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The SYBR green I (SG) dye-based fluorescence assay for screening antimalarial compounds is based on direct quantitation of
parasite DNA. We show that DNA-interacting cationic cell-penetrating peptides (CPPs) and intercalating agents compete with
SG dye to bind to DNA. Therefore, readouts of this assay, unlike those of the [*H]hypoxanthine incorporation assay, for the anti-
malarial activity of the above DNA binding agents may be erroneous. In the case of CPPs, false readouts can be improved by the

removal of excess peptides.

alaria continues to be a major public health problem in the

21st century. More than 200 million cases of malaria were
reported in 2012, and the emergence of new drug-resistant strains
of Plasmodium makes the situation more critical and alarming (1,
2). Chemoresistance, drug monotherapies, the easy availability of
substandard drugs, and genetic polymorphism are some of the
major causes of parasite drug resistance (3, 4). Thus, it is impera-
tive to identify new antimalarial agents. For antimalarial drug
screening, the [*H]hypoxanthine incorporation assay has been a
gold standard (5), while parasite lactate dehydrogenase (pLDH)-
(6) and histidine-rich protein II-based (7) assays are other widely
used methods. However, these assays are expensive and involve
multistep procedures and thus are difficult to utilize for high-
throughput screening (8, 9). The SYBR green I (SG) dye-based
fluorescence assay is a recently developed high-throughput
screening method which has been reported to be as sensitive as the
[3H]hypoxanthine incorporation assay (8, 10). It has been exten-
sively validated and compared with other known methods and is
commonly used for high-throughput antimalarial drug screening
(9, 11-13).

Peptides and DNA intercalating agents have been widely tested
for their antimalarial activity (14—17). Some cell-penetrating pep-
tides (CPPs), e.g., TP10 (18), and a number of DNA intercalators
have been shown to have antimalarial activity (16, 17). Interest-
ingly, it has been demonstrated that CPPs, like Tat, penetratin,
and TP10, are efficient agents for the delivery of bioactive mole-
cules across the plasma membrane barrier (19). It has also been
shown that CPPs move to the nucleus and bind to the target DNA,
forming peptide-DNA complexes (20, 21). Since SG dye, CPPs,
and intercalating agents bind to DNA, the aim of the present study
was to evaluate the suitability of an SG dye-based fluorescence
assay for determining the antiplasmodial activity of DNA binding
agents. CPPs, Tat, penetratin, TP10, P3, P8 (19, 22), and control
peptides (Table 1) were chemically synthesized (USV, Mumbai,
India) with more than 95% purity. TP10 is a broad-spectrum
antiparasitic CPP (18), while Tat has been shown to be nontoxic
(at 50 wM) to Plasmodium parasites (23). Synchronized Plasmo-
dium falciparum 3D7 cultures at 2% parasitemia and 2% hemat-
ocrit were lysed (10) and treated with various concentrations (6.25
uM to 100 wM) of Tat, penetratin, TP10, and control peptides
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(control cyclic peptide [CP1] and control linear peptide [CP2])
followed by incubation with SG dye. The binding of these cationic
CPPs with parasite DNA and their effects on SG dye binding were
analyzed. A dose-dependent decrease in SG dye fluorescence was
observed in the case of Tat, penetratin, and TP10 (Fig. 1A). In the
[*H]hypoxanthine incorporation assay, like control peptides, Tat
and penetratin did not show any antiplasmodial activity up to 100
.M, while TP10 exhibited dose-dependent antiplasmodial activ-
ity (Fig. 1B). On the other hand, the SG-based fluorescence assay,
performed under similar conditions, showed antiplasmodial ac-
tivity (reflected by SG-DNA binding inhibition) for all peptides,
except for the control peptide (Fig. 1C). Similar results were also
observed with other CPPs, P3, and P8 (see the supplemental ma-
terial available at http://crdd.osdd.net/raghava/figs1.pdf). As
CPP-mediated inhibition was observed at higher concentrations,
we analyzed whether these anomalous growth inhibition results,
obtained for cationic CPPs in the SG-based fluorescence assay,
may be corrected by the removal of excess peptide from the wells
before addition of the SG dye. After 48 h of treatment with CPPs,
the supernatant-containing excess peptides were removed, and
cells were washed once with malaria complete medium (24) be-
fore adding SG dye. As shown in Fig. 1D, significant corrections in
false readouts were observed, so the results were comparable to
those of the [’H]hypoxanthine incorporation assay (Fig. 1B). One
of the merits of the SG-based assay, originally emphasized (25)
and subsequently followed in a number of studies (10, 11), is the
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TABLE 1 Peptides used in this study

Peptide Sequence pl” Length”
Tat GRKKRRQRRRPPQ 12.70 13
Penetratin RQIKIWFQNRRMKWKK 12.31 16

P3 RRRQKRIVVRRRLIR 12.90 15

P8 RRWRRWNRFNRRRCR 12.54 15
TP10 AGYLLGKINLKALAALAKKIL 10.18 21

CP1 CTHPATSWC 6.72 9

CP2 ITWNEKKSHHLY 8.51 12

“ Isoelectric points (pI) were calculated using the ProtParam tool (http://web.expasy
.org/protparam/).

® Number of amino acids.

rapidness of the assay when using a single reagent and avoiding
multiple washing steps. Unlike these reports, in the case of cat-
ionic CPPs, we noticed that the removal of the supernatant (con-
taining excess peptides) before the addition of a lysis buffer con-
taining SG dye significantly reduced the number of false readouts
of antiplasmodial activity of cationic CPP. In one report, the in
vitro antiplasmodial activities of cationic undecapeptides were
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tested using the SG-based fluorescence assay; before adding the
lysis buffer containing the SG dye, the supernatant was first re-
moved after treatment to check for peptide-induced hemolysis of
the treated cells (26). Although the antimalarial activity of the test
peptide was not validated by other methods in that report, it is
possible that, in line with our observation, the results were not
affected due to the removal of excess peptides in solution. Since
the washed wells displayed results comparable to those of the
[*H]hypoxanthine incorporation assay (Fig. 1B), this indicates
that instead of an intracellular peptide, excess peptide in the su-
pernatant interacts with parasite DNA upon lysis and is responsi-
ble for false-positive readouts by these peptides.

Next, we wanted to check whether small-molecule DNA inter-
calators, e.g., doxorubicin and actinomycin D, also interfere with
SG binding to parasite DNA in solution and in vivo. Figure 2A
shows that, like CPPs, these intercalators also exhibit a dose-de-
pendent inhibition in SG binding to DNA in solution. Each of
these intercalators is a potent antimalarial (16, 17), and doxoru-
bicin exhibited a low SG binding signal (due to less DNA) in a
standard 48-h growth inhibition assay (27). Accordingly, for in
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FIG 1 Validation of antiplasmodial activities of cationic CPPs assessed by SG-based fluorescence assay. (A) Sorbitol-synchronized P. falciparum trophozoite-
stage cells were lysed and treated with various concentrations (6.25 WM to 100 uM) of Tat, penetratin, TP10, and control peptides (CP1 and CP2) for 2 h at 37°C,
followed by incubation with SG dye and analysis of fluorescence intensity. (B to D) Synchronized cells at trophozoite stage were cultured in the presence of
various concentrations (6.25 uM to 100 wM) of Tat, penetratin, TP10, and control peptide (CP1) for 48 h, and parasite growth inhibition was measured by the
[’H]hypoxanthine incorporation assay (B) and the SG-based fluorescence assay (C and D). For SG dye binding, cells were lysed without washing (C) or with
washing (D). Data are representative of two independent experiments performed in triplicate; error bars, standard errors of the mean; A.U., arbitrary units.
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FIG 2 Effect of small-molecule DNA intercalators on SG-based analysis of P.
falciparum DNA. (A) Sorbitol synchronized trophozoite-stage cells were lysed
and treated with various concentrations (0.1 wM to 100 wM) of doxorubicin,
actinomycin D, and chloroquine (Chq) for 2 h at 37°C, followed by incubation
with SG dye and analysis of fluorescence intensity (P < 0.0001 for all concen-
trations). (B) Sorbitol synchronized trophozoite-stage cells, at 1% parasitemia
and 2% hematocrit (0 h), were cultured with various concentrations (0.1 uM
to 100 wM) of doxorubicin, actinomycin D, or 0.2 uM chloroquine. After 4 h,
cells were lysed without washing or after washing followed by addition of SG
dye and analysis for fluorescence intensity (*, P < 0.05, and #:, P < 0.005). (C)
pLDH activities corresponding to respective bars in panel B. For panels A and
B, statistical significance was determined by using unpaired Student’s ¢ test
(two-tailed) using chloroquine as a control. Data are representative of two
independent experiments performed in triplicate; error bars, standard errors
of the mean.

vivo quantitation of SG dye binding to DNA in the presence of
these intercalators, we chose an early period of parasite growth
where parasitemia was unchanged (18). Synchronized trophozo-
ite-stage cells at 1% parasitemia and 2% hematocrit were cultured
for 4 h with various concentrations (0.1 wM to 100 wM) of inter-
calators. SG-based fluorescence was measured (Fig. 2B) while si-
multaneously checking the pLDH activity (Fig. 2C) and para-
sitemia by Giemsa staining. Doxorubicin and actinomycin D
treatment for 4 h did not affect the parasitemia, reflected by pLDH
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activity (Fig. 2C) and Giemsa staining (data not shown), but in-
hibited SG-DNA binding, which occurred in a dose-dependent
manner with a more pronounced effect observed upon doxorubi-
cin treatment. Also, prior removal of excess drug by washing did
not significantly affect this inhibition (Fig. 2B). Thus, it can be
inferred that (i) CPPs and intercalators inhibit SG-DNA binding
in solution, and (ii) intercalators, unlike CPPs, can also exert their
inhibitory effects by intercalation with intracellular DNA in vivo.

In conclusion, the present study provides evidence that cat-
ionic CPPs and DNA intercalating agents inhibit the binding of
SG dye to parasite DNA and, thus, may result in false-positive
readouts of antiplasmodial activity in an SG dye-based growth
inhibition assay. This necessitates validation of the antiplasmodial
activities of these agents with other gold standard assays. Alterna-
tively, as demonstrated in this study for CPPs, the existing SG-
based fluorescence assay can be modified by removing the excess
cationic peptides prior to the addition of SG dye.
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