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ABSTRACT
Plant disease resistance (PDR) proteins are critical in identifying plant pathogens. Predicting PDR protein is essential for
understanding plant–pathogen interactions and developing strategies for crop protection. This study proposes a hybrid model for
predicting and designing PDR proteins against plant-invading pathogens. Initially, we tried alignment-based approaches, such as
Basic Local Alignment Search Tool (BLAST) for similarity search andMERCI formotif search. These alignment-based approaches
exhibit very poor coverage or sensitivity. To overcome these limitations, we developed alignment-free or machine learning (ML)-
basedmethods using compositional features of proteins. OurML-basedmodel, developed using compositional features of proteins,
achieved a maximum performance area under the receiver operating characteristic curve (AUROC) of 0.91. The performance of
our model improved significantly from AUROC of 0.91–0.95 when we used evolutionary information instead of protein sequence.
Finally, we developed a hybrid or ensemblemodel that combined our bestMLmodelwithBLAST and obtained the highestAUROC
of 0.98 on the validation dataset.We trained and tested ourmodels on a training dataset and evaluated themon a validation dataset.
None of the proteins in our validation dataset aremore than 40% similar to proteins in the training dataset. One of the objectives of
this study is to facilitate the scientific community working in plant biology. Thus, we developed an online platform for predicting
and designing plant resistance proteins, “PlantDRPpred” (https://webs.iiitd.edu.in/raghava/plantdrppred).

1 Introduction

A wide range of pathogens, including fungi, bacteria, nema-
todes, viruses, protozoa, and insects, can destroy or affect the
growth of plants. Over the years, plants have evolved complex
and dynamic immune systems essential for survival, growth,
and development. Broadly, the plant immune system can be
categorized into two main types: cell surface or pattern-triggered
immunity (PTI) and intracellular or effector-trigger immunity

(ETI). Pattern recognition receptors (PRRs) are specialized
proteins that play a pivotal role in PTI by recognizing and
responding to pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs) [1].Disease
resistance proteins, products of resistance (R) genes, enable
plants to recognize specific pathogen effectors in ETI. These
effectors are molecules produced by pathogens to promote
their growth within host tissues. The interaction between R
genes and pathogen avirulence (Avr) gene products determines

Abbreviations: AAC, amino acid composition; AUROC, area under the receiver operating characteristic curve; BC, bagging classifier; BLAST, Basic Local Alignment Search Tool; DPC, dipeptide
composition; ET, extra trees; MCC, Matthew correlation coefficient; PDR, plant disease resistance; PSSM, position-specific scoring matrix; RF, random forest; SVC, support vector classifier; XGB,
eXtreme gradient boosting.
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Summary
∙ Development of a machine-learning model for resistance
protein prediction.

∙ Used alignment-based and alignment-free ensemble
methods.

∙ Web server development and standalone package.

∙ Prediction and design of plant disease resistance (PDR)
proteins.

whether a plant is resistant or susceptible to a pathogen attack
[2].

R genes in plants exhibit diverse structural features, reflecting the
complex nature of plant–pathogen interactions. At the molecular
level, R genes typically encode plant disease resistance (PDR)
proteinswith conserved domains such as nucleotide-binding sites
(NBSs) and leucine-rich repeats (LRRs). The NBS domain, which
can be either N-terminal or centrally located within the protein,
is involved in ATP or GTP binding and hydrolysis, essential for
signal transduction in plant defense responses. The LRR domain,
often located at the C-terminus, is responsible for protein–
protein interactions and pathogen recognition, as it forms a
versatile scaffold for binding to pathogen-derived molecules [3].
Additionally, many PDR proteins contain other domains, such as
coiled-coil (CC)motifs or Toll/interleukin-1 receptor (TIR),which
mediate downstream signaling events upon pathogen recognition
[4, 5]. The modular structure of PDR proteins allows for diverse
recognition specificities and signaling pathways, contributing to
the robustness of plant immunity.

Current prediction methods such as NBSPred and NLR-parser
utilize sequence similarity or domain-based approaches for pre-
dicting PDR proteins [6, 7]. These methods may fail if new
proteins are not similar to known annotated proteins. Several
machine learning (ML)-based methods have been developed to
overcome these challenges, like DRPPP, prPred, and stackRPred
[8, 9, 10]. Most of these methods have been developed on old
and outdated data. Thus, there is a need to develop highly
accurate and reliable models for predicting PDR proteins. In this
study, we have systematically attempted to create the dataset of
PDR proteins from the database PRGdb and non-PDR proteins
from Swiss-Prot. To create a nonredundant dataset, we created
clusters using CD-Hit at 40%; these clusters were partitioned into
training and validation datasets. In contrast to existing methods,
we developed a hybrid or ensemble method that combines
alignment-based and alignment-free approaches (Figure 1).

2 Materials andMethods

2.1 Dataset Formation

In this study, we acquired 199 PDR proteins from the PRGdb
4.0 database called positive proteins [11]. Similarly, we obtained
non-PDR proteins from Swiss-Prot, called negative proteins [12].
Since the PDR protein sequences of Bryophyta and Angiosperm
are available in positive sequences, we used sequences from the
parent clade Embryophyta to generate the negative dataset, as

it includes PDR proteins from both Bryophyta and Angiosperm.
We specifically selected sequences that had been previously
reviewed. Subsequently, we filtered this dataset to include
sequences with lengths more than 63 and less than 1826. We
randomly sampled 199 protein sequences from this filtered pool to
constitute our negative dataset and ensure they are not involved
in defense-related functions based on available information. To
generate nonredundant subsets while preserving the number of
sequences, we adopted an approach used in previous studies [13–
16]. We used CD-HIT [17] software at a cutoff of 40% to create
clusters for PDR proteins and non-PDR, where no two proteins
have a sequence similarity of more than 40%; 118 clusters for PDR
proteins and 186 clusters for non-PDR were obtained. The steps
involved in creating a nonredundant dataset are illustrated in
Figure 2.

2.2 Feature Generation

We utilized the tool Pfeature [18] to extract composition-based
features and the POSSUM tool [19] to extract the evolutionary
feature (position-specific scoring matrix [PSSM]). Composition-
based features include amino acid composition (AAC) and
dipeptide composition (DPC). AAC is represented as a 20-length
vector, where each element signifies the fraction of a particular
residue typewithin the sequence. In contrast, DPC is a 400-length
vector that captures the occurrence of amino acid pairs within
the protein sequence. The evolutionary features of proteins are
recognized to provide vital insights beyond the primary sequence
features [20]. These features are typically derived through the
calculation of PSSM profiles using the Position-Specific Iterated
Basic Local Alignment Search Tool (PSI-BLAST) [21]. The PSSM
represents a matrix with dimensions of 20 × sequence length for
protein or peptide sequences. However, to develop ML models,
which require fixed-length vectors, we employed the composition
of the PSSMprofile as PSSM-400, a fixed-length vector containing
400 elements as evolutionary features [15].

2.3 Cross-Validation

The performance of the modules developed in this study
was assessed using a five-fold cross-validation technique. This
approach divided the dataset into positive and negative subsets
to form training and test sets. Specifically, four positive subsets
and their corresponding four negative subsets were combined
to create the training set. The remaining positive subset and
negative subset were used to form the test set. In this instance,
the ML models were assessed using k-fold cross-validation (five-
fold cv) on the training data. This involves randomly dividing
the full dataset into k subsets, with one subset used for testing
the classifier and the remaining k–1 subsets used for training.
This method is iterated k times until every subset has been
utilized to test the classifier precisely once. The classifier’s overall
performance is measured by calculating the average of the
classification accuracies obtained from each step of the cross-
validation process. Using different train/test splits can result
in significant differences in accuracy. Therefore, this method
provides a more generalizable estimate of classifier performance
compared to using only a single split. Additionally, this approach
helps reduce overfitting andunderfitting of themodel by ensuring
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FIGURE 1 Workflow shows study architecture from data collection to web server development.

that the classifier is trained and validated on different subsets of
data, promoting a more balanced learning process.

2.4 Alignment Based Method

We employed BLAST [22] for similarity searches. First, we
constructed a database using the training dataset. Then, we per-

formed similarity searches against this database using sequences
from the validation dataset. This approach allows us to compare
sequences in the validation dataset against those in the training
dataset, aiding in tasks such as classification or identification of
similar sequences. Identifying functional motifs within protein
sequences is crucial for functional annotation and distinguishing
between positive and negative datasets. This study employed the
Motif Emerging with Classes Identification (MERCI) program
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FIGURE 2 The flowchart illustrates the generation of nonredundant training, validation, and testing of datasets of plant disease resistance (PDR)
proteins. Initially, training and validation datasets are created by separating all clusters of PDR proteins. Subsequently, the training dataset’s sequences
are divided into five subsets.

to identify motifs within PDR and non-PDR protein sequences
[23]. We explored the extraction of motifs using various k values.
Afterward, we use parameter k = 20 to extract motifs (Table S2)
that are exclusively present in PDR proteins and not non-PDR
proteins.

2.5 Alignment-Free Methods

2.5.1 Machine Learning Techniques

We implemented ML classifiers using the Python sci-kit learn
package to build our prediction models. To enhance model per-
formance, we fine-tuned hyperparameters on the training dataset
with the help of sklearn’s GridSearch package. After determining
the optimal hyperparameters, the best model was evaluated on
the validation set. We used a five-fold cross-validation to execute
the entire process and averaged the results across all five folds.

Using optimized feature vectors, we developed predictionmodels
with various classifiers, including support vector classifier (SVC),
extra trees (ET), random forest (RF), Gradient Boosting (GB), and
bagging classifier (BC).

2.6 Ensemble or Hybrid Approach for
Classification

This study used a hybrid or an ensemble approach to augment
the model’s predictive capabilities. This ensemble methodology
adopts a weighted scoring mechanism, incorporating three dis-
tinct methods: (i) ML approach, (ii) similarity-based technique
employing BLAST, and (iii) motif-based technique usingMERCI.
Scoring system in the BLAST approach, a weight of “+0.5” was
assigned for positive predictions, “−0.5” for negative predictions,
and “0” for no hits using BLAST. A scoring systemwas devised for
MERCI classification to assign values based on various conditions
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FIGURE 3 The percent amino acid compositional analysis for plant disease resistance (PDR) or non-PDR proteins.

where, when a motif is found in a sequence, a score of “+0.1”
is assigned. Additionally, for each additional motif found in the
same sequence, an extra “0.1” is added. If a motif is found in a
negative sequence, a score of “−0.1” is added. If no motif is found
in a sequence, a score of 0 is assigned.

2.7 Performance Metrics Calculation

The ML models employed in this investigation were assessed
using a variety of performance metrics, encompassing param-
eters both dependent and independent of the threshold. The
evaluation metrics include specificity, sensitivity, Matthew corre-
lation coefficient (MCC), the area under the receiver operating
characteristic curve (AUROC), and accuracy. Notably, AUROC
is threshold-independent, while the remaining parameters, such
as specificity, sensitivity, and MCC, are threshold-dependent and
were optimized to identify the threshold yielding maximum
values. An ML model’s accuracy is a measure that shows how
often it delivers accurate predictions. The computation involves
dividing the total number of guesses by the number of correct
forecasts. Sensitivity measures the level of accuracy in identifying
the true positives. Specificity quantifies the ratio of accurately
detected actual negatives from the total number of negatives.
Matthews correlation coefficient (MCC) is a statistical measure
that provides a balanced assessment by considering all four
components of a confusion matrix: true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).
AUROC measures the area under the ROC curve, providing a
single value that summarizes the model’s performance across all
possible classification thresholds. Thesemetrics have beenwidely
employed in previous studies to gauge the performance of ML
models [16, 24, 26–28]. The following Equations (1–4) were used

to calculate these:

Sensitivity = TP

TP + FN
(1)

Specif icity = TN

FP + TN
(2)

Accuracy = TP + TN

TN + TP + FN + FP
(3)

Mcc = (TP × TN) − (FP × FN)
√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(4)

where TP is the true positive, FP is the false positive, TN is the
true negative, and FN is the false negative.

3 Results

3.1 Composition Analysis

We calculated AAC for PDR and non-PDR proteins, as shown
in Figure 3. We observed that amino acids leucine (L), serine
(S), and isoleucine (I) are more abundant in PDR proteins.
Similarly, amino acids alanine (A), proline (P), and glycine (G)
are widespread in non-PDR proteins. We calculated AAC using
the formula shown in Equation 5.

AAC𝑖 =
𝑅𝑖
𝐿

(5)

where is AAC𝑖 is the amino acid composition of residue type i, 𝑅𝑖
is a number of amino acids of type i, and L is the length of the
sequence.
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TABLE 1 The hits obtained by employing BLAST on the validation datasets of PDR and non-PDR proteins at different e values.

Correct hits (PDRs) Incorrect hits (non-PDRs)

BLAST (e value) PDRs Non-PDRs Non-PDRs PDRs

1.00E-06 31 0 9 0
1.00E-05 31 0 9 0
0.0001 31 0 9 0
0.001 31 0 10 0
0.01 31 0 11 1
0.1 31 0 12 3
1 34 0 17 8
10 36 0 21 18
100 36 0 21 18

Abbreviations: BLAST, Basic Local Alignment Search Tool; PDR, plant disease resistance; PDRP, plant disease resistance protein.

TABLE 2 The performance of different machine learning techniques-based models using the AAC feature of protein sequences.

Training dataset Validation dataset

Models Sen Spec Acc AUROC MCC Sen Spec Acc AUROC MCC

RF 0.81 0.86 0.83 0.91 0.68 0.86 0.77 0.81 0.88 0.63
SVC 0.81 0.87 0.84 0.92 0.68 0.75 0.87 0.81 0.91 0.63
ET 0.86 0.85 0.85 0.92 0.71 0.83 0.77 0.80 0.90 0.60
XGB 0.81 0.81 0.81 0.90 0.63 0.86 0.72 0.79 0.88 0.58
BC 0.79 0.85 0.82 0.91 0.64 0.86 0.79 0.83 0.88 0.66

Abbreviations: AAC, amino acid composition; Acc, accuracy; AUROC, area under the receiver operating characteristic curve; BC, bagging classifier; ET, extra
trees; MCC, Matthew correlation coefficient; RF, random forest; Sen, sensitivity; Spec, specificity; SVC, support vector classifier; XGB, eXtreme gradient boosting.

3.2 BLAST Search

Initially, we utilized BLAST (version 2.15.0+) for similarity
searches by constructing a database of training datasets. Subse-
quently, we employed this dataset to search for similarities within
the validation sequences using variousE values. The performance
of the BLAST module deteriorates when greater e values are
used, as BLAST permits random matches at higher e values (see
Table 1). Consequently, as the e values increase, the number of hits
also increases, but this negatively impacts performance because it
allows for false hits.

3.3 Compositional-Based Model

We utilized the AAC feature to construct ML models employing
RF, ET SVC, eXtreme gradient boosting (XGB), and BC. The
results are summarized in Table 2. The highest AUROC on the
training set was achieved with SVC, reaching 0.92; similarly,
SVC attained the highest AUROC of 0.91 on the validation
dataset.

Similarly, models were developed utilizing DPC along with
various ML techniques. Details of these models can be found in
Table S1. The best performance is the RF model with AUROC,
which is 0.90 on the training set, and the validation dataset
is 0.90.

3.4 PSSM Feature-Based Model

Previous studies have demonstrated the enhanced information
provided by sequence profiles compared to individual sequences
alone [16, 29, 30]. Therefore, in this study, we initially generated
PSSM-400 composition profiles corresponding to each protein
utilizing POSSUM software and used them as feature vectors
to develop classification models. Similar to the AAC and DPC-
based methods, we employed various classifiers, such as ET, RF,
SVC, XGB, BC, etc. As depicted in Table 3, models based on
evolutionary information exhibited a maximum AUROC of 0.96
on the training dataset. The PSSM profile was not generated for
the sequence in the validation dataset. We used the model based
on the second-best feature, AAC, to extract prediction values for
that sequence. The maximum AUROC achieved was 0.95 on the
validation set.

3.5 Ensemble Approach

The previous results indicate that both the similarity-based
approach and ML-based models have their own advantages and
disadvantages. Therefore, we endeavored to create a technique
that integrates the strengths of both approaches. We explored
hybrid methodologies, combining ML with BLAST scores and
ML with BLAST and motif scores. we observed increased perfor-
mance by combining the ML with the BLAST score using an E
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TABLE 3 The performance of different machine learning techniques-based models using the PSSM feature of protein sequences.

Training dataset Validation dataset

Models Sen Spec Acc AUROC MCC Sen Spec Acc AUROC MCC

RF 0.86 0.95 0.90 0.96 0.80 0.86 0.90 0.88 0.95 0.76
SVC 0.85 0.90 0.88 0.92 0.76 0.86 0.87 0.86 0.90 0.73
ET 0.86 0.96 0.91 0.95 0.82 0.86 0.95 0.91 0.95 0.81
XGB 0.88 0.90 0.89 0.94 0.78 0.86 0.87 0.86 0.95 0.73
BC 0.87 0.91 0.88 0.94 0.77 0.86 0.90 0.88 0.93 0.76

Abbreviations: Acc, accuracy; AUROC, area under the receiver operating characteristic curve; BC, bagging classifier; ET, extra trees; MCC, Matthew correlation
coefficient; PSSM, position-specific scoring matrix; RF, random forest; Sen, sensitivity; Spec, specificity; SVC, support vector classifier; XGB, eXtreme gradient
boosting.

TABLE 4 The performance of the hybridmethod developed by combiningmachine learning and BLAST-based approach, evaluated on a validation
dataset.

Methods Performance

Models Features Sen Spec Acc AUROC MCC

SVC AAC 0.86 0.90 0.88 0.96 0.76
BC DPC 0.89 0.82 0.85 0.95 0.71
RF PSSM 0.89 0.90 0.89 0.98 0.78

Abbreviations: AAC, amino acid composition; Acc, accuracy; AUROC, area under the receiver operating characteristic curve; BC, bagging classifier; BLAST, Basic
Local Alignment Search Tool; DPC, dipeptide composition; MCC,Matthew correlation coefficient; PSSM, position-specific scoringmatrix; RF, random forest; Sen,
sensitivity; Spec, specificity; SVC, support vector classifier.

TABLE 5 The performance of the hybrid method developed by combining machine learning and motif-based approach on a validation dataset.

Methods Scores

Models Features Sen Spec Acc AUROC MCC

SVC AAC 0.78 0.87 0.83 0.90 0.65
RF DPC 0.83 0.82 0.83 0.92 0.65
RF PSSM 0.86 0.87 0.87 0.95 0.73

Abbreviations: AAC, amino acid composition; Acc, accuracy; AUROC, area under the receiver operating characteristic curve; DPC, dipeptide composition; MCC,
Matthew correlation coefficient; PSSM, position-specific scoring matrix; RF, random forest; Sen, sensitivity; Spec, specificity; SVC, support vector classifier.

value of 10−3. Specifically, when utilizing RFwith features derived
from PSSM, the AUROC improved to 0.98 on the validation
dataset. Employing the ML model alongside exclusive positive
motifs also resulted in an AUROC of 0.95 on the validation
dataset. Combining ML with BLAST and motifs yielded an
AUROC of 0.98 on the validation dataset. The performance of
different ensemble approaches has been illustrated in Tables 4–6.

4 Web Server Development for PDR
Classification

We have constructed a web server called “PlantDRPpred”
(https://webs.iiitd.edu.in/raghava/plantdrppred) for categorizing
proteins into plant disease resistance proteins (PDRPs) or non-
PDRPs groups, utilizing the top-performing model identified
in our study. The server incorporates various modules: “Pre-
dict,” “Design,” “Protein scan,” and “BLAST scan.” Users can

categorize provided sequences as PDR or non-PDR using the
“Predict”module. The “Design”module allows users to construct
all possible PDR analogs that can be created from the provided
sequence. Through the utilization of the “Protein Scan” module,
users have the ability to scan or identify specific sections within
an amino acid sequence that correspond to either PDR or non-
PDR. The “Blast scan” module allows users to search their
query sequence against a database containing established PDR
information. The classification of the query sequence as either
PDRor non-PDR is determined bywhether or not there is amatch
or hit in the database. If the sequence corresponds to or aligns
with a recognized protein in the database, it is classified as PDR;
if no alignment is detected, it is classified as non-PDR. Users
have the option to submit protein sequences for analysis in two
different formats. The user can input a file in FASTA format or
directly paste multiple sequences. The server will then generate
predictions and detailed reports using the integrated modules.
The web server can handle up to 50 queries concurrently. Users
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TABLE 6 The performance of a hybrid method that combines machine learning, motif, and BLAST-based approaches on a validation dataset.

Methods Scores

Models Features Sen Spec Acc AUROC MCC

SVC AAC 0.86 0.90 0.88 0.96 0.76
BC DPC 0.89 0.82 0.85 0.95 0.71
RF PSSM 0.89 0.95 0.92 0.98 0.84

Abbreviations: AAC, amino acid composition; Acc, accuracy; AUROC, area under the receiver operating characteristic curve; BC, bagging classifier; BLAST, Basic
Local Alignment Search Tool; DPC, dipeptide composition; MCC,Matthew correlation coefficient; PSSM, position-specific scoringmatrix; RF, random forest; Sen,
sensitivity; Spec, specificity; SVC, support vector classifier.

TABLE 7 Benchmarking of existing tools and tools proposed in this study on dataset not used in training of models.

Models Sen Spec Acc AUROC MCC

prPred-DRLF 0.85 0.83 0.84 0.93 0.68
prPred 0.24 0.98 0.64 0.86 0.34
PlantDRPpreda 0.89 0.95 0.92 0.98 0.84

Abbreviations: Acc, accuracy; AUROC, area under the receiver operating characteristic curve; MCC, Matthew correlation coefficient; Sen, sensitivity; Spec,
specificity.
aPlantDRPpred results demonstrate that our best model runs on the validation dataset.

can process a large number of protein sequences on their own
computational resources by utilizing either the pip package or the
standalone package.

5 ComparisonWith Other Tools

Our study evaluated the performance of various available tools
for predicting R proteins. Some tools, NBSpred [6], DRPPP
[25], ResCap [28], and StackRPred [10], are not available for
evaluation. Available tools are trained on outdated datasets
encompassing a limited range of plant disease-resistance protein
classes, which restricts their ability to accurately predict all
PDR protein classes. Our webserver, PlantDRPpred, overcomes
these limitations and accurately predicts plant disease-resistance
proteins. Table 7 represents the comparison of ourmodel with the
existingmethods. The protein sequences in our validation dataset
may already be present in the training dataset of existing tools.
We have generated a dataset comprising proteins not utilized
in the training or testing of existing methods and used that for
benchmarking.

6 Discussion

Plants encounter various types of biotic stress, including attacks
from pathogens such as fungi, bacteria, insects, and viruses.
These biotic stressors can severely affect plant health, reduce
crop yields, and compromise food security. In response to these
challenges, plants have evolved sophisticated defense mecha-
nisms in which PDR plays a crucial role, recognizing specific
pathogen-derived molecules and activating defense responses.
This recognition triggers a cascade of signaling events to activate
various defense mechanisms. Recent advancements in genomics
and biotechnology have facilitated the identification and char-
acterization of numerous PDR proteins across multiple plant

species, but they are a time-consuming process. In the past few
years, some approaches, such as DRPPP, prPred, stackRPred, and
NBSpred DRPPP, trained their model with a smaller number
of protein sequences and typically relied on either ML-based
approaches or similarity searches alone and did not eliminate
the redundancy of positive data. NBSpred, DRPPP, ResCap,
and StackRPred tools are no longer available for public use,
which restricts their accessibility and utility for researchers.
Only prPred-DRLF provides a web server, but it is no longer
available. This study aims to establish an in-silico approach
to predict PDRPs using the ensemble model, so we retrieved
199 sequences from PRGdb4.0 as positive data. Negative data
was extracted from UniProt, focusing on the Embryophyta
clade since the positive data encompassed Angiosperm and
Bryophyta. From the 5674 negative sequences retrieved from
UniProt, we selected 199 sequences to generate a balanced
dataset, ensuring that those involved in the defense system were
excluded.

This study explored various methods to predict PDR pro-
teins. We developed ML-based models to distinguish PDRs
from non-PDRs by utilizing multiple features. These features
included composition-based properties such as AAC and DPC,
as well as evolutionary information-based properties derived
from PSSM. We employed a variety of classifiers, including SVC,
RF, XGB, ET, and BC, to achieve this. Additionally, we used
alignment-based approaches, such as BLAST and the Motif-
search approach, to annotate protein sequences. However, these
approaches demonstrated low sensitivity or coverage. Conse-
quently, we adopted an ensemble approach that integrated the
ML model with BLAST with motif search, exploring all pos-
sible combinations of methods to improve the accuracy and
reliability of our predictions. The highest performance was
observed with a hybrid model combining the PSSM-based ML
model and BLAST score. Our hybrid approach combines ML
techniques with BLAST, effectively capturing both sequence
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similarity and evolutionary characteristics. Although BLAST
provides strong similarity but limited coverage, ML techniques
have their own limitations. By leveraging the strengths of both
techniques, our hybrid strategy significantly improves perfor-
mance. For instance, our model’s AUROC increased from 0.95
to 0.98, demonstrating the enhanced predictive power of our
approach, and we optimized the threshold by minimizing the
difference between the sensitivity and specificity of our best
model (RF + BLAST). This approach led us to select a threshold
of 0.38, which provides a balanced performance by equitably
managing both true positive and true negative rates. This
hybrid approach was implemented in the freely accessible web
server.

The model is trained on a dataset of PDR proteins, which may
not represent the full diversity of PDR proteins across different
plant species. This limitation in dataset size may affect the
model’s ability to generalize its predictions to other PDR proteins.
PlantDRPpredmaynot fully capture the complex interactions and
regulatorymechanisms of PDR proteins. Experimental validation
is essential to confirm the biological relevance of the model’s
predictions. Despite its ability to determine if an input protein
sequence is a PDR, PlantDRPpred does not offer details on
binding locations or affinity scores. We have constructed a
comprehensivemodel to predict PDR by incorporating sequences
from different plants. However, the wide range of functional
and structural variations among these proteins implies that
PDRs may possess distinct characteristics and perform specific
roles. Hence, the utilization of function and structure-specific
techniques has the potential to improve the accuracy of PDR
predictions.

We believe that accurately predicting PDR proteins can play
a pivotal role in crop protection strategies. By identifying key
resistance genes, these predictions can guide breeding programs
or genetic engineering efforts to enhance crop resilience against
various pathogens. This approach has already demonstrated its
effectiveness in developing new wheat varieties with resistance
genes to fight against wheat stem rust [31]. This has the potential
to contribute to sustainable agricultural practices by reducing
the reliance on chemical pesticides and enhancing the natural
defense mechanisms of crops. Understanding the specific roles
and interactions of these proteins in plant immune responses
can provide new insights into plant–pathogen interactions, guid-
ing the development of innovative approaches to plant disease
management.

7 Conclusion

Our methodology for accurately predicting PDR proteins
improves our capacity to recognize them better than the available
methods. We used the ML model and BLAST approach for the
final ensemble model. We have created a web server called
PlantDRPpred and a standalone tool to assist researchers in
identifying PDR proteins. If query sequences resembling PDR
proteins are present, a prediction score based on similarity will be
provided. We believe our work will contribute to the annotation
of PDRs and provide valuable support for research in plant
pathology.
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