. This standalone is inte-
grated into our package ‘GPSRDocker,’ which can be downloaded
from the site https://webs.iiitd.edu.in/gpsrdocker/ [48].

Discussion
Peptide-based therapeutics has gained tremendous attention in
the last few decades. This is reflected by the increasing number
of publications, development of in silico tools and databases.
Due to several advantages over traditional small molecule
based drugs; in the past, several peptide-based drugs have been
approved by FDA. In the same context, peptide-based anticancer
drugs have shown promising effects in treating cancer [49]. Some
of the cancer treating peptide-based drugs reported in literature
includes GnRH-targeting peptides [50], LY2510924 [51], ATSP-
7041 [52]. As identification and screening of potential ACPs in the
wet lab is time-consuming, costly and labor-intensive process,
there is a need of in silico tools that can predict ACPs with high
reliability. In last 5 years, several methods have been developed
that can predict and design novel ACPs.

We analyzed the residue composition of ACPs and found that
they are rich in residues like A, F, H, K, L and W. It has been
shown in the literature that ACPs are rich in cationic residues
which agrees with our study. As the order of the residues present
in the peptide is strongly related to their activity, we analyzed
the residue preference in the ACPs. We observed that at N-
terminus residues like F, A and K are highly preferred, and at C-
terminus residues like L and K are preferred. Thus apart from the
composition, the order of the residue is an important feature and
might be a key feature in determining their activity. We utilized
the properties of the experimentally validated ACPs present in
the literature for developing various prediction models. These
features include composition (amino acid and dipeptide), termi-
nus composition, binary profiles and hybrid models. In our study,
we observed that among all models, the DPC-based feature
performed best in the case of the main dataset. In contrast, in the
case of the alternate dataset, the AAC-based model performed
best.

Interestingly, we observed, that prediction models developed
using alternate dataset achieved higher accuracy in comparison
to main dataset. The potential reason for this is the high degree
of similarity in between ACPs and AMPs. It has been shown
that many of the AMPs exhibit anticancer activity, for example,
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Figure 4. Flowchart shows steps involved in developing AntiCP 2.0.

Aurein 1.2 [53], HNP-1 [54], etc. These peptides share similar
properties such as similar mechanism of action due to cancer
cell surface membrane phenotype, lesser time for interaction,
lower toxicity, solubility, specificity and better tumor penetration
[23, 55]. However, the alternate dataset comprises of random
peptides, having very different composition and properties with
respect to ACPs. Therefore, it is easy for a model to distinguish
random peptides with ACPs with higher accuracy. In the bench-
marking study, we found that our model outperformed other
methods.

Despite of several improvements, there are several lim-
itations associated with this study. First being, the non-
consideration of structural properties. Some of these important
structural features include secondary structure information,
surface accessibility value and disulfide bond information.
Secondly, this model does not consider post-translational
modification (e.g. terminus modification, addition of chemical
moieties, glycosylation, phosphorylation, etc.) information while
prediction. These points can be addressed in future studies for
better prediction.

In order to help biologists, we developed a web server
and standalone app and incorporated our best models. The

webserver is freely accessible and provides several facilities
to the user. The server is user-friendly and compatible with
multiple screens such as laptops, android mobile phones,
iPhone, iPad, etc. The complete architecture of the AntiCP 2.0
is shown in Figure 4.

Preprint of AntiCP 2.0

Preprint of the paper is available at bioRxiv with doi
10.1101/2020.03.23.003780
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Key Points
• An updated version of AntiCP for predicting anti-

cancer peptides with high accuracy.
• Classifiers trained on largest possible dataset using

machine learning techniques.
• The performance of AntiCP 2.0 is better than existing

methods.
• In addition to composition, it also uses binary profile

for developing models.
• It is available as web server, standalone software and

Docker container.
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