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Abstract
In the past, several methods have been developed for predicting conforma-
tional B-cell epitopes in antigens that are not specific to any host. Our pri-
mary analysis of antibody–antigen complexes indicated a need to develop
host-specific B-cell epitopes. In this study, we present a novel approach to
predict conformational B-cell epitopes specific to human hosts by focusing
on human antibody interacting residues in antigens. We trained, tested, and
evaluated our models on 277 complexes of human antibody–antigen com-
plexes. Initially, we employed machine learning models based on the one
hot encoding sequence profile of antigens, achieving a maximum area
under the receiver operating characteristic curve (AUROC) of 0.61. The per-
formance of the model improved significantly with the AUROC increasing
from 0.61 to 0.67 when evolutionary profiles were used instead of one hot
encoding profile. Models developed using embeddings from fine-tuned pro-
tein language models reached an AUROC of 0.61. Additionally, models uti-
lizing predicted surface relative solvent accessibility achieved an AUROC of
0.67. Our ensemble model, which combined relative surface accessibility
with evolutionary profiles, achieved the highest precision with an AUROC of
0.72. All models in this study were trained using fivefold cross-validation on
a training dataset and evaluated on an independent dataset not used for
training or validation. Our method outperforms existing approaches on the
independent dataset. Furthermore, we used the SHAP eXplainable AI (XAI)
method to interpret the importance of elements in features contributing to
the predictions made by our models. To support the scientific community,
we have developed a standalone software and web server, HAIRpred, for
predicting human antibody interacting residues in proteins (https://webs.iiitd.
edu.in/raghava/hairpred/).

KEYWORDS
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1 | INTRODUCTION

Antibodies are specialized glycoproteins produced by
the immune system, playing a vital role in identifying and
neutralizing pathogens, as well as in establishing immu-
nological memory. Their essential functions make anti-
bodies crucial for maintaining human health and
supporting immune responses. Given their wide-ranging
applications in diagnostics, vaccines, immunotherapy,

and therapeutics, the study of antibody activity and inter-
actions is a fundamental aspect of immunological
research. The interaction between an antibody and its
corresponding antigen predominantly occurs through
specific surface residues on the antigen, termed anti-
body interacting residues (Zeng et al. 2023). These resi-
dues are critical in defining conformational B-cell
epitopes, as they represent the direct contact points
between antibodies and their targets. Therefore, it is
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essential to accurately identify these residues for predict-
ing conformational B-cell epitopes, which play a significant
role in immune recognition. Conventional experimental
techniques for identifying antibody interacting regions, such
as X-ray crystallography and alanine scanning mutagene-
sis, are labor-intensive, costly, and often unsuitable for
large-scale analysis (Kozlova et al. 2018).

Recent progress in machine learning and artificial
intelligence has led to the development of various compu-
tational models aimed at predicting antibody interacting
residues or conformational B-cell epitopes. These compu-
tational models are based on experimental datasets like
IEDB (Vita et al. 2025), PDB (Burley et al. 2019), and sim-
ulated datasets like Absolut! (Robert et al. 2022). Broadly,
existing methods for predicting conformational B-cell epi-
topes can be categorized into two groups, namely
structure-based and sequence-based methods. Following
are examples of structure-based methods commonly
used for predicting conformational B-cell epitopes in an
antigen from its tertiary structure CEP, DiscoTope,
PEPITO, Epitopia, SEPPA, SEMA, and Epitope3D
(da Silva et al. 2022; Haste Andersen et al. 2006;
Kulkarni-Kale et al. 2005; Rubinstein et al. 2009; Shash-
kova et al. 2022; Solihah et al. 2020; Sun et al. 2009;
Sweredoski and Baldi 2008). One of the limitations of
structure-based methods is that they need the tertiary
structure of the antigen. In order to address this chal-
lenge, a number of sequence-based methods have been
developed for predicting conformational B-cell epitopes in
an antigen from its amino acid sequence. The following
are commonly used sequence-based methods BepiPred-
3.0, SEMA-2.0, CBTope, and CLBTope (Ansari and
Raghava 2010; Clifford et al. 2022; Ivanisenko et al.
2024; Kumar et al. 2024). However, a notable limitation of
these models is their inability to accommodate host-
specific differences in antibody–antigen interactions. Anti-
bodies are finely adapted to their respective host organ-
isms that the epitopes recognized by human antibodies
can differ significantly from those recognized by anti-
bodies from other species, such as mice. Additionally,
these models frequently overlook variations in immune
responses, antibody structures, and post-translational
modifications across different species (Almagro et al.
1998; Mestas and Hughes 2004). Such limitations raise
concerns about the generalizability of these models
across datasets obtained from diverse experimental set-
tings. Recent research by Cia et al. (2023) has
highlighted the shortcomings of existing methods by
demonstrating their limited performance when tested
against experimentally derived complexes from the Pro-
tein Data Bank (PDB) (Cia et al. 2023). We believe that
the lack of host specificity resulted in the poor perfor-
mance of the existing generalized models. As a result,
focusing on human antibody interacting residues to pre-
dict epitopes that are specific to human antibodies is a

crucial step toward enhancing the accuracy and rele-
vance of immune response predictions.

In this study, we present HAIRpred, a novel compu-
tational tool designed to predict human antibody inter-
acting regions in antigens with improved accuracy and
interpretability. Our models were developed and vali-
dated using experimentally derived human antibody–
antigen complexes, ensuring a focus on host specific-
ity. We utilized a carefully curated set of sequence-
derived features that have shown predictive efficacy in
prior studies while ensuring biological relevance. This
feature set integrates structural, sequential, and evolu-
tionary information about the antigen that can be
extracted from its amino acid sequence. The perfor-
mance of HAIRpred was rigorously evaluated against
existing methods using a diverse dataset of experi-
mentally verified antibody–antigen complexes. Addi-
tionally, the SHAP method was used to interpret the
models, which provided insight into the relative contri-
bution of each element in the feature to the prediction
outcomes.

2 | RESULTS

We have divided the result section into six categories:
(i) importance of host specificity, (ii) data analysis,
(iii) machine learning methods, (iv) benchmarking,
(v) feature importance analysis, and (vi) web server
implementation. The complete workflow of the study is
illustrated in Figure 1, and the details of the following
subsections can be found below.

2.1 | Importance of host specificity

The hypothesis of the study is that the major limitation
of existing generalized models is the failure to account
for the interspecies variation in antibody–antigen inter-
actions. It is therefore important to show the existence
of the difference in antibody–antigen interactions, which
was done by comparing the antibody interacting resi-
dues of different species. We compared the amino acid
composition (AAC) for both human and Mus musculus
interacting residues (Figure 2). The general proteome
was also introduced in the comparison to highlight the
characteristics of human and mouse epitopes. It was
observed that the AAC is significantly different between
the two species. For example, amino acids like cysteine
(C), glutamine (Q), arginine (R), tryptophan (W), and
tyrosine (Y) are preferred in antibody–antigen interac-
tion in the case of humans but not in the case of Mus
musculus. Similarly, residues like glycine (G), lysine
(K), asparagine (N), and serine (S) are preferred in Mus
musculus antibody interaction but not in human
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antibody interaction. These findings highlight the varia-
tions in antibody–antigen interactions between humans
and mice and underscore the importance of host speci-
ficity, emphasizing the need for host-specific predictors.

2.2 | Data analysis

In data analysis, we analyze the human-specific
antibody–antigen complexes, which would be used to
train, test, and evaluate the models used in this study.
We have performed the compositional analysis for the anti-
body interacting and non-interacting residues. Additionally,

the Two Sample Logo was developed on the patterns gen-
erated from the antigen sequences.

2.2.1 | Analysis of human interacting
residues

We compared the amino acid composition of antibody
interacting residues and non-interacting residues
(Figure 3) to understand the preference of residues.
The p-values are generated using the chi-square test.
The composition of residues aspartic acid (D), glutamic
acid (E), histidine (H), lysine (K), proline (P), glutamine

F I GURE 1 The complete workflow of the study.
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(Q), arginine (R), tryptophan (W), and tyrosine (Y) is sig-
nificantly higher in antibody interacting regions. Similarly,
the residues alanine (A), cysteine (C), glycine (G), iso-
leucine (I), leucine (L), and valine (V) are significantly
underrepresented in antibody interacting regions. The
results indicate that the antibody interacting regions are
characterized by a mix of charged, polar, and aromatic
residues, whereas non-interacting regions are domi-
nated by hydrophobic and mildly polar residues.

2.2.2 | Two Sample Logo

In this study, we have built the Two Sample Logo to under-
stand the preference of a residue at a specific position in
the human antibody interacting patterns. The two-sample
logo is displayed in Figure 4. The central residue results in
the Two Sample Logo are similar to the AAC performed in
Figure 3. Alanine (A) is highly abundant in antibody non-
interacting residues while in antibody interacting residues,
glutamine (Q) and cysteine (C) are in abundance.

2.3 | Machine learning methods

In this section, machine learning (ML) models were
developed to predict each residue in the input antigen

sequence as either “antibody interacting” or “antibody
non-interacting.” As most of the machine learning tech-
niques need inputs in fixed length numerical vectors to
develop prediction models, we generate numerical
features for the antibody interacting and antibody non-
interacting patterns. The features, which capture anti-
gen information, are generated for the patterns of
length 17, as it has been shown in a number of studies
in the past that a pattern/window length of 17 is most
effective for predicting interacting residues (Chauhan
et al. 2012; Panwar et al. 2013; Patiyal et al. 2023).

2.3.1 | Models developed using sequence
and evolutionary features

In this study, we derived the one hot encoding and
PSSM profiles for each pattern to extract sequence
and evolutionary information of a pattern. These fea-
tures were used to train the machine learning algo-
rithms and the predictive performance for each model
was then evaluated against the independent test data-
set. As shown in Table 1, the random forest (RF)
model, trained on one hot encoding profile feature,
achieved the maximum performance with the area
under the receiver operating characteristic (AUROC)
score of 0.61 and the Matthews correlation coefficient

F I GURE 2 Comparison of amino acid composition of antigens that interact with human and Mus musculus antibodies. It also includes amino
acid composition of general proteome to provide comparison with base.
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(MCC) of 0.11. The performance of our models improved
significantly when we used evolutionary information of
patterns in the form of a PSSM profile. As shown in
Table 1, our RF-based model obtained the highest
AUROC of 0.67 with an MCC of 0.17. These results
agree with previous studies where the PSSM-based
models perform better than the sequence-based models
(Kaur and Raghava 2003; Kaur and Raghava 2004).

2.3.2 | Models developed using PLM
embeddings and structural features

In addition to sequence and evolutionary information, we
also used embeddings generated by protein language

models (PLMs). PLMs are transformer-based models that
generate embeddings that capture contextual relationships
between amino acids from large-scale protein data (Rao
et al. 2020). In this study, we used PLM embeddings from
ESM2 and ProtTrans as a feature vector. Additionally,
PLMs were used to predict structural information, including
relative solvent accessible surface area (RSA) and sec-
ondary structure (SS), which were used as feature vectors.
Here, RSA features were created using ESMFold, and the
SS features were derived from both ESMFold and Prot-
Trans. Similar to sequence-based features, each feature
vector was generated from the training dataset on the pat-
terns of length 17 and used to train the machine learning
models. The predictive performance of each feature was
then evaluated against the independent test dataset.

We observe that the PLM embeddings yielded the
highest AUROC score of 0.61, which is lower than
models utilizing evolutionary profiles. One of the possi-
ble reasons for the poor performance of the PLM model
is that it extracts embeddings from a single sequence,
whereas evolutionary information-based models use
multiple sequences (homologs). Evolutionary informa-
tion from PSSM captures more information than infor-
mation in a single sequence. It is observed that the
RSA feature gives the best performance, with
the AUROC score reaching 0.67. The results are dis-
played in Table 2. Additional data is available in
Table S1, Supporting Information.

F I GURE 3 Percentage composition of antibody interacting residues and antibody non-interacting residues in antigen.

F I GURE 4 Two Sample Logo constructed from the interacting
and non-interacting patterns in the human dataset.
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2.3.3 | Ensemble models

In our analysis, we observed that the models devel-
oped using PSSM profile and RSA performed better
than other models. In order to utilize the strength of

both these features, we developed an ensemble model
that combines predictions from these two types of fea-
tures. As shown in Table 3, we achieved the highest
AUROC of 0.71 with an MCC of 0.22 at pattern length
17. So far, we used window/pattern length 17, as most

TAB LE 1 The performance of machine learning based models on independent dataset, developed using binary and PSSM profiles at
window length 17.

Models

Performance on independent dataset

Sensitivity Specificity Accuracy AUROC MCC

Binary profile

ANN 0.57 0.54 0.58 0.58 0.08

XGB 0.56 0.55 0.55 0.58 0.08

RF 0.58 0.57 0.57 0.61 0.11

PSSM

ANN 0.62 0.54 0.55 0.62 0.12

XGB 0.66 0.57 0.58 0.67 0.18

RF 0.67 0.55 0.57 0.67 0.17

Abbreviations: ANN, Artificial Neural Network; AUROC, area under the receiver operating characteristic; MCC, Matthew’s correlation coefficient; RF, Random Forest;
XGB, XGBoost.

TAB LE 2 The performance of machine learning models developed using PLM generated embeddings, predicted secondary structure and
relative surface accessibility.

Models

Performance on independent dataset

Sensitivity Specificity Accuracy AUROC MCC

PLM embeddings

ESM-2

ANN 0.48 0.61 0.59 0.57 0.07

XGB 0.60 0.54 0.55 0.60 0.10

RF 0.46 0.69 0.65 0.61 0.11

ProtT5

ANN 0.52 0.56 0.55 0.56 0.06

XGB 0.61 0.48 0.50 0.57 0.07

RF 0.47 0.65 0.61 0.58 0.09

Relative solvent accessibility

ESMFold

ANN 0.73 0.49 0.54 0.64 0.18

XGB 0.52 0.68 0.65 0.66 0.16

RF 0.78 0.46 0.52 0.67 0.20

Secondary structure

ESMFold

ANN 0.54 0.53 0.53 0.55 0.05

XGB 0.16 0.89 0.75 0.57 0.06

RF 0.22 0.85 0.73 0.59 0.08

ProtT5

ANN 0.55 0.52 0.53 0.55 0.06

XGB 0.49 0.60 0.58 0.57 0.07

RF 0.52 0.58 0.57 0.57 0.08

Abbreviations: ANN, Artificial Neural Network; AUROC, area under the receiver operating characteristic; MCC, Matthew’s correlation coefficient; RF, Random Forest;
XGB, XGBoost.
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of the previous studies used length 17. We also wanted
to understand the effect of window length on the perfor-
mance of our models. We developed models using pat-
tern lengths 13–21 and computed the performance of our
ensemble models. It was observed that our RF-based
model performs best on pattern length 15 with AUROC
0.72 and MCC 0.23. Generally, a pattern length of 15 per-
forms better than a pattern length of 17 by a marginal
amount. Additional data is available in Table S2.

We observe that the Random Forest ensemble of
classifiers trained on RSA and PSSM with a pattern
length of 15 achieved the highest performance in pre-
dicting antibody interacting regions in the antigen. This
model is termed as HAIRpred (Human Antibody Inter-
acting Residue predictor). The performance of the
ensemble model compared to its individual features is
displayed in Figure 5.

2.4 | Benchmarking

It is important for any study to benchmark its tools
against existing state-of-the-art methods. To the best of
our knowledge, no method has been developed so far
for predicting conformational B-cell epitopes for human
hosts or for predicting human antibody interacting

residues. Thus, a direct comparison of our method with
previous studies is not possible.

TAB LE 3 The performance of the ensemble model using different window lengths on an independent dataset.

Models

Metrics evaluated on the independent test dataset

Sensitivity Specificity Accuracy AUROC MCC

Window length 13

ANN 0.66 0.57 0.59 0.67 0.18

XGB 0.72 0.54 0.57 0.70 0.20

RF 0.79 0.48 0.54 0.71 0.22

Window length 15

ANN 0.65 0.57 0.58 0.66 0.17

XGB 0.73 0.53 0.57 0.71 0.21

RF 0.78 0.51 0.56 0.72 0.23

Window length 17

ANN 0.65 0.58 0.59 0.67 0.18

XGB 0.71 0.56 0.59 0.70 0.21

RF 0.76 0.52 0.57 0.71 0.22

Window length 19

ANN 0.65 0.57 0.58 0.66 0.17

XGB 0.71 0.56 0.59 0.70 0.21

RF 0.76 0.53 0.57 0.71 0.23

Window length 21

ANN 0.59 0.66 0.65 0.67 0.20

XGB 0.72 0.56 0.59 0.71 0.22

RF 0.75 0.53 0.57 0.71 0.22

Abbreviations: ANN, Artificial Neural Network; AUROC, area under the receiver operating characteristic; MCC, Matthew’s correlation coefficient; RF, Random Forest;
XGB, XGBoost.

F I GURE 5 ROC curves of ensemble model (pattern length = 15)
compared with individual features.
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However, several methods have been developed in
the literature for predicting conformational B-cell epi-
topes not specific to any host. Thus, we evaluate these
general methods of B-cell epitope prediction on an
independent dataset used in this study to benchmark
these methods with the proposed HAIRpred method.
The B-cell epitope prediction methods used for bench-
marking include CBTOPE (Ansari and Raghava 2010),
Bepipred-2.0 (Jespersen et al. 2017), Bepipred-3.0
(Clifford et al. 2022), SEMA-1d (Ivanisenko et al. 2024),
and Epidope (Collatz et al. 2021). As shown in Table 4,
none of the existing methods achieved an AUROC of
more than 0.62 on the independent dataset, whereas
our methods achieved an AUROC of 0.72 on the same
dataset. The results in Table 4 demonstrate the supe-
rior performance of HAIRpred compared to existing
methods.

In addition to this, we also wanted to understand
how our method would perform on data from other
hosts. Therefore, we also tested HAIRpred on the Mus
musculus dataset derived from experimental results
through SAbDaB. It is observed that the performance
of our methods decreases significantly on the Mus
musculus dataset. These observations further support
the development of host-specific methods for predicting
conformational B-cell epitopes.

2.5 | Feature importance analysis

HAIRpred is an ensemble method that combines two
Random Forest-based models, trained on RSA and
PSSM on pattern length 15, respectively. To under-
stand the decision process of these two individual
models, Shapley values were calculated for each indi-
vidual model using the Python shap package. The
Shapley values indicate the importance of a particular
position in the feature vector in the final prediction.

Figure 6 shows the feature importance by position
on the pattern for the RSA trained model. It is observed
that the RSA of the central residue in the pattern has
the largest influence on the decision making process of
the RSA-trained Random Forest model. Similarly,

Shapley values were calculated for the PSSM-trained
model, and the top features with the highest Shapley
values are: 8Q, 8E, 8R, 8K, 8H, 8N, 8C, 8D, 8A, and
11A. Here, the number refers to the position of the resi-
due in the pattern and represents the column of the
PSSM matrix. It is similarly observed that the central
residue in the pattern has the largest influence on the
decision making process for the PSSM-trained model.

2.6 | Web server implementation

To serve the scientific community, we have developed
a user-friendly web server that integrates the best-
performing prediction models from our study. This web
server provides an accessible platform for researchers
to predict antibody interacting residues in antigen
sequences. Users can submit antigen sequences in
FASTA format, and the server uses the selected model
to predict antibody-binding sites in each submitted anti-
gen. The output is designed to be both extensive and
user-friendly, offering results in three different formats:
sequential, graphical, and tabular (see Figure 7). In
addition to providing predictions, the server allows
users to download the training and testing datasets
used in this study. The server also has a “Help”
section to assist the users in navigating the features of
the platform effectively. The server has been implemen-
ted using a combination of HTML, JavaScript, and PHP
scripts. The web server has robust functionality and
compatibility across a wide range of devices, including
laptops, Android smartphones, iPhones, and iPads.
There is one limitation of the web server due to the
computational restraints: the lack of a design module
that could use the findings of HAIRpred to redesign the
antigen: antibody complexes, similar to approaches
done in previous studies (Padhi et al. 2021). We hope
that the scientific community will use our findings to
develop such modules.

We have also developed an open-source standa-
lone version of HAIRpred to enhance its accessibility.
This package offers researchers the flexibility to run
predictions locally without the need for an active internet

TAB LE 4 The performance of our method HAIRpred and existing methods on independent dataset.

Model Year Sensitivity Specificity Accuracy AUROC MCC

CBTOPE 2010 0.09 0.94 0.80 0.52 0.04

Bepipred-2.0 2017 0.77 0.22 0.31 0.50 �0.01

Epidope 2021 0.03 0.96 0.81 0.50 �0.02

Bepipred-3.0 2022 0.65 0.58 0.59 0.62 0.17

Sema-1d 2024 0.65 0.60 0.61 0.62 0.18

HAIRpred on mouse dataset – 0.71 0.54 0.56 0.68 0.17

HAIRpred – 0.78 0.51 0.56 0.72 0.23

Abbreviations: AUROC, area under the receiver operating characteristic; MCC, Matthew’s correlation coefficient.
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F I GURE 6 Shapley values calculated for each position of the pattern for the RSA model.

F I GURE 7 HAIRpred web server interface showing antibody interacting residue prediction results.
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connection. The standalone version is available on
GitHub (https://github.com/raghavagps/HAIRpred) and
can also be installed as a python package, accessible
through pip (pip install HAIRpred). The standalone soft-
ware has been designed in such a way that small anti-
gens (less than 400 residues) can be predicted on
resource-constrained systems. However, for larger anti-
gens, GPU support is recommended to ensure optimal
performance and faster predictions. We have also per-
formed a time analysis of the standalone software to pro-
vide an estimate of the speed of our software. We
measured the time it took for the software to run different
numbers of sequences of varying sizes on a system with
i5 14th Generation processor with 32GB RAM, and the
results are displayed in Table S3.

Both the web server and standalone package aim to
democratize access to advanced computational tools, fos-
tering advancements in antigen–antibody interaction
research. The open-source web server can be accessed at
https://webs.iiitd.edu.in/raghava/hairpred/, providing a seam-
less and reliable resource for the scientific community.

3 | DISCUSSION AND CONCLUSION

Antibodies are vital glycoproteins in the adaptive immune
system, designed to bind to foreign particles through spe-
cific regions called epitopes (Zeng et al. 2023). Identifying
these antibody-binding regions is crucial for advancing
immunological research and enabling the development of
vaccines, therapeutics, and diagnostic tools (Correia
et al. 2014; Csepregi et al. 2020; Norman et al. 2020).
However, existing predictive models face several chal-
lenges, including limited host specificity and an inability to
account for species-specific variations in immune
responses and antibody structures (da Silva et al. 2022;
Haste Andersen et al. 2006; Kulkarni-Kale et al. 2005;
Rubinstein et al. 2009; Shashkova et al. 2022; Solihah
et al. 2020; Sun et al. 2009; Sweredoski and Baldi 2008).
These shortcomings often lead to suboptimal perfor-
mance when applied to experimental datasets (Cia
et al. 2023). Furthermore, many models lack interpretabil-
ity, offering little understanding of the factors influencing
antibody–antigen interactions. To address these limita-
tions, our study focused exclusively on human antibody–
antigen complexes derived from experimental data. By
narrowing the scope to human systems, we sought to
overcome the drawbacks of generalized models that
neglect species-specific differences. We curated a com-
prehensive feature set that includes structural, sequential,
and evolutionary characteristics of antigens. Through rig-
orous testing using data from the Protein Data Bank and
the SAbDab database, we identified key features such as
RSA and PSSM as the most important determinants of
antibody–antigen interactions.

Additionally, we investigated the influence of local
antigenic environments by analyzing sequence pat-
terns of varying lengths. This analysis resulted in the

development of the Human Antibody Interacting Resi-
due Predictor (HAIRpred), an ensemble-based random
forest model designed to predict antibody interacting
regions in antigens with high precision. HAIRpred rep-
resents a second-generation, host-specific tool that pri-
oritizes human antibody interactions over generalized,
cross-species predictions. The model demonstrated a
remarkable AUROC of 0.72 on an independent experi-
mental dataset, outperforming existing state-of-the-art
models. It also demonstrated superior performance in
identifying human antibody interacting residues com-
pared to Mus musculus-derived antibodies, underscor-
ing the importance of host specificity. Insights from
SHAP (SHapley Additive exPlanations) analysis
highlighted that central residues in antigenic patterns
are pivotal in predicting interactions, enhancing the
model’s interpretability.

While these results mark significant progress, this
study acknowledges one limitation: the sequence simi-
larity threshold of 70% used for data clustering. This
threshold was necessary to ensure an adequate
amount of training data. However, as more experimen-
tal data becomes available, lowering this threshold to
40% will allow a more in-depth exploration of antigen–
antibody interactions across diverse antigen structures,
further improving the model’s generalizability and per-
formance. In conclusion, HAIRpred offers a major
advancement in antibody–antigen interaction prediction
by adopting a host-specific, human-centric approach.
Its robust performance on human data makes it an
invaluable resource for immunological research, with
potential applications in vaccine design, therapeutic
development, and diagnostics. By addressing the limi-
tations of earlier models, HAIRpred sets a new stan-
dard for second-generation, host-specific prediction
tools. To ensure accessibility, we have made both a
user-friendly web server, PyPI package, and a standa-
lone version of HAIRpred available at https://webs.iiitd.
edu.in/raghava/hairpred/.

4 | MATERIALS AND METHODS

4.1 | Creation of datasets

We obtained antibody–antigen complexes for the
human hosts from the SAdDab database (Dunbar
et al. 2014). Antigens or proteins having a resolution
less than 3.0 Å and an R-factor less than 0.30 were
selected for further processing. All antigens with less
than 50 residues were removed from the dataset. This
resulted in a set of 1620 human antibody–antigen com-
plexes. In a similar way, we obtained 290 Mus muscu-
lus antibody–antigen complexes from the SAbDaB
database. In order to remove redundancy from antigens
recognized by human antibodies, we clustered these anti-
gens using CD-HIT (Fu et al. 2012) with a 70% sequence
similarity cut-off. Our dataset contains 277 high-quality
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non-redundant antigens, where no two antigens have
more than 70% similarity with each other. This dataset
was further divided into training and independent datasets
(80:20 ratio), where the training dataset contained
221 and the independent dataset contained 56 antigens.
In order to assign antibody interacting residues in these
antigens, we examined changes in the RSA of these resi-
dues with and without antibody binding, similar to the
algorithm performed by Cia et al. (2023). A residue is
assigned antibody interacting residues if it undergoes a
change in RSA of at least 5% upon binding with an anti-
body (RSAunbound � RSAbound ≥ 5%) (Cia et al. 2023).

4.2 | Creation of overlapping patterns

Numerous studies have shown that the residue’s function
is influenced by its local environment (Ansari and
Raghava 2010; Kaur and Raghava 2003; Kaur and
Raghava 2004). To capture the local environment of each
residue, we created overlapping patterns (or windows) for
each residue in the antigen, with window sizes ranging
from 13 to 21. To generate a pattern for the terminal resi-
dues, we added a dummy variable “X” at both ends of
the antigen for the residues not covered in the pattern.
Each pattern’s corresponding label (antibody interacting/
non-interacting) is the label of the central residue. This
approach has been commonly used in multiple studies
(Bhasin and Raghava 2005; Kumar et al. 2008).

Patterns were created for both the training dataset
and the independent test dataset. The patterns gener-
ated for the training dataset were imbalanced, that is,
the non-interacting patterns are much larger in number.
This imbalance can introduce bias in the model, caus-
ing it to favor the majority class (non-interacting pat-
terns). To avoid any bias due to the imbalance, the
balanced training dataset was made, which consisted
of all antibody interacting patterns and an equal number
of randomly selected non-interacting patterns.

4.3 | Compositional analysis

Amino acid composition is the frequency of each of the
20 amino acids within a peptide or protein sequence. It
is represented as a feature vector with 20 elements,
where each component corresponds to the fraction of a
particular amino acid within the sequence (Pande
et al. 2023). It can be calculated by Equation (1),

AACj ¼Pj

Q
, ð1Þ

where AACj is an amino acid composition of residue
type j and Pj and Q are the number of residues of type
j and the length of the sequence, respectively.

In Figure 2, the AAC of human and mouse epitopes
are compared to understand their differences. The

labeled data of both humans and mice were filtered to
only get the antibody interacting residues (epitopes),
and the AAC was calculated using Equation (1). The
general proteome AAC was the AAC in the UniProtKB/
Swiss-Prot data bank, which are derived from the
Release notes for UniProtKB/Swiss-Prot release
2013_04 (April 2013) (Walker 2005).

In Figure 3, the AAC of human antibody interacting
residues and non-interacting residues were compared.
The labeled human-specific antigen data were classi-
fied as per the labels, and AAC was calculated as per
Equation (1). p-values were calculated using the chi-
square test to understand the significance of the differ-
ence in AAC of each residue, and it was calculated
using the scipy package (Virtanen et al. 2020). The
label for significance is (*), and the number of (*) is cal-
culated using thresholds with (*) for a p-value below
0.05, (**) for a p-value below 0.01, and (***) for a p-
value below 0.001.

4.4 | Sequence logo

To show sequence conservation in antibody interacting
and non-interacting patterns, we generated the
sequence logo using a web-based application called
“Two Sample Logo.” This tool calculates the signifi-
cance of each residue at each position and compares
distributions between positive and negative samples.
Residues are grouped based on enrichment or deple-
tion in the positive sample, and the graphical output
can display statistically significant residues with symbol
sizes proportional to the difference between the groups.
The p-value is calculated using a t test (Vacic
et al. 2006). To generate the Two Sample Logo, we
inputted all the antibody interacting patterns in the posi-
tive sample. To get a better understanding, we only
considered those antibody non-interacting patterns in
which no residue was antibody interacting. This was
done to ensure the elimination of potential bias from the
antibody interacting residues. From these patterns, we
then randomly selected the negative sample to have
the total number of patterns to be equal in both positive
and negative sample.

4.5 | Curation of feature set

Most of the existing machine learning techniques need
input in the form of a numerical vector or matrices.
Thus, we need to generate features that would repre-
sent the interacting and non-interacting patterns of anti-
gens in the form of a numerical vector. In this study, we
curated a wide range of features that capture structural,
sequential, and evolutionary information about antigens
from their sequence. The curated set of features
includes one hot encoding profile, PLM embeddings,
PSSM, predicted RSA, and SS.
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One hot encoding profile was generated by assigning
binary values to each amino acid. This results in a
20-length vector for each residue in which only one posi-
tion corresponding to that amino acid is set to 1, while all
other positions are set to 0. The amino acid order used
here is [0A0,0R0,0N0,0D0,0C0,0Q0,0E0,0G0,0H0,0I0,0L0,0K0,0M0,0F0,0

P0,0S0,0T0,0W0,0Y0,0V0]. For example, arginine (A) was repre-
sented as [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. Addi-
tionally, to account for the patterns of the terminal
residues, the dummy variable X is encoded as 20-length
zero vector.

One hot encoding profile was created for each pat-
tern by concatenating the vectors of all residues in the
pattern, resulting in the dimension of the feature vector
as N � 20, where N is the pattern length (Ansari and
Raghava 2010).

PSSM are matrices containing information about the
probability of amino acids occurring in each position. It is
derived from a multiple sequence alignment and it repre-
sents the evolutionary history of the protein. Here, we
generated PSSM profiles of a sequence using Position-
Specific Iterative Basic Local Alignment Search Tool
(PSI-BLAST) (Altschul et al. 1997) and searching
against the Swiss Prot database (Bairoch and Apwei-
ler 1999). The search was performed with an E-value
threshold of 0.1 and a word size of 3 for protein
sequences in three iterations. The alignment was con-
ducted using BLOSUM62 as the scoring matrix with gap
penalties of values of 11 (gap opening) and 1 (gap
extension). We generated PSSM profiles for each anti-
gen in the complex and then divided them into patterns.
The dummy variable X is assigned a 20-length zero vec-
tor while creating the feature vector. The resulting fea-
ture vector is a matrix of dimensions N � 20, where N is
the length of the pattern.

PLMs are transformer-based models which gener-
ate embeddings that capture contextual relationships
between amino acids, reflecting evolutionary and func-
tional information. Here we use ESM2 (esm2_t6_8-
M_UR50D) (Lin et al. 2023) and Encoder only
ProtTrans (ProtT5-XL-UniRef50) (Elnaggar et al. 2022)
to generate embeddings for the patterns. The patterns
are inputted into the models and the last layer embed-
dings are extracted as a feature vector.

RSA gives a measure of the extent of exposure of a
residue in the 3D structure. To predict RSA from
sequence, the 3D structure was predicted using ESM-
Fold (Lin et al. 2023), a PLM-based protein structure
prediction model. The predicted structures were then
processed using the DSSP algorithm (Kabsch and
Sander 1983) to get RSA values for each residue.
These predicted RSA values were then divided into pat-
terns corresponding to their respective residues. The
dummy variable X is assigned the RSA of value 0. The
resulting feature vector is a vector of length N, where
N is the length of the pattern. We conducted a compara-
tive analysis between the RSA values predicted using

this approach and those calculated directly from the
PDB structure to evaluate the reliability of the predicted
RSA. The results indicate a Pearson correlation coeffi-
cient of 0.75 between the two sets of values. This sub-
stantial correlation provides strong evidence supporting
the accuracy of the RSA predictions generated using
ESM, thereby justifying their application in this context.
We also calculated the results of our models using the
actual RSA to see our comparison with predicted RSA.
These results are displayed in Table S5.

SS provides information about the local structure of
the protein backbone. Secondary structure was pre-
dicted in two ways: (1) from ProtT5-XL-U50 embed-
dings (8-class SS) (Elnaggar et al. 2022) and (2) from
the DSSP algorithm applied to the 3D structure pre-
dicted by ESMFold (3-class SS) (Lin et al. 2023). The
predicted secondary structures were then divided into
patterns corresponding to their respective residues.
The dummy variable X is assigned the secondary struc-
ture of a coil. The secondary structure is then encoded
using a label encoder, resulting in a vector of length N,
where N is the length of the pattern.

4.6 | Machine learning and neural
network models

The machine learning algorithms were implemented
using scikit-learn (Pedregosa et al. 2012) to develop
good predictive models. We focused on the Random
Forest and XGBoost algorithms due to their strong clas-
sification performance and ability to handle variable
datasets. The hyperparameters of the models were
optimized using GridSearchCV from the scikit-learn
package. In addition to traditional machine learning
algorithms, we implemented neural network models
using PyTorch (Paszke et al. 2019). Neural networks
are highly effective for capturing complex patterns in
data due to their multilayered architecture. The neural
networks were optimized using backpropagation and
the Adam optimizer. Cross-entropy loss was used as
the loss function to measure prediction error and guide
model optimization. Ensemble models were also cre-
ated to combine information from different features. We
have used a simple method for creating ensemble
models, which involves averaging the probabilities gen-
erated by the individual models. The averaged proba-
bilities are then used to decide the predicted label.

4.7 | Training and evaluation of models

To optimize our classification models, we used the five-
fold cross-validation technique. In this approach, the
dataset is randomly divided into five equal-sized
“folds.” The model is trained on four of these folds and
evaluated on the remaining fold, with this process
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repeated five times. The results from each fold are then
averaged to provide an estimate of the model’s perfor-
mance. This method helps optimize the model’s hyper-
parameters to maximize AUROC. Although different
folds were used for training and testing, some degree
of overoptimization cannot be fully ruled out with five-
fold cross-validation. Therefore, we evaluated our final
models on an independent dataset that was not used
for hyperparameter optimization.

4.7.1 | Evaluation parameters

In this study, the models are performing binary classifica-
tion on each window to label each residue as antibody
interacting/non-interacting. The performance of the models
is evaluated based on the standard evaluation parameters.
The evaluation parameters can be divided into threshold-
dependent and threshold-independent parameters. The
threshold-independent parameter used in this study is the
AUROC, and the threshold-dependent parameters are
Sensitivity, Specificity, Accuracy, and MCC. These param-
eters are implemented using the scikit-learn package,

Sensitivity¼ TP
TPþFN

, ð2Þ

Specificity¼ TN
TNþFP

, ð3Þ

Accuracy¼ TPþTN
TPþTNþFPþFN

, ð4Þ

MCC¼ TP�TNð Þ� FP�FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þp :

ð5Þ

Here TN, TP, FN, and FP stand for true negative,
true positive, false negative, and false positive,
respectively.

4.8 | Explainable machine learning
using SHAP

Understanding the decision making process of a given
machine learning model is crucial for model reliability,
especially in complex biological applications. In this
study, we used SHapley Additive exPlanations (SHAP),
a post-hoc interpretability method based on Shapley
Values and cooperative game theory, to analyze
machine learning models (Lundberg and Lee 2017)
and generate Shapley Values for each position in a fea-
ture vector. These Shapley values indicate the impor-
tance of that position in the feature vector in the final
prediction. The Python SHAP package was used for

SHAP TreeExplainer to interpret the results of the indi-
vidual models of the HAIRpred’s Random Forest
ensemble.

4.9 | Web server

To aid the scientific community, we designed a web
server called “HAIRpred” to predict human antibody
interacting residues in the antigen (https://webs.iiitd.edu.
in/raghava/hairpred/). The user-friendly front end was
developed using HTML, Javascript, and PHP scripts. In
addition to the web-based platform, we developed a
standalone version of HAIRpred and a pip package.
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