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Abstract

Overexpression of EGFR is responsible for causing a number of cancers, including lung cancer as it activates various
downstream signaling pathways. Thus, it is important to control EGFR function in order to treat the cancer patients. It is well
established that inhibiting ATP binding within the EGFR kinase domain regulates its function. The existing quinazoline
derivative based drugs used for treating lung cancer that inhibits the wild type of EGFR. In this study, we have made a
systematic attempt to develop QSAR models for designing quinazoline derivatives that could inhibit wild EGFR and
imidazothiazoles/pyrazolopyrimidines derivatives against mutant EGFR. In this study, three types of prediction methods
have been developed to design inhibitors against EGFR (wild, mutant and both). First, we developed models for predicting
inhibitors against wild type EGFR by training and testing on dataset containing 128 quinazoline based inhibitors. This
dataset was divided into two subsets called wild_train and wild_valid containing 103 and 25 inhibitors respectively. The
models were trained and tested on wild_train dataset while performance was evaluated on the wild_valid called validation
dataset. We achieved a maximum correlation between predicted and experimentally determined inhibition (IC50) of 0.90 on
validation dataset. Secondly, we developed models for predicting inhibitors against mutant EGFR (L858R) on mutant_train,
and mutant_valid dataset and achieved a maximum correlation between 0.834 to 0.850 on these datasets. Finally, an
integrated hybrid model has been developed on a dataset containing wild and mutant inhibitors and got maximum
correlation between 0.761 to 0.850 on different datasets. In order to promote open source drug discovery, we developed a
webserver for designing inhibitors against wild and mutant EGFR along with providing standalone (http://osddlinux.osdd.
net/) and Galaxy (http://osddlinux.osdd.net:8001) version of software. We hope our webserver (http://crdd.osdd.net/oscadd/
ntegfr/) will play a vital role in designing new anticancer drugs.
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Introduction

The protein kinase is the largest known family within the human

genome that contains more than 500 genes. These kinases play a

vital role in signal transduction through phosphorylation mecha-

nism, as they catalyze the transfer of phosphate from ATP to a

hydroxyl group of serine, threonine or tyrosine of target proteins.

Protein kinases are thus ATP binding proteins that exhibit highly

conserved nature [1,2]. As a result any functional deregulation of

these enzymes results in disease states such as cancer, diabetes,

inflammation, cardiovascular disease, neurological disorders, etc.

Therefore, they have emerged as an important class of drug targets

in drug discovery process. Imatinib, Nilotinib and Dasatinib are

some of the drugs that were designed based on ATP binding sites

of kinase target proteins [3]. To date, 11 kinase inhibitors have

been approved by FDA for cancer treatment and other 80 kinase

inhibitors are in clinical trial [4].

Epidermal growth factor receptor (EGFR) is a cell surface

growth factor receptor kinase that has been involved in different

types of cancers. EGFR is overexpressed in a number of cancers,

including breast and lung cancer [5–10]. Gefitinib is a highly

selective EGFR tyrosine kinase inhibitor that binds competitively

to the ATP binding site [11] and is being used for treating lung

cancer [9]. Erlotinib and Lapatinib are also other EGFR based

inhibitors [12]. Basically, there are two main classes of EGFR

inhibitors: quinazoline and pyrimidine derivatives. It has been also

established that mutations in the tyrosine kinase domain of EGFR

is responsible for causing Non small cell lung carcinoma (NSCLC)

[13]. One of the most common oncogenic mutations is L858R,

which accounts for approximately 41% of all activated mutations

[14]. This mutation in the EGFR activates the kinase by disrupting

auto-inhibitory interactions leading to a ligand-independent

activation of TK activity and thus causes cancer. These mutations

thus alter the kinase domain and they therefore represent distinct
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targets for inhibitor development. The crystal structure of the

mutant L858R kinase in complex with inhibitors has been already

experimentally determined that can play vital role in structure-

based drug discovery [15].

Computational prediction of inhibitory activity and designing

inhibitors using structural Bioinformatics analysis can be useful in

accelerating drug development in the field of cancer. In the past,

various methods have been developed mainly based on QSAR

(quantitative structure2activity relationship) and molecular dock-

ing. Though models have been developed against EGFR/CDK

[16–22], but none of them is available for public use. In the

present study, we first develop models for predicting inhibitors

against wild type EGFR. These models were trained, tested and

validated on 128 anti-EGFR quinazoline derivatives that used in

previous studies [16,23,24]. Secondly, we develop models for

predicting imidazothiazoles and pyrazolopyrimidines based deriv-

atives against mutant EGFR (L858R). Thirdly, we develop a

hybrid model for predicting inhibitors against both wild and

mutant EGFR. In order to facilitate drug discovery and serve the

scientific community, we have implemented these models in the

form of a webserver called ntEGFR.

Methods

Datasets
Creation of standard datasets for training, testing and validating

models is one of the important parts of any in silico methods. In

this study, we develop three types of models for predicting

inhibitors against wild, mutant and both types of EGFR. Thus, we

created three types of datasets for each type of model as described

below (Figure 1).

(i) Datasets for wild type EGFR. In order to develop

models against wild type of EGFR, we collected experimentally

validated 128 anti-EGFR quinazoline derivative or quinazoline

based inhibitors from the literature [16]. In this study, we called

these inhibitors as wild type inhibitors and datasets consisting of all

128 inhibitors is called wild_whole dataset. In order to provide an

unbiased evaluation of our models, we randomly divide our

dataset into training (80% inhibitors) and validation (20%

inhibitors) dataset. In summary, we created three datasets called

wild_whole, wild_train and wild_valid which contains 128, 103

and 25 inhibitors respectively.

(ii) Datasets for mutant type EGFR. In addition to

inhibitors reported against wild type of EGFR, we also collected

56 imidazothiazoles and pyrazolopyrimidines derivatives based

inhibitors against mutant L858R EGFR with their inhibition

constant value (IC50) from literature [25–27]. These 56 anti-

EGFR mutant inhibitors were called as mutant type inhibitors and

dataset consisting of these inhibitors was called mutant_whole

dataset. Similar to above wild datasets, we created three datasets

called mutant_whole, mutant_train and mutant_valid consisting of

56, 42 (80%) and 14 (20%) inhibitors respectively.

(iii) Hybrid datasets. In order to develop models for

predicting inhibitor against both wild and mutant EGFR, we

created a combined or hybrid dataset which consists of 184

inhibitors (128 wild + 56 mutant). This dataset was also divided

into three datasets called hybrid_whole, hybrid_train and

hybrid_valid consisting of 184, 147 and 37 inhibitors respectively.

Biological activity
The inhibitory activities of all inhibitors are shown in pIC50

( = 2log (IC50)) values, where IC50 (nM) represents the concen-

tration of compounds that produces 50% inhibition of the kinase

activity. The training dataset was used for training the model and

validation dataset was used for checking the performance and

evaluating the prediction performance of trained model.

Structure optimization
All the chemical structures were drawn using ChemDraw

software (v.9.0). Vlife software (http://www.vlifesciences.com/)

was used for optimization and checking for distorted and

unrealistic bond angles and bond lengths. Energy minimization

of all chemical structures was performed using molecular

mechanism force field (MMFF94s) within Vlife software.

Descriptors calculation
In this study, we have computed all types of chemical

descriptors, e.g. constitutional, topological, geometrical and

Figure 1. Flow chart showing training and validating datasets used in developing prediction models.
doi:10.1371/journal.pone.0101079.g001
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physicochemical descriptors. We calculated descriptors of wild

types inhibitors using Dragon (v.1.4) (http://www.talete.mi.it),

Vlife, WebCDK, PaDEL [28] and PowerMV software while for

mutant EGFR inhibitors descriptors were calculated using Vlife

and PaDEL software packages (Figure 2).

Receptor-ligand Preparation for docking
Protein (EGFR kinase, PDB ID: 1M17 and L858R mutant

EGFR, PDB ID: 2ITZ) [15,29] and ligand (EGFR inhibitor,

Erlotinib and IRESSA) preparation was performed using the

AutoDock 4.2 tool [30], which involved the addition of hydrogen

atoms, computing charges, merging non-polar hydrogen atoms

and defining AD4 atom types to ensure that atom conformed to

the AutoDock atom types. A grid was defined using an Autogrid

feature of the software and docking conformation search was done

using a genetic algorithm (GA) procedure. Here, we set the grid

point spacing of 0.375 Å with the default volume of 40640640 Å.

Docking based energy descriptors
The AutoDock 4.2 tool computes seven types of energy values (i)

Estimated free energy of binding (EFreeBind), (ii) Final Intermolec-

ular Energy (EInterMol), (iii) vdW + Hbond + desolv Energy (EVHD),

(iv) Electrostatic Energy (EElec), (v) Final Total Internal Energy

(EFToT), (vi) Torsional Free Energy (ETors) and (vii) Unbound

System’s Energy (EUnb). These descriptors were used indepen-

dently to develop the model.

Feature selection
As the selection of best and highly significant descriptors is

crucial for QSAR modeling, feature selection was carried out to

eliminate highly correlated descriptors, multicollinearity and

remove useless descriptors. Thus, the descriptors with zero values

were excluded followed by removal of highly correlated descriptors

(cut-off value of 0.9). Subsequently, we used CfsSubsetEval module

and F-stepping remove-one approach implemented in Weka for

the significant descriptor selection. CfsSubsetEval evaluator is one

of the most important feature selections pre-processing steps in the

pattern classification, data mining, machine learning to remove

non-significant feature [31,32]. In F-stepping remove-one method,

each input descriptor was removed one-by-one from the set of n

descriptors followed by QSAR modeling using the remaining n-1

descriptors. If on removing the descriptor the correlation value

decreased, the particular descriptor was permanently removed

from the analysis. These cycles were repeated until no further

improvement in the correlation values was observed and stopped if

n-1 removal resulted in reduction of correlation values.

QSAR models using Machine learning techniques
We used machine learning techniques for developing QSAR

models for predicting inhibitors against wild or mutant EGFR. In

this study, we developed models using support vector machine.

Following software package were used to implement SVM.

SVM models using SVMlight

In this study, SVM based QSAR models has been implemented

using software package SVMlight [33]. SVMlight is a user friendly

software that is available free for acadamic use from following web

site. http://www.cs.cornell.edu/People/ti/svm_light. In the past,

this package has been used successfully in numreous studies for

developing SVM based classification or regression models [34,35].

The SVMlight pacakges have number of features that includes fast

optimization, tuning of major kernels (e.g. linear, polynomial,

radial basis function) or any user-defined kernel [33,36]. In this

study, SVM is implemented to solve regression problem.

SVM models using SMOreg
In this study, we have used SMOreg (weka.classifiers.func-

tions.SMOreg) for developing regression model. SMOreg module

of Weka allows to implements support vector machine for

regression with arbitrary kernel functions. The SMO algorithm

transforms nominal attributes into binary form and it replaces all

Figure 2. A diagram demonstrating list of softwares used for computing chemical descriptors and types of different descriptors.
doi:10.1371/journal.pone.0101079.g002
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missing values globally. This algorithm have number of features

that includes fast learning and better scaling properties [37–39].

Evaluation of prediction model
The fitness and the statistical significance of the models

developed in this study was assessed using the statistical parameters

such as R, R2, MAE and RMSE.

(i) Perasion’s correation cofficient. We compute correla-

tion (R) between predicted and actual (experimentally determined)

efficacy (IC50) of molecules using the following equation.

R~

X
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(ii) Coefficient of determination (R2). In addition to

correlation coefficient R, we also compute coefficient of determi-

nation (R2). It is a statistical measure of how well the regression

line approximates the real data points. An R2 of 1.0 indicates that

the regression line perfectly fits the data. We used following

formula for calculating R2.

R2~
1{SSE

SST
ðiiÞ

(where, SSE = sum of squared errors, SST = Total sum of squares)

(iii) Mean Absolute Error. In order to measure error

between predicted and actual efficacy of molecules, we compute

mean absolute error (MAE) using following formula.

MAE~

PN
i~1

yi{xið Þ

N
ðiiiÞ

(iv) Root Mean Square Error. In addition to MAE, we also

compute root mean square error (RMSE) which is a frequently

used statistical measure of the differences between values predicted

by a model and the values actually observed. RMSE is a measure

of predictive power of the model.

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i~1

y{fð Þ2
s

ðivÞ

Results

Fragment based analysis of datasets
As there are different kinds of molecules targeting the wild

EGFR compared to mutant EGFR we have characterize the

fragments that may be responsible for the biological activity. For

the purpose, we have calculated the frequency of fragment

occurrence in these two different datasets using the formula:

Frequency of a fragment~
Nfragment class|Ntotal

Nfragment total|Nclass

ðvÞ

Where Nfragment_class is the number of fragments present in that

class (wild/mutant); Ntotal is the total number of molecules studied

(wild + mutant); Nfragment_total is the total number of fragments in

all molecules (wild + mutant); Nclass is the number of molecules in

that class (wild/mutant).

We observed that PubchemFP153, PubchemFP152, Pub-

chemFP150, MACCSFP62, FP794, FP669, FP666, FP660,

FP659, FP52, ExtFP895, ExtFP404, ExtFP370 and ExtFP318

descriptors were present in all mutant EGFR inhibitors however,

were absent in all wild type EGFR inhibitors. On the other hand,

the some fragments are more frequently present in the wild type

EGFR (Table S1 in File S1). These fragments would be important

in designing the inhibitors targeting only the wild EGFR. We have

also extracted the fragments that were common among the

inhibitors of EGFR in wild and mutant forms. Detail description

about these fragments or chemical descriptors are given in Table

S2 in File S1.

Model for predicting inhibitors against wild type EGFR
In this study, we have trained, developed, tested and evaluated

models using 128 quinazoline EGFR inhibitors whose inhibitory

activity have been determined experimentally. QSAR models

develoed using SMOreg (SVM for regression), a module of Weka

package.We computed 3214, 1002, 15387, 178 and 6122

descriptors for 128 EGFR inhibitors using following packages;

Dragon, Vlife, PaDEL, WebCDK and PowerMV respectively. In

order to avoid over optimization, we restrict the number of

descriptors to less than one fourth of total chemical compounds.

We reduced the number of descriptors by removing irrelevant,

duplicate and highly correlated descriptors. We have also used

structure based approach along with ligand based approach as the

high resolution target structure was available. Therefore, we

carried out molecular docking for the 128 experimentally known

EGFR inhibitors at the active binding site of PDB: 1M17 [29].

Erlotinib, the known EGFR inhibitor that has been co-crystallized

was redocked into the active site of the EGFR kinase and 10

possible poses were generated. On visual examination of the

ligand-EGFR complex we found that residue numbers 721, 764,

766, 769, and 831 are surrounding the active site while the residue

Met769 is directly involved in hydrogen bonding with the

inhibitor. The calculated RMSD between crystal and docked

structure of best docked pose was 1.69 Å (Figure 3), which

validated the docking protocol and thus for all the 128 inhibitors

the same grid definitions were used.

(i) Performance of models on wild_whole datasets. We

calculated seven docking energies based descriptors using Auto-

Figure 3. The superimposed structure of docked substrate over
crystal structure conformation. Our docked structure is overlaid on
the top of Erlotinib bound EGFR cristal stucture (PDB ID: 1M17).
doi:10.1371/journal.pone.0101079.g003
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dock and observed that descriptors namely EFreeBind, EInterMol,

EVHD, show pairwise correlation of more than 0.60. To obtain

significant and non-correlated descriptors we filtered out these

from seven descriptors for further analysis (Table S3 in File S1).

We also observed that EVHD, EInterMol, ETors and EUnb show

higher pairwise correlation coefficient values with respect to IC50

values. We then developed a model using seven docking energies

based descriptors and achieved a correlation (R) of 0.27. Finally,

we developed a model using 26, 15, 13, 32 and 24 non-correlated

molecular descriptors of the Dragon, Vlife, PaDEL, WebCDK

and PowerMV and thus we achieved correlation value (R and R2)

in the range of 0.83/0.79, 0.80/0.77, 0.89/0.83, 0.77/0.73 and

0.81/0.78 respectively (Table 1).

We observe that models developed using PaDEL descriptors

perform better than models developed using other software

packages. We developed hybrid models that use descriptors

generated by each of the five software packages along with

autodock generated descriptors and achieve a correlation of 0.84,

0.81, 0.89, 078 and 0.82 between predicted and experimental IC50

value for Dragon, Vlife, PaDEL, WebCDK and PowerMV hybrid

models respectively (Table 1). We also observed that 36 descriptors

of Dragon, Vlife, WebCDK, PaDEL and PowerMV are highly

significant, so we developed a model using these combined

descriptors and achieved correlation (R) 0.91 and coefficient of

determination (R2) 0.843 (Table 1). These selected descriptors

either showed a positive correlation (FP271, FP313, FP359,

FP421, FP436, ExtFP914, KRFP1931, L2u c.026,

B04.N.O.,B10.C.Br, SssNHcount, Csp3_05_Osp3 and

C.2.1._03_Br) where in the values of descriptor is directly

proportional to inhibitory activity or negative correlation

(xVDW_EN, FP334, FP680, GraphFP136, PCR, Nsp2_06_Osp2

and C.2.1._03_N3.0) where in the value of descriptors are

inversely proportional to the inhibitory activity (Figure 4).

Description of selected descriptors is given in Table S2 in File S1.

Finally we integrated all the 36 descriptors generated from each

of the five software along with autodock descriptors to generate a

final hybrid model that exhibits maximum correlation of 0.921

with R2 = 0.847 and MAE = 0.349 (Figure 5) (Table 1).

Here, we observed that the performance of hybrid model is

slightly enhanced in comparison to the simple model. Thus, in this

study, we have integrated two in silico techniques: QSAR and

molecular docking by using docking generated energy-based

descriptors for building the proposed models. As anticipated, the

performance of hybrid model was better (R = 0.921 with

R2 = 0.847 and MAE = 0.349) than the single models (Table 1).

(ii) Performance of model on training datasets. In this

step we extracted 103 molecules for training from wild_whole

dataset. In the next step we developed five fold cross-validation

based model on 103 wild_train dataset and achieved a maximum

correlation of 0.892 with MAE 0.392 and RMSE 0.514 (Table 2).

(iii) Performance of model on validation dataset. In this

method we have extracted 25 molecules (validation set) from 128

EGFR inhibitors to evaluate the performance of training model.

Next we have checked the performance of wild_training inhibitors

based model on the validation dataset and achieved a correlation

(R)/coefficient of determination (R2) of 0.90/0.83 with MAE 0.34

and RMSE 0.48 (Table 2). Here, we also observed that the freely

available PaDEl software performs comparable with commercial

tools like Vlife and Dragon and therefore during mutant EGFR

and hybrid model development only PaDEL software has been

used.

Evaluation of models developed on mutant EGFR
inhibitors

Firstly, we used AutoDock for molecular docking of inhibitors in

mutant EGFR. The co-crystallized ligand (IRESSA) was first

extracted from the catalytic site of L858R EGFR mutant (PDB ID:

2ITZ) and re-docked to calculate the root mean square difference

(RMSD) between the top docking pose and original crystallo-

graphic geometry. The calculated RMSD between crystal

structure and docked structure of best-docked pose was 1.53 Å,

which validated the docking protocol and thus for all the 56

inhibitors (imidazothiazoles and pyrazolopyrimidines derivatives)

the same grid definitions were used. On visual examination of the

ligand-EGFR complex we found that the residue Thr790 is

directly involved in hydrogen bonding with the inhibitor.

Secondly, we calculated seven docking energies based descriptors

and observed that the three descriptors namely EFreeBind (Free

binding energy), EInterMol (Intermolecular energy) and EVHD

(vdW+Hbond+desolv Energy) showed a pairwise correlation more

Table 1. SMOreg based Performance of QSAR models based on selected descriptors of 128 wild EGFR inhibitors.

Descriptors R R2 MAE RMSE

Vlife 0.801 0.773 0.513 0.692

Vlife+Dock energy 0.813 0.770 0.507 0.673

Dragon 0.835 0.791 0.456 0.640

Dragon+Dock energy 0.841 0796 0.444 0.624

WebCDK 0.773 0.734 0.570 0.730

WebCDK+Dock energy 0.777 0.734 0.557 0.723

PaDEL 0.891 0.835 0.438 0.567

PaDEL+Dock energy 0.892 0.836 0.425 0.546

PowerMV 0.811 0.786 0.531 0.677

PowerMV+Dock energy 0.815 0.787 0.529 0.667

Hybrid 0.911 0.843 0.371 0.497

Hybrid+Dock energy 0.921 0.847 0.349 0.450

doi:10.1371/journal.pone.0101079.t001
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than 0.80 (Table S4 in File S1). So, we removed EInterMol as it

has correlation close to 0.90 with EVHD. We then use the

remaining six descriptors for generating the model and achieved a

correlation of (R) = 0.445. Thirdly, using F-stepping remove one

approach we eliminated each of the six descriptors from the set

however, we did not observe any improvement in the correlation

Figure 4. List of descriptors showing positive and negative correlation with the wild EGFR inhibitory activity.
doi:10.1371/journal.pone.0101079.g004

Figure 5. Scatter plots between experimental versus predicted pIC50 values of wild types EGFR inhibitors.
doi:10.1371/journal.pone.0101079.g005
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value of the model. We also observed that EVHD, EInterMol, EFToT

and EUnb show higher pairwise correlation coefficient values with

respect to IC50 values.

(i) Performance of model on mutant_whole dataset. First

we calculate 15388 chemical descriptors of 56 L858R mutant

EGFR inhibitors using PaDEL. After removing correlated

descriptors and feature selection, we obtained 13 significant

descriptors from a collection of 15388 descriptors, which have

been used to generate models (Table 3). Some of these selected

descriptors that exhibit high positive correlation, i.e. values of

descriptor is directly proportional to inhibitory activity, are

ExtFP471 (0.67), ExtFP678 (0.63), T_F_F_4 (0.62), minaaN

(0.51) and ExtFP121 (0.50) whereas the other that show negative

correlation, i.e. value of descriptors is inversely proportional to

inhibitory activity, are SaaOcount (0.56), MMFF_63 (0.52) and

ExtFP668 (0.51) (Figure 6). We then developed model via SMOreg

technique using these 14 selected non-correlated highly significant

descriptors of PaDEL and achieved a correlation coefficient (R)/

coefficient of determination (R2) 0.8348/0.710 respectively.

Thereafter, the significant descriptors selected from PaDEL were

combined with docking based descriptors and hybrid models were

developed having correlation (R)/coefficient of determination (R2)

of 0.8412/0.7289 (Table 3).

(ii) Performance of model on training datasets

(mutant_train). In this step we extract 42 molecules for

training (mutant_train) and developed a prediction model using

five fold cross-validation and achieved a maximum correlation

coefficient (R)/coefficient of determination (R2) of 0.8462/0.7214

with MAE 0.386 and RMSE 0.501 (Table 2).

(iii) Performance of hybrid model on validation dataset

(mutant_valid). We choose 14 inhibitors from different chem-

ical cluster groups, which were not included in the training dataset.

Next, we checked the performance of ligand and structure based

model on the selected mutant EGFR inhibitors belonging to

validation dataset and achieved a correlation (R)/coefficient of

determination (R2) of 0.85/0.74 with MAE 0.36 and RMSE 0.46

(Table 2). Therefore, these descriptors should be kept in mind

while designing new molecules that act against EGFR L858R

mutant.

Model for predicting inhibitors against hybrid inhibitors
(i) Performance of model on whole hybrid dataset

(hybrid_whole). Finally we have integrated both types of

inhibitors (EGFR wild and L858R mutant inhibitors) and

developed three hybrid models using only PaDEl descriptors.

First we developed a model using all 184 hybrid inhibitors and

achieved a correlation of 0.8333/0.7311 (R/R2) with MAE and

RMSE of 0.49 and 0.63 respectively.

(ii) Performance of model on training hybrid dataset

(hybrid_train). Next, we developed model on 147 inhibitors

(hybrid_train) using five fold-cross-validation technique and

achieved a correlation of 0.85/0.72 (R/R2) with MAE and RMSE

of 0.46 and 0.63.

(iii) Performance of model on validation hybrid dataset

(hybrid_valid). Finally, we evaluate the performance of

hybrid_train inhibitors based model on the validation dataset

(hybrid_valid) and achieve a correlation coefficient (R)/coefficient

of determination (R2) of 0.76/0.62 with MAE 0.61 and RMSE

0.72 (Table 2). The purpose of this model is to identify those

inhibitors, which are effective against both wild type EGFR, and

mutant EGFR.

SVM implemented using SVMlight

Besides SMOreg module of Weka we also used SVMlight for

developing SVM based QSAR models wild, mutant and hybrid

type EGFR inhibitors (Table S5 in File S1). First we have

developed SVM models for wild_whole, wild_train and wild_valid

inhibitors and achieved correlation coefficient (R) of 0.842, 0.850,

and 0.845 with MAE and RMSE of 0.445, 0.440, 0.446 and

0.612, 0.606, 0.614 respectively. Next, we have used mutant_w-

hole, mutant_train and mutant_valid datasets and achieved

correlation coefficient (R) of 0.762, 0.784, and 0.751 with MAE

and RMSE of 0.521, 0.520, 0.530 and 0.638, 0.623, 0.639

respectively. Finally, we have developed SVM models using

hybrid_whole, hybrid_train and hybrid_valid inhibitors and

achieve a correlation coefficient (R) by 0.814, 0.836, 0.797 with

MAE 0.504, 0.495, 0.511 and RMSE 0.667, 0.654, 0.670

respectively. We also developed models for mutant and hybrid

inhibitors (Table S5 in File S1).

Comparision with existing methods
First we compared our wild-EGFR model with that published

by Vema A et al [23], where they achieved R2 of 0.8492 and 0.499

on training and test dataset respectively by using RSA (receptor

surface analysis) based model. Next we compared our results with

that of Hongying Du et al. [16] who have used the same dataset of

128 EGFR inhibitors for developing QSAR models. They

achieved (R = 0.918 with R2 = 0.843 and MAE = 0.369) using G-

PPR based model, while the hybrid model developed in this article

achieves (R = 0.921 with R2 = 0.847 and MAE = 0.349) on all

Table 2. Performance of SMOreg based models developing for predicting inhibitors against wild, mutant and hybrid EGFR on the
training and validation data set on PaDEL descriptors.

Inhibitors Descriptors R R2 MAE RMSE

Wild EGFR wild_whole (128 inhibitors) 0.891 0.835 0.438 0.567

wild_train (103 inhibitors) 0.892 0.841 0.392 0.514

wild_valid (25 inhibitors) 0.901 0.839 0.347 0.486

Mutant EGFR (L858R) mutant_whole (56 inhibitors) 0.834 0.710 0.413 0.524

mutant_train (42 inhibitors) 0.846 0.721 0.386 0.501

mutant_valid(14 inhibitors) 0.850 0.745 0.368 0.467

Hybrid hybrid_whole(184 inhibitors) 0.833 0.731 0.491 0.636

hybrid_train(147 inhibitors) 0.850 0.723 0.464 0.628

hybrid_valid (37 inhibitors) 0.761 0.623 0.617 0.724

doi:10.1371/journal.pone.0101079.t002

QSAR Based Model for EGFR Inhibitors

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e101079



dataset based QSAR model (Table 4). As there is no other report

in the literatures for predicting L858R mutant EGFR inhibitors

we cannot compare the results obtained for mutant EGFR.

Cross-prediction
In order to evaluate the cross-suitability of wild and mutant

EGFR models we perform cross prediction using both models.

First we tested all mutant inhibitors on wild type EGFR model and

achieved a correlation coefficient (R)/coefficient of determination

(R2) 0.3107/0.09644, MAE = 1.1741 and RMSE = 1.4023. Next,

we apply reverse strategy where wild type EGFR molecules are

tested against the mutant EGFR model and achieved a correlation

coefficient (R)/coefficient of determination (R2) 0.1674/0.03567,

MAE = 1.1189 and RMSE = 1.4062. From this, we conclude that

the method trained on wild type EGFR inhibitors is not suitable

for prediction of mutant EGFR inhibitors and vice-versa. This

may be due to diverse sets of molecules, as all 128 EGFR inhibitors

are quinazoline derivatives whereas mutant EGFR inhibitors

belong to diverse scaffold particularly imidazothiazoles and

pyrazolopyrimidines.

Discussion

Out of myriad compounds obtained from synthetic processes,

the identification of inhibitors, which can serve as lead molecule

using experimental techniques is very expensive, time-consuming

as well as skill intensive. Thus, it is necessary that new

computational methods are developed for shortlisting effective

leads. Although in past, some computational methods have been

developed for predicting EGFR inhibitors that prevent ATP-

EGFR interaction, to the best of authors knowledge, no software/

webserver has been developed for predicting EGFR inhibitors. So,

in this study, our main goal is to develop an open source

webservice for predicting both wild type as well as mutant EGFR

inhibitors. First, we identified more frequent fragments present in

wild and mutant EGFR inhibitors. These frequent fragments can

be used to design the inhibitors of desired activity against wild and

mutant EGFR inhibitors. Backbone of any QSAR or prediction

model is feature or descriptor of correlation. Though there are

numerous software packages in market; our major emphasis was

on open source software in order to make these models available

for scientific community. As shown in result section, descriptors

computed using free software PaDEL that perform as good as any

commercial software. Thus in this study we used PaDEL

computed descriptors for developing QSAR models. One of the

major challenges in QSAR studies is to select relevant or best

descriptors that can be used to develop prediction models for

predicting inhibitors against wild and mutant EGFR. We

developed QSAR models using selected descriptors of wild and

mutant EGFR inhibitors by machine learning techniques. In this

Figure 6. Positive and negative correlation of selected highly significant descriptors of mutant EGFR inhibitors.
doi:10.1371/journal.pone.0101079.g006

Table 3. The SMOreg based performance of QSAR models developed using selected descriptors calculated from mutant_whole
datasets.

Descriptors No. of descriptors R R2 MAE RMSE

Docking Energy 6 0.445 0.315 0.676 0.856

PaDEL descriptors 14 0.834 0.710 0.413 0.524

PaDELdescriptors+Docking Energy 20 0.841 0.728 0.398 0.517

doi:10.1371/journal.pone.0101079.t003
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study, module SMOreg of Weka and SVMlight package were used

to implement SVM for regression for developing prediction

models. First, we developed QSAR models for wild type EGFR

inhibitors using selected descriptors of the Dragon, Vlife, PaDEL,

WebCDK and PowerMV. We achieved maximum correlation

coefficient (R) 0.89 and coefficient of determination (R2) 0.83 using

PaDEL descriptors by SMOreg. Here, we observed that model

developed using PaDEL descriptors perform comparable or better

than models developed using other software packages. It was

observed that SVM implemented using SMOreg performs better

than SVMlight, for predicting wild type EGFR inhibitors.

Next, we compiled L858R mutant EGFR and developed a

SMOreg based prediction model and achieved maximum

correlation coefficient (R) 0.83 and coefficient of determination

(R2) 0.71 while SVMlight based model gives 0.76 (R) and 0.56 (R2)

using PaDEL descriptors. Here, we have observed that the

performance of the mutant EGFR model is lower than wild type

EGFR that is due to the presence of a diverse set of molecules in

the mutant EGFR dataset. Finally, we combined both types of

inhibitors and developed a hybrid prediction method. The

performance of hybrid based model is lesser than the individual

models of wild and mutant EGFR. In case of inhibitors against

EGFR mutant also we observed that SVM based models

implemented using SMOreg perform bettter than SVM models

implemented using SVMlight. The beauty of this study is that for

the first time we have developed a method which would be

applicable for both types wild and mutant EGFR inhibitors. We

also compared our wild type EGFR based model with existing

methods and found that our model gives better results. Based on

our optimized models a webserver and computer programs have

been designed and developed. This server can be used to identify

both wild type EGFR and L858R mutant EGFR inhibitors. In

addition, we have integrated analog based inhibitor designing. As

the software will be an open source, it is expected that the

advancement made in developing this software will be of use and

value to the researcher’s community working in the field of cancer

drug discovery. Also, it is anticipated that the web-services would

be highly useful for designing inhibitors for wild as well as mutant

EGFR.

Webserver

We develop a web server ‘‘ntEGFR’’ (available at http://crdd.

osdd.net/raghava/ntegfr) using CGI-PERL, PERL and PHP and

python scripts using different learning models. The user can paste

or upload the structure of the ligand molecule in the server. In this

webserver we have provided three types of prediction service, one

for wild type EGFR inhibitors, second for L858R mutant EGFR

and third for hybrid EGFR inhibitors. Additionally, we also

provide analog based inhibitors designing facility in web-service.

The current version of ntEGFR is available in three forms; (i)

Webserver (ii) Standalone and (iii) Galaxy based server.

Conclusions

ntEGFR is a open source web server for predicting inhibitory

activity (IC50) of molecules against wild and mutant EGFR. We

have provided three type of prediction models called wild_EGFR,

mutant_EGFR and hybrid_EGFR. This web server has three

options including; i) prediction of inhibitors against both types of

EGFR, ii) screening of large chemical libraries of EGFR inhibitors,

iii) generating chemical analogs of EGFR inhibitors.
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Table 4. Comparative performance of existing method with our method developing for predicting inhibitors against wild type
EGFR inhibitors.

Methods Datasets R R2 MAE RMSE

Vema A et al Wild_whole 0.877 0.768 0.434 0.551
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Wild_valid 0.730 0.499 0.719 0.846

Hongying Du et al Wild_whole 0.918 0.843 0.369 0.455

Wild_train 0.921 0.849 0.354 0.442

Wild_valid 0.901 0.807 0.432 0.504
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Wild_train 0.917 0.837 0.333 0.462
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